

— Thanks —

The best part about my nine years of university education was not anything I
might have learned but all the fantastic people I met along the way. Thanks to the
many friends that have made those last nine years so much fun: Morgan, Anth,
John and all the guys from St. Bernards; Tim, Matt, Goody, Dave and others
from Melbourne University; everyone from The Keg, especially Luke, Zero, Narelle
and Rachel; Josh, Sunny and others from RMIT, Erik, Tim, Asmus, Jean-Paul,
Thorsten, Cameron, Tuuli, Pirrita, Rupert, Kritter, the Helsingborg Saints and
many others from Linkdping; and Will, Mike, Jeff, Bob, Monica, Andrew, George,
David, Jay, Ranjit, Hyuckchul and all the L.A. Crows in L.A. I have been
extremely lucky to have worked with advisors with the enthusiasm, dedication
and patience to make studying both challenging and enjoyable. Thanks a lot to:
Lawrence, Lin and Vic from RMIT, Milind at USC and especially Anders,
Dimiter, Simin and Nancy at Link6ping. My family have not always been excited
about my travels but have never failed to support and encourage everything I do —
knowing that I had that support and encouragement is more important than they
probably realize. Finally, a very special thanks to Fiesta who is simply a legend.

CONTENTS

1. Introductiono 1
1.1 Autonomy e 2
1.2 Adjustable Autonomy Lo 3
1.3 Research Question,)
1.4 Contributions o o)
1.5 Outline of the Thesis 6
1.6 AnAside 7

2. Agent Services for Adjustable Autonomy 9
2.1 What is Adjustable Autonomy? 9

2.1.1 What Exactly is an Agent? 10
2.1.2 Autonomy 13
2.1.3 Conceptual Model of the AA Task 18
2.2 Motivation 22
2.3 Research Question, 23
2.3.1 Scopeof this Work 24
2.4 An Ideal Adjustably Autonomous Agent 26
2.5 Summary e e e e 29

3. State of the Art 31
3.1 Applications of Agents 31
3.2 Motivating Adjustable Autonomy 32

3.2.1 When is AA Useful? 32
3.3 Adjustable Autonomy in the Literature 37
3.3.1 Reasoned Autonomy 39
3.3.2 Directed AA 43
3.4 RelatedIdeas 52
3.4.1 Mixed Initiative Systems 52
3.4.2 Tele-operation, 53
3.4.3 Interactive Theatre 55

3.4.4 Human Factors 56

Contents

3.5 Summary e

Guidelines for Building Agents for Adjustable Autonomy Systems
4.1 Using Guidelines for Capturing Design Experience
4.1.1 Using the Guidelines
4.1.2 Guideline Philosophy
4.1.3 Guideline Evaluation
4.2 Building Agents For Adjustable Autonomy Systems
4.3 T Services o i i e e e
4.4 AA Actuation Services Lo
4.5 Summary ... oL Lo e e e e e

. Adjustable Autonomy for Interactive Simulations
5.1 What are Interactive Simulations?
5.1.1 Evaluation Simulation Environments
52 AA Requirements
5.2.1 What should AA Information Do?
5.2.2 Summary of AA Information Service Requirements . .
5.2.3 What should the AA Actuation Do?
5.2.4 TImplementation Issues
5.3 Overview of a Solution
5.4 A Note About Agents and Actors
55 EASE
5.5.1 Social Conventions
5.5.2 Managing Conflicting Goals
5.6 Actor Services and Prototype Interfaces
5.6.1 Information Services
5.6.2 Actuation Serviceso
5.7 Example
5,71 The Scenario
5.7.2 Actor Specification,
5.7.3 Avoiding Aircraft 0oL
5.7.4 Suspending Agents,
5.7.5 Changing Generic Pool
5.7.6 Changing Constants
5.7.7 User Taking Over High Level Decision Making ..
5.7.8 Detail Traces
5.8 Limitations o o
5.9 Other Behaviour/Agent Based Actor Architectures
5.10 Summary e e e

59
59
60
61
62
62
63
67
74

Contents xi

6. Adjustable Autonomy for Personal Assistants 163
6.1 ElectricElves oo 165
6.2 AA in Human Collaboration. 171
6.2.1 Tssueso 173

6.3 Conceptual Design of the E-Elves 177
6.4 Implementation Details 190
6.4.1 Model of Organisation 190
6.4.2 Friday Decision Making 194
6.4.3 Partitioning o oo 195
6.4.4 Example — Delaying Meetings 196
6.4.5 Team Decision Making 199
6.4.6 Safe Learning, 203

6.5 UsingtheE-Elves. 208
6.5.1 General Observations 209
6.5.2 Individual AA Lo oo 210

6.5.3 Team AA Evaluation. 211

6.6 Personal Assistants 213
6.7 Summaryo e e e e 214
7. Evaluation. 217
7.1 Method 217
7.1.1 Scope of Evaluation 219

7.2 Explicit Information Guideline 221
7.2.1 EASE and the Explicit Information Guideline 221
7.2.2 E-Elves and the Explicit Information Guideline 222
7.2.3 Violation of the Explicit Information Guideline 223

7.3 Design Information Guideline, 224
7.3.1 EASE and the Design Information Guideline 224
7.3.2 E-Elves and the Design Information Guideline 225
7.3.3 Violation of the Design Information Guideline 226

7.4 Software Engineering Guideline 227
7.4.1 EASE and the Software Engineering Guideline 227
7.4.2 E-Elves and the Software Engineering Guideline . . . 228
7.4.3 Violation of the Software Engineering Guideline. . . . 229

7.5 Deterministic Execution Guideline 229
7.5.1 EASE and the Deterministic Execution Guideline . . . 229
7.5.2 E-Elves and the Deterministic Execution Guideline . . 230
7.5.3 Violation of the Deterministic Execution Guideline . . 231

7.6 Explicit Behaviour Guideline 232
7.6.1 EASE and the Explicit Behaviour Guideline 232

xii Contents

7.6.2 E-Elves and the Explicit Behaviour Guideline 233
7.6.3 Violation of the Explicit Behaviour Guideline 234
7.7 Building Blocks Guideline 234
7.7.1 EASE and the Building Blocks Guideline 235
7.7.2 E-Elves and the Building Blocks Guideline 235
7.7.3 Violation of the Building Blocks Guideline. 236
7.8 No Extra Mechanisms Guideline 236
7.9 Design Expecting Failures Guideline 237
7.9.1 EASE Features 237
7.9.2 E-Elves and the Design Expecting Failures Guideline . 239
7.9.3 Violation of the Design Expecting Failures Guideline . 239
7.10 Evaluation Summary oL 240
7.11 Miscellaneous Agent Design Issues 244
7.11.1 The Guidelines are Flexible 244
7.11.2 Choosing between Directed and Reasoned AA 245
7.11.3 Good Software Engineering is Essential — Unfortunately245

7.11.4 Tronically, Behaviour-based Systems are Very Appro-
priate 246
7.11.5 TeamworkisaKey 247
7.11.6 Using AA During Development 248
712 Summary e e e e e 249
8. Conclusions and Future Work 251
8.1 Summary e e e 251
8.1.1 Conceptual Model of AA 251
8.1.2 Guidelines.o oo 252
8.1.3 Implementations, 252
8.1.4 Evaluation 253
8.2 Summary of Contributions 253
8.3 Future Work 253
8.3.1 Tradeoffs 254
8.3.2 Other Domains 254
8.3.3 Underlying Properties 255
8.3.4 AA Implementations 255
8.3.5 EASE and E-Elves Extensions 256
8.4 Concluding Remarks 256

2.1

2.2

2.3

24

2.5

2.6

3.1

5.1

5.2

LIST OF FIGURES

The relationships between goals, goal hierarchies, top-level
goals and system goals.

The diagram on the left shows the conventional way of think-
ing about human-agent interaction — interaction is either via
the environment or through some external interface. In the
AA system on the right the agent and human are part of the
same system that interacts with the environment as a single
entity.

The conceptual relationship between AA and a system. The
arrows show the paths data travels in the system.

This figure shows how the different conceptual parts of the
AA are related to the agent services for a single agent. Dot-
ted lines show examples of how 7 services might extract in-
formation from different parts of an agent’s reasoning and A
services might change different parts of that reasoning.

Directed AA involves a human user doing the reasoning about
the distribution of autonomy.

Reasoned AA involves the agent doing the reasoning about
the distribution of autonomy.

Diagram relating the different factors affecting function al-
location. Balanced work keeps the different components in
balance (Bye et al. 1999).

Standard life cycle of an actor. Each time the domain expert
requires a change in behaviour the simulation is stopped and
an actor expert consulted to make the change.

Actor life-cycle for an EASE actor using AA to change actor
behaviour online. Notice that the cycle is much simpler than
the one shown in Figure 5.1.

20

81

xiv

List of Figures

5.3

5.4

9.5

5.6

5.7

5.8
5.9
5.10

5.11

5.12

Snapshot of the RoboCup simulation monitor. The larger
half light and half dark circles represent the 11 players of
each team. The lighter side of the player shows the direction
it is facing. In the bottom left hand corner is a record of the
commands the automatic referee has sent to the players. In
the bottom right hand corner is a record of the commands
sent by the players to the server.

Snapshot of the TACSI air-combat simulation. Solid lines
show the path of the different aircraft as they engage over
the East coast of Sweden. The three aircraft in the bottom
right corner are engaging the three in the top left part of the
SCTEEIL. « & v v v v e e e e e e e e e e

The conceptual configuration of actor, user and AA for in-
teractive simulations. Z and A are implemented in software
while a human does the R. Some type of human-computer
interface needs to connect the software parts to the human
TEASOMING. . . .+ o v v vt e e e e e e e e

This diagram shows the flow of information from the actor,
via Z services and Z to a user. When the user receives the
information it is in a format they can understand. Across the
bottom of the diagram is an example of the types of informa-
tion representations that might be used at each step.

This diagram shows the flow of commands from the user, via
A and A services to implementation in the actor. Along the
bottom of the figure is an example of how a command from
the user might get translated into changes in the actor.

Relationship between an actor, agents and a user.
A high level view of the EASE run-time architecture

Tool for specifying a fixed contract. The manager being spec-
ified will make contracts with a safety agent, a conserve fuel
agent and a patrol mission agent. The patrol mission agent
contract has two parameters, “Rules of Engagement” and
“Minimum Height” which are instantiated with the values
“Aggressive” and “Safe Altitude” (which are named constants
or more complex expressions).

The end-user tool for specifying a dynamic contract. In this
case an agent is required with the capability “Safety”.

The tool for specification of a list contract.

88

List of Figures

XV

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

A snapshot of the condition specification sub-system for end-
user programming of complex agent functions, showing a user
editing one cell, a comparison between other cells, in the cen-
ter of the window. At the bottom of the window is informa-
tion about where the cell is used and the cells it uses. On
the right of the window are the cells that have already been
created.

An example (simple) environmental priority function for an
obstacle avoidance agent. The agent’s environmental priority
is higher if the obstacle aircraft is close and/or the aircraft is
heading towards the obstacle.

The end-user state machine specification tool, showing a state
machine for a simple patrol agent. Circles represent states,
while arrows represent transitions. The state in the top left
corner, i.e., take-off, with an extra line is the start state. Suc-
cess transitions are colored green while normal transitions are
annotated with the condition for their traversal.

Information extracted from the agent organisation and generic
pool. The surrounding box represents the extent of the EASE
actor software. The arrows out of the box show what infor-
mation is extracted and the parts of the software where that
information originates.o

Information extracted from a single EASE agent. The large
circle represents an agent, the arrows show which information
is extracted from where.,

How the different AA actuation services affect an actor. The
box represents the extent of the EASE software and the ar-
rows show where A changes occur.

The Boss visualisation of the agent organisation. The state
of each agent is shown in parentheses after its name. Agents
with a small circle to their left are managers which can be
clicked on to show contracted agents.

Implications Visualisation tool for investigating the implica-
tions of different actions on the agent organisation. The but-
tons along the bottom of the window allow the user to specify
different changes to the organisation.

106

xvi

List of Figures

5.21

5.22

5.23

5.24

5.25

.26
9.27

5.28

5.29

5.30

5.31

5.32

5.33

The Calculation Trace window shows the details of a calcu-
lation one of the agents is performing. Each line shows the
result of computing the value of one cell. The names used to
describe the cells are used to name the intermediate results.
The bottom line in the window shows that the satisfaction
calculated was 3.0.o Lo oL 122
The tool for modifying agents in the generic pool. Uncheck-
ing the “Available” checkbox would mean the “Goal Kicker”
agent could not be contracted. The list on the left shows all
the agents in the generic pool. The slider in the middle allows
the intrinsic priority of “Goal Kicker” to be changed. 128
The tool for changing the value of named constants while an
actor is running. The name is on the left, the current value
in the middle and a button for making the changes on the right.131
A snapshot of the TACSI visualisation at the start of the
SCENATIO. . .« « . v i e e e e e 133
A snapshot of the “Start control” tool from which the actor
and other tools are started. 134
The Boss showing the starting agent organisation of the actor. 135
The user has selected the Patrol Mission agent to be added
to the agent organisation. 136
A snapshot of The Boss after the Patrol Mission agent has
been contracted. oo L 137
A snapshot of the TACSI window shortly before the EASE
controlled aircraft (labeled “1”, at the top) takes evasive actions. 138
A snapshot of The Boss, with hierarchies fully expanded, after
an aircraft avoidance agent has been contracted to avoid a
detected aircraft. Lo o o000 139
A snapshot of The Boss, with hierarchies fully collapsed, after
an aircraft avoidance agent has been contracted to avoid a
detected aircraft.o o oo oL 139
A snapshot of the Negotiation Viewer shortly after an aircraft
was successfully avoided. The graph shows about two minutes
worth of negotiation. L 0L 141
The scenario shortly after an aircraft was successfully avoided.
The path of the EASE controlled aircraft (on left) is shown
with a trail behind it. Notice the small curve near where the
paths of the two aircraft cross showing the slight turn the
aircraft made to avoid the obstacle. 142

List of Figures XVii

5.34

9.35

5.36

5.37

5.38

5.39

5.40

5.41

5.42

5.43

5.44

5.45

5.46

5.47

5.48

5.49

A snapshot of The Boss with the Smooth Manager agent sus-
pended. 143
A trace of the aircraft’s path during the patrol. The turn
at the bottom (one long turn) was made while the Smooth
Manager was active and the tighter turn at the top was made
while the Smooth Manager was paused. 144
The starting state of the generic pool, showing the ten avail-
ableagents. 145
The state of the generic pool after a second file of agent spec-
ifications has been opened. The generic pool now contains 13

agents. Lo 146
Making the agent Go to (z,y) unavailable to be contracted in
the genericpool. Lo oL 146
A snapshot of The Boss with the Go To (z,y) Fast manager
and its contractees.o Lo 147
A trace of the calculations the Smooth Manager is doing to
determine whether a state transition should be made. 148
A snapshot of the tool for viewing and changing the values of
named constants.o Lo 149

A snapshot of The Boss after the Smooth Manager makes a
state transition. (Notice that the user has also replaced the
Patrol Mission agent with a Circle agent.) 150
A trace of the path of the aircraft when the location of one
of its waypoints is dynamically changed. The “turn” on the
right is actually where the waypoint location was changed to

be much further north, rather than north-east. 151
A snapshot of The Boss after the Patrol Mission agent is
stopped. 152
Creating a Fly Heading agent and instantiating the “Required
Heading” parameter. 153
Condition Specification tool for specifying calculations to be
performed by the actor. 154
A snapshot of The Boss after the user adds the Fly Heading
agent. Lo e 155

The route taken by the aircraft after the user stepped in and
started making high level decisions. Notice the turn to the
east near the left of the screen. 156
A trace of a Go to (z,y) engineer’s reasoning for its satisfac-
tion with the selected actor action. 157

xviii

List of Figures

5.50

5.51

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

A trace of some of the changes in the agent organisation and
the reason for those changes. 158
A trace of a Hard Deck engineer’s reasoning for its priority. . 159

A conceptual visualization of the relationships between hu-
mans and agents, human teams and agent teams. 163
Basic architecture of the E-Elves. Agent proxies, supporting
their users activities, communicate via broadcast nets. 165
Dialog for delaying meetings. R has decided that the human
should decide what action should be taken. Friday is asking
the user, via a dialog on their workstation, what meeting
delay action should be taken (ifany).. 166
Friday, the user’s agent proxy, reporting that is has ordered
dinner from California Pizza Kitchen. 166
A webpage showing that Ranjit Nair is not currently at ISI
(as of 14:28 on 03/09/01). 168
The E-Elves auction tool. The top left corner shows the meet-
ing involved in the auction. To the right of the meeting name
is the role being auctioned. Underneath the meeting name is
the team that will attend the meeting. Empty spaces in the
bid information are where information has yet to arrive. . . 170
Palm VII connected to GPS device. 171
Conceptual design of AA for the Friday proxy agent. This
figure shows more detail of one of the agents as shown in
Figure 6.1. 178
Conceptual design of AA for agent team to human team in-
teraction. 182
Part of the environment state space for an episode where a
user should attend a meeting. Final states are shaded. Ar-
rows between states show some of the transitions that might
073 184
Part of the state space for the case where the user is asked
for input. In the shaded state the user was asked for input.
State transitions are labeled with the reply from the user. . 186
Part of the state space with some of the transitions that might
occur if Friday acts. Arcs, the meaning of which is shown in
the legend, show a selection of possible outcomes of different
actions Friday might take. 187
A graph of the number of states in the autonomy policy where
a human is asked for input versus the cost of asking. 193

List of Figures

Xix

6.14

6.15

6.16

6.17

6.18

6.19

6.20

A graph of the number of states in the autonomy policy where
a human is asked for input versus the probability of the user
responding to the request.
A high level view of the conceptual information flow for team
decisions. The text next to the arrows shows the information
passed. Numbers indicate the ordering of messages.
A Venn diagram showing the relationships between the poli-
cies allowed by pre- and post- learning constraints and the
set of allowable policies.
Diagram showing the effect of the post-learning check on the
policies produced by a learned set of parameters. The dark
circle represents the original policy. The solid line shows the
change due to learning and the dotted line shows the changes
due to the post-learning check.
A graph of the number of meetings monitored by Friday for
each user.
A graph of the number of meeting delays that were done
autonomously vs. the number of delays initiated by the user.
Number of daily coordination messages exchanged by proxies
over three-month period. The y-axis shows the number of
messages exchanged between proxies and the x-axis shows
thedate.

XX

List of Figures

2.1

3.1

3.2

3.3

3.4

4.1

5.1
5.2
9.3

5.4

9.5

5.6

5.7

5.8

5.9

LIST OF TABLES

Summary of definitions presented so far. 16

A listing of the AA systems that are discussed below with a

brief description of their functionality. 37
A selection of 7 features and the underlying agent features
that make them possible. 49
A selection of A features and the underlying agent features
that make them possible. 50
Summary of R for the surveyed systems. o1

Summary of the agent features intended to be encouraged by
each guideline and why those features are useful to AA. ... 75

Selection of EASE actor features and the Z service they provide. 94
Selection of EASE actor features and the A service they provide. 95
The three different contract types a manager can make and
their basic functionality. 99
Some examples of how overall priority is a function of envi-
ronmental, organisational and intrinsic priority for a priority
function in the obstacle avoidance agent. 107
Summary of the different aspects of an agent and their effect
on overall agent behaviour., 108
The table shows the conditions under which an engineer and
manager will take success or failure transitions. 109
Summary of some of the useful EASE actor features result-
ing from adherence to each guideline and the subsequent AA
facilities. Lo 114
The relationships between information provided by the sys-
tem, the property of EASE that makes that information avail-
able and the end user tool that leverages that information.. . 115
The table maps the different actuation services offered by an
EASE actor to the resulting changes in behaviour. 123

xxii

List of Tables

5.10 An example of how exchanging one agent with another with

6.1

6.2

6.3

6.4

6.5

6.6

7.1

7.2

7.3

7.4

the same capability can affect a RoboCup actor’s behaviour.
The first column lists the events that triggered changes. The
second column lists the state of some striker agent responsible
for trying to make the player kick goals. The third column
lists the contracts the striker agent has. The final column
lists part of the contents of the generic pool. 130

Summary of the E-Elves features resulting from adherence to
each of the guidelines and the features of the AA that utilized
the features.o oo 189
Hand-coded probabilities of all possible different lengths of
time user will be late to a meeting, given their location five

minutes before the meeting. 191
Example hand-coded costs and rewards for the meeting sce-
0 3 0 192

Part of the combined decision making and autonomy policy
for meeting delaying. There are 736 states in the complete
policy. 200
Part of the auction closing policy. The “Difference” column
shows the difference between the quality of the best bid and
the second best bid. The total auction policy has over 1300

states. L L L 204
Results of the team auction for the presenter role at the
group’s weekly meetings, during a three month period. 213

Summary of the features in the two implementations led to

by each of the guidelines. 218
Summary of the EASE actor features led to by each guideline
and the AA facilities they support. 241
Summary of the ELVES actor features led to by each guideline
and the AA facilities they support. 242

Summary of the examples of violations of the guidelines and
the problems the violations cause. 243

1. INTRODUCTION

Artificial Intelligence (AI) technology is rapidly starting to impact our ev-
eryday activities, both at work and in our personal lives. Al systems that
have the ability to affect an environment they share with users, change the
user’s experience of that environment — for better or worse. For example,
agents in a future home might adjust the temperature of a house to suit
the time of day (Lesser et al. 1999). Given their increasing impact on our
lives, it is important to carefully examine how users interact with intelligent
systems. We need to aim to maximise the utility of intelligent systems while
minimizing any harmful effects and making absolutely sure that humans
stay in control of their own environments.

Many recent, exciting developments in Al have centered around the con-
cept of an agent. An agent is an autonomous entity that senses its environ-
ment and acts intelligently and pro-actively towards its goals (Wooldridge
& Jennings 1994, Bradshaw 1997). An important characteristic of an agent
is that it has the ability to take actions that affect its environment (Russell
& Norvig 1995). Some agents sense and act in purely software environments
(e.g., an operating system monitoring agent (Song et al. 1996)), while oth-
ers have a physical embodiment and inhabit a physical environment (e.g., a
museum tour guide robot (Burgard et al. 1998)). Because an agent can
act, it can be assigned tasks that it can potentially do more quickly, effi-
ciently, cheaply or safely than a human can. Thus, humans are freed from
menial, dangerous and/or boring tasks. Despite the long list of successful
agent applications, it is unlikely we have seen more than a sample of the
ways intelligent agents can change the way we live our lives (Pell et al. 1998,
Rybski et al. 2000). In the future, autonomous agents will take on more
complex tasks and act more intelligently and more decisively (Jennings &
Wooldridge 1998).

Despite the obvious benefits of agent technology (Jennings 1999), we, as
humans, should not rush blindly into handing over control of our environ-
ment to an army of intelligent agents — unless we are sure we can get back
control when required. Because an agent can act it has the potential to cause
harm. As with any intelligent entity in a complex environment, an agent will

2 1. Introduction

occasionally make mistakes and unintentionally cause harm. As a society
we are unwilling to accept any harm caused by malfunctioning technology
(Asimov 1950). Whether the harm be actual physical harm, e.g., physical
injury to humans or damage to equipment, or non-physical harm, e.g., fi-
nancial cost, inconvenience, loss of control or mis-trust, it is unacceptable.
However, it is precisely the ability to act that makes the concept of an agent
so compelling, but that ability opens up the possibility for harm. Hence, a
key challenge for AT researchers is to find ways of leveraging the potential
of agent technology without paying a high price for its shortfalls.

1.1 Autonomy

A central concept when discussing agents is that of autonomy (Wooldridge
& Jennings 1995). Intuitively, autonomy is independence from constraints
when selecting and taking actions. More formally, we define the autonomy
of an agent by its responsibilities, its authorization to act and its intrinsic
capabilities. The more responsibility an agent has the more autonomous it
is. Likewise, the more an agent is allowed to do and is capable of doing, the
more autonomous it is. (A more detailed discussion of autonomy is given in
Section 2.1.2.)

As AT technology has developed, agents have been given correspondingly
more autonomy, i.e., more capable agents have been given more authority
and more responsibility. In most cases, once an agent’s autonomy is de-
termined by a system designer the agent is left to fulfill its responsibilities
according to its specification, within the bounds of its authority and capa-
bilities. In complex environments, an agent will be faced with a vast range
of situations, in each of which it must act to the net benefit of the users.
It is unlikely that we can build any agent for a complex environment that
has appropriate reasoning mechanisms, sensors and actuators for it to act
appropriately in all the situations it faces (Shneiderman 1998, Lanier 2001,
Brann et al. 1996). There will be some situations in which the agent will
make unacceptable decisions and, hence, take unacceptable actions — po-
tentially causing harm. Some situations the agent finds itself in may be so
unlikely that the designer can reasonably choose to ignore them, hence if the
situation does arise the agent may not act properly. Other situations might
commonly occur but to build software or robotic hardware to properly han-
dle the situation may be too expensive or time-consuming to justify. Yet
other situations will be unacceptably handled by an agent due to “bugs”
in its software. Importantly, for the same reasons that an agent handles a
situation badly, it may not detect that it has encountered a situation it is

1.2. Adjustable Autonomy 3

not capable of dealing with properly.

The more autonomy an agent has, over more complex and critical tasks,
the more potentially harmful the consequences when its behaviour is unac-
ceptable. However, because the agent is autonomous and because it may not
detect when it is acting inappropriately, in some cases “killing” the agent
may be the only way of preventing the incorrect actions from being taken.
Completely stopping an agent means another entity needs to take over the
agent’s responsibilities, something that may be unreasonable in a complex
physical system (e.g., a spacecraft (Bernard et al. 1999)). Even if it were
possible for a human to take over, requiring substantial human input when-
ever some small thing goes wrong, reduces the benefits of having autonomy
in the first place (Brann et al. 1996). A more desirable scenario is to allow
an outside entity to take responsibility for the parts of the agent’s behaviour
that are inappropriate while allowing correctly functioning parts to continue
autonomously.

Thus, agent developers are faced with a challenging dilemma. For some
applications, autonomous agents can be very useful in very many situations,
most of the time. But in a small number of situations, a small percentage of
the time, agent behaviour will be unacceptable and potentially have harmful
consequences. Hence, agent based system developers need to employ tech-
niques that allow agents to be safely deployed even though there may be
some situations where the agent will act inappropriately.

1.2 Adjustable Autonomy

One stage of the system design process is to allocate functionality and re-
sponsibility to the users, software and hardware that make up the system
(Bye et al. 1999). In the case of an intelligent agent-based system, this pro-
cess includes assigning autonomy, e.g., responsibility, to the various entities
in the system. For example, in an intelligent aircraft control system, the
human pilot might be given responsibility for choosing a destination and an
agent given responsibility for guiding the aircraft to that destination. The
allocation of responsibility and authority, i.e., the allocation of autonomy,
is fixed for the lifetime of the system. This implies that there is limited
flexibility in the overall system to react to unusual circumstances.
Adjustable Autonomy (AA) is a recent idea meaning to dynamically ad-
Just the level of autonomy of an entity depending on the situation (Musliner
& Krebsbach 1999). Instead of the responsibility and authority of individual
entities being fixed at design time, they can be changed to best configure
the overall system’s autonomy distribution for the current situation (Bar-

4 1. Introduction

ber & Martin 1999a). The idea is to dynamically assign autonomy to best
leverage the constituent entities’ strengths and avoid their weaknesses in the
current situation. Thus, an Adjustable Autonomy system is an intelligent
system where the autonomy s distributed dynamically amoung the system’s
entities to optimize overall system performance. For example, if a human
pilot notices that a collision is imminent with a flock of rare ducks that the
autopilot cannot detect, the pilot might like to slightly alter the aircraft’s
course without taking over all the details of the aircraft’s functioning. The
pilot might adjust the aircraft’s heading slightly without taking over control
of altitude, speed or radar settings.

Flexible assignment of autonomy means a system can deal with a wider
range of situations more effectively (Kortenkamp et al. 2000). Specifically,
a human user can assume responsibility for aspects of an agent’s task the
agent is performing inadequately, by reducing the agent’s autonomy. Thus,
AA allows the intelligence and autonomy of agents to be exploited without
the users being saddled with the agent’s inadequate decision making when
situations occur the agents cannot handle (or humans could handle better).

The basic tasks necessary to achieve AA are to collect information rele-
vant to autonomy decision making, deciding how autonomy should be dis-
tributed and distribute the autonomy to optimize performance. The reason-
ing process which decides on suitable autonomy configurations can be per-
formed either by special purpose software or by a human user. The agents
in the system need to provide two critical pieces of functionality for the AA.
Firstly, they must provide the information about their internal functioning.
Secondly, they must be able to smoothly change their autonomy when such
a change is required. How well agents provide this functionality affects how
well the AA can work.

Chapter 5 presents an application of AA in the domain of simulation en-
vironments. In that system autonomy is dynamically assigned either to an
intelligent software actor or a human domain expert depending on whether
the simulated intelligent entity is behaving as required. Chapter 6 presents
an application of AA in the domain of agent based human collaboration
support software. For that application the ability to dynamically take au-
tonomy away from personal assistant agents means the agents are not forced
into taking risky decisions when they are unsure or the costs of incorrect
action are high.

1.3. Research Question 5

1.3 Research Question

This thesis look in particular at the services that agents must provide so
that AA reasoning can be implemented with a minimum of effort. The AA
services are the interface to the agent that provide the foundation for an
AA implementation. AA services provide two key pieces of functionality.
Firstly, they provide the information used for AA reasoning. Secondly, AA
services handle requests for changes in the agent’s autonomy.

The limitations on the services agents provide, limit what can be achieved
by any AA implementation. Whatever information about an agent the
agent’s services do not provide cannot be used in the AA reasoning. Like-
wise, decisions reached by the AA must be able to be realized by an agent or
it is useless reaching such decisions. Moreover, the effort required to build
effective AA is directly related to how easy it is to extract information from,
and enforce autonomy changes in, the system’s agents. Hence, the potential
of the AA is inextricably dependent on the services provided by the system’s
agents. The focus of this thesis is on the relationships between the design
of an agent, the AA services the agent provides and the consequent bounds
on implementations of AA.

To date most AA has been implemented post-hoc, on top of already ex-
isting agent-based systems (Bonasso 1999). The agents were often designed
without regard to the AA that was subsequently developed. An unfortunate
consequence of that process is that the AA can be more difficult to develop
than it needs to be or even, in the worse case, fail to meet its requirements
at all. In other cases, agents might need to be redesigned to facilitate the
AA, e.g., (Ferguson & Allen 1998). One of the reasons for the sub-optimal
development process is that the relationships between agent design and AA
are not well understood, hence it is difficult for implications of agent design
decisions on AA to be taken into account when designing an agent. This
work provides information on the impact of agent design decisions on the
potential of AA, which will allow designers to better take AA into account
when designing agents. Hence, this work addresses an important issue for
the field.

1.4 Contributions

This work makes three specific contributions to the AA field.

Agent Design Guidelines for AA. The central contribution of this work,
presented in Chapter 4, is a set of guidelines advising how agents should be

6 1. Introduction

designed so that AA can be implemented effectively and straightforwardly.
The guidelines capture our experiences on the impacts of agent design deci-
sions on AA in a form that allows others to leverage the knowledge in their
own designs. In particular, the guidelines allow agent designers to under-
stand, early in the design process, the impacts of their design decisions on
the ease with which AA can be built.

Prototype Implementations of AA. Secondly, this work contributes descrip-
tions and evaluations of two implemented AA systems. Detailed descriptions
of the agent designs, AA services and AA for the two systems contribute
case studies on the impact of agent design decisions on AA implementations.

Agent Services and AA. Finally, this work contributes a study of the re-
lationships between an agent’s design, the AA services supported by that
design and the limitations and simplicity of the AA implementation due to
the properties of those AA services.

1.5 Outline of the Thesis

The body of the thesis is organised as follows:

Chapter 2 introduces the important concepts used in this thesis and sets
out the specific research question being addressed.

Chapter 8 surveys AA and related literature, discussing this work in re-
lation to other work in the area.

Chapter 4 presents specific guidelines for the design of agents that will
be part of AA systems (Scerri & Reed 2001). The guidelines make it pos-
sible to make informed tradeoffs when designing agents for AA systems.
Agents implemented according to the guidelines are described and evalu-
ated in Chapters 5 and 6.

Chapter 5 presents EASE, a tool for developing intelligent actors for
interactive simulation environments (Scerri & Reed 2000a,b). A human do-
main expert uses AA to dynamically change the behaviour of actors in a
simulation by assuming parts of the decision making responsibility.

1.6. An Aside 7

Chapter 6 presents the E-Elves, an AA system for streamlining daily
activities in human organisations (Scerri, Pynadath & Tambe 2001, Pyna-
dath et al. 2001). The E-Elves uses AA to manage the interactions between
human users and their personal assistant agents as well as between human
teams and their counterpart agent teams. In particular, the AA reasoning,
implemented by software, balances the potential costs and benefits of auton-
omy by switching decision making responsibility dynamically between users
and agents.

Chapter 7 provides an evaluation of the guidelines. The evaluation con-
sists of showing features of the agents in the two applications that are specif-
ically the result of either following or violating each of the guidelines. The
evaluation shows that when the guidelines are followed AA is more straight-
forwardly implemented, while when they are violated problems ensue.

Chapter 8 describes interesting future lines of work and summarises the
conclusions and contributions of the thesis.

1.6 An Aside

It is fitting that in the year 2001, a thesis is written discussing techniques
for ensuring humans stay in control of intelligent, autonomous software. In
1968, Stanley Kubrick and Arthur C. Clarke made the classic science fiction
movie, 2001:A Space Odyessy. In that movie, set in the year 2001, an in-
telligent software assistant (i.e., an agent), named HAL, supporting a group
of astronauts on a long distance space flight becomes neurotic and begins
to “fear” the astronauts it is supposed to be helping. Eventually, HAL kills
an astronaut to protect itself. Though many of the movie’s predictions for
2001 have not been borne out, Al researchers continue to make significant
progress towards building intelligent agents exhibiting the exciting, benev-
olent properties HAL was supposed to have. Though some people believe
that nightmare scenarios like those predicted in 2001 may one day become
reality (Joy 2000), most people are more optimistic. AA is one emerging
technology that we believe will allow the human race to harness the benefits
of "HAL-like’ systems without fear.

1. Introduction

2. AGENT SERVICES FOR ADJUSTABLE AUTONOMY

An Adjustable Autonomy (AA) system has the capability to dynamically
change the autonomy of the intelligent entities of which it is composed. An
AA capability is useful in a wide range of domains for a range of different
purposes. We look at some of those uses in Chapter 3. The interest gener-
ated by the wide variety of uses has led to various mechanisms being built
for, and a wealth of knowledge accumulated about, AA. However, little has
been reported about the services that need to be provided by an agent in
order for effective AA to be straightforwardly developed. Agent services
provide information required for AA decision making and the mechanisms
by which changes in autonomy are realized.

The aim of this work is to investigate how the features an agent has affect
the ease with which AA can be implemented and capture our knowledge of
those effects in a way that allows others to leverage that knowledge to build
agents suited for AA systems.

This chapter defines AA and describes the research question being ad-
dressed by the thesis. First, some important underlying concepts, like agents
(Section 2.1.1), autonomy (Section 2.1.2) and level of autonomy (Section
2.1.2) are defined. Building on those definitions, Section 2.1.2 gives a math-
ematical description of AA. With the definitions presented we turn our at-
tention to introducing and motivating the rest of the thesis. Section 2.3
presents the precise research question being addressed and the scope of the
work. We conclude the chapter with an example of an “ideal AA system”
to give an intuitive idea of some of the complexity of building AA and the
features agents for AA systems need to have.

2.1 What is Adjustable Autonomy?

In this section the concept of Adjustable Autonomy is formally defined. We
start by giving formal descriptions of an agent, agent autonomy and level
of autonomy and then use those definitions to define AA. The aim of the
section is to provide a formal description of AA that can be used throughout
the rest of the thesis.

10 2. Agent Services for Adjustable Autonomy

2.1.1 What Exactly is an Agent?

The word agent is commonly used to describe a piece of intelligent software
— but what exactly is an agent? A wide range of definitions have appeared in
the research literature from very broad, e.g., “something that perceives and
acts” (Russell & Norvig 1995), to much stricter definitions like “essentially
conscious entities that have feelings, perceptions, and emotions just like
humans” (Huhns & Singh 1997). For the purposes of this work we will use
the following definition:

Definition 2.1: An agent is a software artifact that senses, reasons intelli-
gently about how to achieve its goals and acts, all within some environment.

The “senses” aspect of an agent means it can reason based on the current
(perceived) state of the world (as opposed to an “autistic” agent (Huhns
& Singh 1997)). The goal directed aspect of the definition differentiates
agents from routine computations and “slaves” to other entities (Luck &
d’Inverno 1995). The intelligence aspect implies flexibility in the courses of
action an agent can take, making it an interesting thing to interact with and
providing for a richness of interaction experiences (Dorais & Kortenkamp
2001). The precise level of intelligence, nature of the reasoning mechanisms,
etc. are not, however, in themselves relevant. The action aspect of the agent
definition separates agents from tools that might sense an environment and
reason about it but are passive. The ability to act is important because it
means the agent can actually achieve its objectives, perhaps without human
intervention, in its environment, while an inability to act restricts an entity
to the role of (intelligent) advisor.

Despite the informal definition of an agent being sufficient to describe
the intuition behind the idea, in order to define AA formally we need a
more precise definition of the properties of an agent so we can define its
autonomy. For simplicity, we choose to only model the characteristics of
an agent that are important for our definitions of AA. It turns out that
these abstract characteristics are common to all the intelligent entities in a
system. Hence, we use the same definition for all intelligent entities, be they
agents or humans. We define an intelligent entity, e, conceptually by what
it can do and what it is doing, i.e., :

Definition 2.2:
e=(G,A),GCA

where G is the set of goals for which the entity e has decision making
control and A is the set of goals that the entity can potentially achieve. For

2.1. What is Adjustable Autonomy? 11

all g € G it is the entity’s responsibility to make decisions about the achieve-
ment of that goal. An entity’s decision making process will result either in
atomic actions being taken or sub-goals requiring further refinement being
produced. Sub-goals produced during decision making may be the responsi-
bility of the decision making entity that produced them or the responsibility
may be given to another entity in the system. Hence, goal hierarchies may
transcend single entities (see Figure 2.1) but stay within system boundaries
(Musliner & Krebsbach 1999).

The relationship between a goal and a sub-goal is captured by the pred-
icate:

parent_goal(p,g) = g is a sub-goal of p

Each entity may have decision making responsibility for goals for which it
does not have responsibility for the parent goal, i.e., g € G, but parent_goal-
(p,g), p & G. Those g for which the entity does not have responsibility for
the parent goal are the top level goals of the entity. A predicate to determine
if a goal is a top level goal can be defined as:

Definition 2.3:
is_top_level_goal(g) = Vp € G, —parent_goal(p, g)
and, hence, the set of top level goals, T, for an entity is :
Definition 2.4:
T ={g:9 € G,is_toplevel_goal(g)}

Finally, a function that returns a set of top level goals given a set of
goals, X, can be likewise defined :

Definition 2.5:
top_level_goals(X) = {g : g € X,is_top_level_goal(g)}

For some goals there will be no parent goal at all, in any of the system’s
entities. These are the system goals.

The A component of Definition 2.2 is the set of goals which e has the abil-
ity to achieve. The ability of an entity to achieve a specific goal is a static
property of that entity, the goal and the system configuration, indicating

12 2. Agent Services for Adjustable Autonomy

System goals

Top level goals

Goal/sub-goal
relatlonshlp

Entity 1

Fig. 2.1: The relationships between goals, goal hierarchies, top-level goals
and system goals.

2.1. What is Adjustable Autonomy? 13

that the agent has the know-how, sensing, actuation capabilities, communi-
cation channels and so on, to achieve the goal. The ability to achieve a goal
assumes that all system resources, including other entities will be available
to “help out” with the task. For example, a carpenter is capable of building
a house if there is an electrician available to do the wiring. The set A does
not reflect potential goal conflicts, environmental circumstances, etc. that
might prevent the goal from being achieved at a particular point in time.
Hence, A is like an “upper bound” on exactly what the entity can achieve —
if a goal is not in A it can never be achieved, if it is in A it may be possible
for the entity to achieve the goal if it tries to. So, if at any point in time an
entity in a system does not have the ability to achieve a goal it will never
have that ability.

Clearly, a rational entity should not assume goals it cannot possibly
achieve (Hexmoor & Kortenkamp 2000), i.e., :

YVge G,ge A

We will use the following conventions. p and g will refer to arbitrary
goals. e and a refer to an arbitrary entity and agent respectively. G, A and
C will be subscripted with the name of the entity they refer to, e.g., the set
A for an entity e will be A.. If no subscript is used we are referring to the
set in general. Finally, we refer to an entire, arbitrary AA system by S.

2.1.2 Autonomy

Given the above description of an entity what does it mean for that entity to
have autonomy? In informal terms autonomy means “independence from su-
pervision” but a more formal definition is harder to agree on (Shoham 1998,
Huhns & Singh 1997). A fairly diverse range of definitions have appeared in
the literature, we briefly present only a sample here (a more detailed look
at the range of definitions of autonomy can be found in Chapter 3). Barber
& Martin (1999a) define agent autonomy as “an agent’s active use of its
capabilities to pursue its goals, without intervention by any other agent in
the decision making processes used to determine how those goals should be
pursued”. Russell & Norvig (1995, pg. 35) use a far stronger definition —
“a system is autonomous to the extent that its behaviour is determined by
its experience”, a view shared by Steels (1994). Huhns & Singh (1997) view
autonomy as a function of the constraints the environment imposes on the
agent’s behaviour.

The above definitions hint that autonomy is not a binary property, i.e., an
entity need not be completely autonomous or completely non-autonomous,

14 2. Agent Services for Adjustable Autonomy

but may have some intermediate level of autonomy (Blumberg 19975). For
this reason it is useful to define an entity’s level of autonomy.

Level of Autonomy

Similar to Barber & Martin (1999a) and others we consider the responsibility
and ability of an agent to perform a task to be an important aspect of its
autonomy. We also believe that authority must be a critical aspect of any
understanding of agent autonomy (Musliner & Krebsbach 1999). Formally,
we define an entity, e’s, level of autonomy, A., as :

Definition 2.6: A, = (T,C, A)

where T is the set of top level goals for the entity, i.e., top_level_goals(G.),
the C is the set of goals the entity e does not have the authority to take on
and A is the set of goals the entity can achieve, as defined above. Any goal
that is in the set C' may not be pursued by the entity, i.e., Vg € C = g &
G. The goals in C' are the ones that the entity does not have permission to
pursue. Clearly, A — C' is the set of goals the entity can pursue as it has
both the authority and ability to do so.

In words Definition 2.6 means:

Definition 2.7: An entity’s level of autonomy is defined by the top level goals
it has decision making responsibility for and the goals it has the authority
to assume and the ability to achieve.

The definition implies that the more authority, responsibility and ability
the entity has the more autonomy it has. Conversely, the less authority,
responsibility or ability an agent has the less autonomy it has. Notice,
however, this is only a partial ordering, e.g., we cannot meaningfully compare
the relative autonomy of two entities with the same T but different C' and
A, but we can compare the relative autonomy of entities with equal C and
A and where the set T' of one entity is a strict subset of the set T of the
other.

The autonomy of an entire AA system, S, is the composition of the
autonomy of the constituent entities. Composition of autonomy is defined
in the following way :

Definition 2.8:

Ay, 0 Ay, = (top_level_goals(T, UTy,),Cp N Chyy Ap U Ap,)

2.1. What is Adjustable Autonomy? 15

So, for a system of n constituent parts :

Definition 2.9:

As=A1oAy0...0A, = (toplevel_goals(U T;), Ci, A;)

i=1..n i=1..n i=1..n

The top level goals of the system are those goals for which there is not a
parent goal anywhere in the system. These are precisely the goals for which
the system has decision making responsibility.

The constraints on the overall system are only those constraints that are
constraints on all of the constituent parts, i.e., if any entity has the authority
to perform g then the system has the authority to do g. Further, we assume
that if the system has the authority to do g any entity in the system could
be given the authority to do g (of course, it should also have the ability).
However, often certain entities will not have authority although the system
does. This is analogous to an organisation which has, say, the ability to
withdraw money from its bank accounts — anyone in the organisation could
be given the authority to withdraw money but only some will be given the
authority.

The set of abilities of the system, A, is the union of the abilities of
the system’s constituents, i.e., anything any entity in the system can do the
system is able to do. Notice that there may be some things that entities
can do only because certain other entities with complimentary abilities are
also in the system. This means that for some entity, e, A, = f(5), i.e., the
abilities of an entity are a function of the system it is a part of. For example,
an entity may have the ability to lift a heavy object only because it knows
there is another (strong!) entity in the system that could help.

Adjustable Autonomy — A Formal Definition

Table 2.1 summarises the definitions presented so far. Building on the formal
definitions of agents and autonomy it is possible to make a formal definition
of AA. The special case we are predominately concerned with is that of a
single human user interacting with a single intelligent agent, though other
configurations consisting of only humans or agents or many of each are also
possible. It is further assumed that all parties in the system work together
towards some goals in some environment. Finally, we assume that the com-
putational costs of reasoning about autonomy are negligible compared to
the “normal” computation of the system, hence we do not concern ourselves

16 2. Agent Services for Adjustable Autonomy

Concept ‘ Definition

set of goals for which | G,
e has decision making
control

set of goals e has the | A,
ability to achieve

set of goals e may not | C,

pursue
entity e=(G,A),GCA
top level goal is_top_level_goal(g) =

Vp € G, —parent_goal(p, g)
top level goals of an | T

entity
entity autonomy Ae = (T,C,A)
system autonomy As=AioAso...0A, =

(top_level_goals(U;,_, ,, Ti),

ﬂi:l..n G, Ui:l..n Ai)

Tab. 2.1: Summary of definitions presented so far.

M Environment
\ Interface

. /Adjustable .
Interface -~ l\Autpnomy v
System Nt TN

Fig. 2.2: The diagram on the left shows the conventional way of thinking
about human-agent interaction — interaction is either via the en-
vironment or through some external interface. In the AA system
on the right the agent and human are part of the same system
that interacts with the environment as a single entity.

2.1. What is Adjustable Autonomy? 17

with “meta-meta-reasoning” about whether to do AA reasoning at all or
how much effort to spend on it.

Figure 2.2 shows the conceptual AA view of the agent and human to-
gether interacting with the environment rather than working as individuals
with some interface inbetween them. The AA component transfers auton-
omy between the parties as required. To the outside world the system is a
black box where the internal workings are irrelevant. The system has au-
tonomy which is can distribute among its constituents without affecting its
externally observed autonomy.

For a closed system, i.e., one where no entities are added or removed over
time, the set of top level goals will not change over the life of the system,
i.e., we assume that the system does not spontaneously spawn new top level
goals for itself (Barber, Goel & Martin 2000). As the environment changes
so will the breakdown of goals into sub-goals, the priorities of the goals and
hence the priority of the entities responsible for the goals, but the top level
goals will not change, i.e., T is constant. For example, a pilot’s top level
goal might be to complete a mission without crashing. While the particular
tasks being undertaken to reach the top level goals will change over time
the top level system goals will not.

To say a system (or entity) can change whether it has the authority to
do something is illogical, by definition. To not have authority to do some-
thing is meaningless if you can give yourself authority when desired. This
is effectively saying you cannot do g unless you want to do g in which case
you can give yourself permission to do it. Hence, the authority constraints
on the closed system will not change over time, i.e., C's is constant.

Finally, by definition, the abilities of the system do not change over time,
i.e. Ag is constant. Hence, because neither the authority, top level goals nor
the abilities of the system change the autonomy level of the system is fized
for the lifetime of the system. However, in an AA system, the distribution
of the decision making responsibility and authority constraints may change
over time. So :

Ag(to) = A1(t) o Ag(t) o ... 0 Ay (1) (2.1)

To summarise what has been said so far, an AA system can dynamically
change which entities are responsible for the achievement of which goals
by transferring decision making responsibility. Furthermore, an AA system
can dynamically change the authority constituent entities have to take on
particular goals. However, despite the relative autonomy of entities within
the system changing, the autonomy of the overall system is constant.

18 2. Agent Services for Adjustable Autonomy

A key problem to be addressed when building AA is to determine an
appropriate distribution of autonomy and provide mechanisms to realize the
autonomy changes.

The distribution of autonomy should change according to the current
situation and sub-goals, reconfiguring so as to best organise the system
resources to achieve the system’s goals.

2.1.3 Conceptual Model of the AA Task

The task of distributing autonomy, i.e., AA, can be conceptually broken into
three components:

e Information (Z) : Collection of the information relevant to the AA
decision making.

e Reasoning (R) : Reasoning about what autonomy changes should be
made.

e Actuation (A) : Realization of the decisions made by R.

The conceptual AA model and its relationship to an AA system is shown
in Figure 2.3. Z provides information on prevailing environmental condi-
tions, current system state and potential (referred to as contezt in (Hexmoor
20000¢)) that are relevant to R. R determines what changes in the auton-
omy distribution might lead to better system performance with respect to
the system’s goals. R might be done either by a human or by software or a
combination of both. Finally, A provides the mechanisms for implementing
the decisions of R, i.e., it provides the mechanisms for realizing changes in
authority or transfer of responsibility.

7 and A tightly constrain the design and potential of R. Any information
not supplied by Z cannot be used in determination of appropriate autonomy
configurations. Likewise, any change that cannot be realized by A should
not be considered by R. In turn, Z and A are both tightly constrained by
the services provided to them by the entities in the system. Any information
the entities cannot provide cannot be supplied by Z to R. Similarly, any
autonomy change the entities cannot accept could not be implemented by
A. Hence the services provided by the entities are critically important to
the building of an AA system. Figure 2.4 shows how the agent AA services
constrain the realisation of AA. In this work, we are obviously limited to
designing the services that software entities provide as the services of the
human entities are fixed.

2.1. What is Adjustable Autonomy? 19

Adjustable
R Autonomy

InformatV Nﬂonomy changes

... Actuation
= Service

Information -~
Service U/

Entities .-

Environment

Fig. 2.3: The conceptual relationship between AA and a system. The ar-
rows show the paths data travels in the system.

2. Agent Services for Adjustable Autonomy

Agent

A Services

v
7

| Services
7 N -

Reasoning . @ /Q

Fig. 2.4: This figure shows how the different conceptual parts of the AA are

related to the agent services for a single agent. Dotted lines show
examples of how T services might extract information from dif-
ferent parts of an agent’s reasoning and A services might change
different parts of that reasoning.

2.1. What is Adjustable Autonomy? 21

Consider an analogy between AA and a management consultant in an
organisation. The consultant’s job consists of collecting information, mak-
ing decisions about organisational changes and implementing those changes.
No matter how good the consultant is at his/her job they are reliant on
employees in the organisation to inform them (either implicitly or explic-
itly) of the current running, goals, etc. of the organisation in order to make
“good” decisions. If the employees supply limited, insufficient, incorrect or
misleading information, the consultant’s job is significantly harder and their
results are likely to be disappointing. Once the consultant makes a decision
it needs to be implemented. No matter how good a decision is, if it is not
accepted and appropriately implemented by the employees, the decision is
worthless. Implementation of AA works in the same way — if the entities do
not supply appropriate information (Z) and properly implement decisions
(A), the best R is useless.

Two AA Configurations Implementations of AA appearing in the literature
follow two basic configurations. The first configuration has R performed by
a human (or humans) in the system — we call this Directed AA (see Figure
2.5). The second configuration has R implemented by software — we call
this Reasoned AA (see Figure 2.6).

Definition 2.10: Directed AA is when R is performed by a human.

Definition 2.11: Reasoned AA is when R is done by software.

Information
{—

Human-compute|

Interface AA User

Reasoning

T~ AA
Services

Core Agent
Reasoning

T Autonpmy change

[

Fig. 2.5: Directed AA involves a human user doing the reasoning about
the distribution of autonomy.

22 2. Agent Services for Adjustable Autonomy

Autonomy
- changes Human-compute
Core Agent interface = User

Reasoning

Agent services

Fig. 2.6: Reasoned AA involves the agent doing the reasoning about the
distribution of autonomy.

2.2 Motivation

AA is a technology rather than a particular capability or algorithm. The
technology provides for dynamic flexibility in the relative autonomy of the
entities in a system over time. As a technology, AA is not a particular solu-
tion to a particular problem, rather it is another “tool” system developers
can use to improve system utility and quality. In some ways the relationship
between AA and intelligent systems is the same as between Graphical User
Interfaces (GUIs) and conventional software. GUIs increase the usability of
many systems — even allowing some things to be built that would not be
possible without a GUI. AA is similar — it increases the usability of many
intelligent systems and opens up application possibilities that would not
be possible otherwise. Furthermore, like for GUISs, it is desirable to have
a fundamental understanding of AA that is independent of the particular
application but can be used to guide the development of a range of systems
(Shneiderman 1998).

The potential usefulness of AA technology has been well motivated in
the literature, e.g., (Dorais et al. 1998, Musliner & Krebsbach 1999). Many
authors have motivated AA by pointing out particular systems or applica-
tions that would seem to benefit from the interaction style AA offers (Zhang
1999, Miller 1999, Schreckenhost 1999). Some have explored uses of AA for
improving multi-agent system performance and found it to be useful (Bar-
ber, Goel & Martin 2000). Others have reported particular applications that
show effective use of AA (Bindiganavale et al. 2000, Brann et al. 1996). A
recurring theme in much of the work is that the artificial intelligence tech-

2.3. Research Question 23

nology required for a particular application is mature enough for it to be
beneficial in a real world setting, however a human (or humans) is required
in the loop. The reasons why the human is required in the loop vary. Some-
times the human is needed for mainly psychological (Rajan et al. 2000) or
legal reasons, i.e., humans are unwilling to give up control for non-technical
reasons. Sometimes a human is required because moral decisions need to be
made. Sometimes systems need humans for their superior reasoning, sensing
or manipulation abilities.

Irrespective of the reason why the human is required in the loop the
humans and agents need to be able to work together effectively — AA is a
technology for facilitating that effective interaction. In that role, AA can
be considered as a bridging technology that allows agents (and artificial
intelligence) to be used in domains where they are not currently acceptable
or fully capable of acting autonomously.

Given that AA is a useful technology the key challenge becomes finding
ways to effectively include it in complex systems. Any knowledge available
when making design decisions in complex systems can only help to increase
the chance the design process ends with an effective system. A good un-
derstanding of the implications of early design decisions inevitably leads to
better systems later on. Wooldridge (2000) has looked at this problem for
agents in general by analyzing exactly what it is that makes agents complex.
Unfortunately, knowledge of the relationships between early system design
decisions and effective AA is not readily available. Making the problem even
more difficult is that AA is often patched, post hoc, onto an already very
complex system. This means that the system has been designed without
AA in mind. Such a process has the potential to make AA development un-
necessarily difficult and/or the results unnecessarily disappointing (Dorais
& Kortenkamp 2001). The insights provided by this work into the effects of
agent design decisions on the AA developed later can help make the devel-
opment of AA a more solid engineering practice. In particular, it allows AA
to be considered from the earliest stages of system development.

2.3 Research Question

This work looks primarily at the agent services that enable effective AA to
be developed for systems involving a single agent and a single human. In
particular we are aiming to answer the following questions:

e How should agents be designed so that Z can collect all the appropriate
information for R in a straightforward manner?

24 2. Agent Services for Adjustable Autonomy

e How should agents be designed so that the decisions of R can be
effectively implemented? That is, what sorts of autonomy changes
should an agent allow?

e What is the relationship between the services provided by agents and
the implementation of the Z and A components?

The remainder of this thesis presents our analysis of the services that
need to be provided by the agent to support effective AA. A full under-
standing of AA also requires understanding how the information collection,
reasoning and actuation should actually be implemented. In the case of
Directed AA this additionally involves the design of human-computer inter-
faces. Though prototype versions of these systems are presented, detailed
design of the interfaces is left as future work.

2.3.1 Scope of this Work

A A technology potentially applies to the interactions between any intelligent
entities. However, this thesis specifically looks at AA between a single agent
and a single human user. Further, we consider the user to have strictly
more authority than the agent, i.e., C, C Cy, the constraints on the agent
are always at least as tight as those on the human. That is, there is nothing
the agent may decide which the human may not. This means that the
human is strictly in charge over all aspects of the system. However, this
says nothing about the relative abilities of the parties. For example, the
agent may be the only party capable of actually firing an aircraft’s missiles
but only the human can make the decision that a missile should be fired.
With the current state of the art in Al and current social values a human
must always be ultimately in charge, hence our assumption is reasonable
(for now).

Next we assume that the agent will never intentionally disobey or reject
a decision made by R. This does not preclude the agent from questioning or
asking for confirmation of a directive (e.g., a decision by R might prompt an
agent to provide more information that it believes might lead to reconsider-
ation of the decision) though we do not explicitly consider that possibility
here. Hence, the agent is a benevolent part of the system, though certainly
not completely reliable — if agents were in some way perfect AA might not
be needed. For some applications or when agent technology develops fur-
ther it may be useful to reassess this assumption because there are some
situations where artificial intelligence is more reliable than human decision
making and hence agent decisions might be “preferred” to human ones.

2.3. Research Question 25

Even restricting our focus to AA systems with a single agent and human
leaves open a wide range of research problems. Important and relevant issues
range from very “soft” subjects on the human end of the interface, like What
mental models does/should a user adopt for effective AA? to very “hard”
subjects at the agent end of the interface, like How can we maintain safety
critical guarantees given AA? We have chosen to look primarily at the way
agents should be designed so that effective AA can be easily built — any
complete AA theory would need to consider many other aspects as well.

It has been suggested that AA interfaces might allow a user to con-
trol an agent by manipulating its sensors, reasoning or actuators (Dorais
& Kortenkamp 2001). We have chosen to look only at mechanisms which
manipulate an agent’s reasoning.

Although we have not focused on potential design strategies for the cur-
rent human-agent interface, we have, by necessity, made some assumptions
about that interface. These assumptions are explicitly stated where they
are relevant throughout this work but are not necessarily uniform across ap-
plication areas. For example, in the interactive simulation system (Chapter
5) we have assumed there is a high bandwidth, reliable connection between
the agent and the user, so that as much data as required can be exchanged.
We do not make such an assumption for the human collaboration system
(Chapter 6).

Finally, we do not consider the cost of the computation done by R. In
some domains the cost of that computation might outweigh the benefits of
using it and hence the resources allocated to AA might need to be carefully
evaluated. We restrict our attention to applications where either the AA is so
critical as to justify all resources allocated to it or the resource requirements
are negligible in the context of the system’s computational requirements.

Group Decision Making The formal framework above and this work focuses
on decisions that are the exclusive responsibility of a single entity (either
human or agent), although the decision making for sub-goals might be the
responsibility of other entities. Some systems use group decision making
where a decision is arrived at via negotiation between a group of entities
(de Carvalho Gomes et al. 1998). Formalizing AA for group decision making
can be more subtle, e.g., (Barber, Martin & Mckay 2000).

Group decision making units can be incorporated into the above frame-
work by considering the group making the decision to be an entity in its own
right. The group has certain abilities, responsibilities, authority constraints,
etc. that can be modeled in the framework presented here. Any AA internal

26 2. Agent Services for Adjustable Autonomy

to the group can be modeled separately using another framework.

2.4 An Ideal Adjustably Autonomous Agent

In order to make concrete the rather abstract idea of AA presented in the
preceding sections, this section presents an example of AA between two hu-
mans. The example aims to highlight how AA should work, the types of
functionality the agents need to have to support that AA and to highlight
some of the complexity of AA so the reader can better understand the prob-
lem of building agents for AA systems. The following example illustrates
just one possible AA configuration. In the example a boss, named Cameron,
interacts with an intelligent butler, named Drew. We use the subscripts ¢
and d when referring to Cameron and Drew respectively.

Together Drew and Cameron form a system that has some system goals,
such as maintaining a sufficient level of caffeine in Cameron’s bloodstream.
Drew, the butler, has varying autonomy with respect to the sub-goals that
need to be pursued. For example, Drew may be responsible for deciding
when coffee should be made, what of type coffee to make or only the low
levels details of making a specific type of coffee when requested, e.g., turning
on and off the kettle. Assume at the beginning Drew only makes coffee when
asked. We can capture Drew’s initial autonomy as:

Ag = (Tda Cy, Ad)a where
Ty = @,

2.2

Cq = {choose_coffee, decide_when_coffee_should_be_made, ... } (22)
Ay = {decide_when_to_make_coffee, choose_coffee, make_coffee, . .. }

and Cameron’s autonomy as:
A, = (T,, C., Ac), where
T. = {maintain_reasonable_caffeine_level},
C = (2.3)

c — 9

A, = {decide_when_to_make_coffee, choose_coffee, make_coffee, ... }

Drew does not have the authority to assume any of the goals in Cy,
so with the above autonomy level Drew can do very little autonomously.
However, at any point in time Cameron can change Drew’s autonomy level.
We view this conceptually as the AA system changing the autonomy level, it

2.4. An Ideal Adjustably Autonomous Agent 27

just happens that in this case Cameron is doing R. Some autonomy changes
may be slight, e.g., “Use the cups on the bench when making coffee” which
limits the latitude Drew has when making coffee. i.e.,

Cqy={Vg € Ay N (g —involves_cups_on_bench

V ¢ does_not_involve_making_coffee), ... }

Other changes in autonomy may be more significant and at quite a dif-
ferent level of abstraction, e.g., ”"Make me a Brazilian coffee now, please”.
That is,

Ty = {make_coffee(Brazilian) }

Notice that Cameron’s top level goals do not change because Cameron
still has responsibility for maintaining reasonable caffeine levels. It is only
the sub-goal of this responsibility that has been assigned to Drew.

Drew, like any intelligent human, can accept such goals at all levels of
abstraction at any time — but some discretion should be used. For example,
clearly, one cannot be requested to do something beyond one’s abilities,
i.e., Drew will not accept a goal g if ¢ € Ag4. If such a request is made
Drew will intelligently, politely decline the request, possibly suggesting other
courses of action. For example, a request to build a time machine might
be declined. A goal may also be rejected because it is dangerous, illegal,
contrary to social norms or the like. Within the framework presented here
such constraints would be captured by having those goals in the set Cy
(i.e., g € Cy). For example, a goal to punch the cook in the nose would
(hopefully) be declined even though it may be in Ay.

Rather than outright declining a request from Cameron, Drew might
check that Cameron understands the implications of the requested actions.
For example, checking whether Cameron realizes that it will be impossible
for Drew to answer the phones while getting lunch from the sandwich shop.
So, even if g € Ay, g & Cy (i.e., Drew can do something and is allowed to do
it), but potential difficulties are detected with adding g to G4, some dialog
might be entered into.

The intricacies of the instantiation of AA in a butler do not finish with
accepting or rejecting a request. Drew must also reason intelligently about
how to incorporate a request with other ongoing behaviour. Say Drew was
taking a phone-call when Cameron requested coffee be made. It would not
be expected that Drew immediately drop the handset and put coffee on.
As well as “standard” planning issues like how to achieve both tasks and

28 2. Agent Services for Adjustable Autonomy

which to prioritize, Drew needs to ensure that switching between tasks is
done smoothly — for example a caller should not be left hanging, without
explanation while the coffee is made. The details of this re-planning and
task switching should not be of concern to Cameron.

In extreme cases an intelligent human butler might find it best to con-
sciously override requests from a boss. For example, Cameron may request
not to be disturbed under any circumstances. But when the building catches
fire or Australian football legend Greg Williams rings, Drew will (hopefully)
ignore the earlier request and disturb Cameron — and Cameron will, no
doubt, appreciate that the request was overridden. For this to be allowed
with the above autonomy definitions, the goal for handling the exception
must not be in Cy, i.e., Drew must have explicit authority to handle the
exceptional case by overriding a previous request. If the goal was in Cjy then
the system would have to explicitly change Drew’s autonomy by removing
the goal from Cj before Drew could act. Notice that, with our formulation,
the combined Cameron-Drew system always had the authority for Drew to
interrupt Cameron but Cameron might choose to (temporarily) impose the
authority constraint on Drew.

Sometimes the flow of initiative will not be from Cameron to Drew but
the other way around. Tasking problems or information might come to the
attention of the butler that would be better with the boss. For example,
Drew may realize that a letter that should be in California by Friday will
not arrive in time by ordinary mail. But whether the slight delay is worth
the cost of a courier might be a decision which Drew cannot easily make. In
such a case Drew might decide to relinquish autonomy to Cameron for that
decision, i.e., decision making responsibility for the goal to get the letter
sent is moved from the Drew’s set G4 to the Cameron’s set G4. That is:

Originally:

G4 = {get_letter_to_California_by_Friday, ... }
Ge={...}

After autonomy change:

Ga=1{...}

G. = {get_letter_to_California_by_Friday, ... }
After Cameron’s decision:

Gq = {send_by_courier, ... }

G. = {get_letter_to_California_by_Friday, ... }

2.5. Summary 29

2.5 Summary

In this chapter we have defined AA and the underlying concepts of auton-
omy and level of autonomy. We defined an entity’s autonomy in terms of
that entity’s abilities, authority and decision making responsibility. We also
introduced the research problem being addressed in this thesis, which fo-
cuses on the relationships between an agent’s design and implementations
of AA for a system including that agent.

30

2. Agent Services for Adjustable Autonomy

3. STATE OF THE ART

In this Chapter we present a review of the Adjustable Autonomy (AA) lit-
erature with the aim of putting into perspective the work in this thesis.
After briefly looking at the types of applications for which AA is appropri-
ate we look at the work that has been done in the area. The review of AA
literature is divided into three sections: definitions of AA; a sample of ap-
plications using Reasoned AA; and a sample of applications using Directed
AA. In particular we look at how the published work fits the conceptual
model presented here and how it relates to the work in this thesis.

After reviewing AA literature we look at related fields, in particular a
brief review of some relevant human factors work, a few mixed initiative
systems, teleoperations research and interactive theatre applications.

The work in this thesis aims to make AA easier to build rather than
showing its usefulness, thus we rely on the published literature, some of
which is presented below, to motivate the utility of AA.

3.1 Applications of Agents

As underlying technologies have improved, agents have been given more
control over more challenging tasks and more complex systems (Chaib-draa
1997). The advances have arguably culminated in the remote agent project
where an agent had control, unassisted, of an unmanned NASA space craft
for several days (Bernard et al. 1999). The remote agent project was an
outstanding success but is far from the only agent success story. New, un-
manned aerial vehicles, capable of performing a variety of useful missions,
rely on intelligent agent software for their control (Doherty et al. 2000).
Closer to earth, agents are being given more responsibility for the day to
day running of human organisations (Sen et al. 1997, Tambe, Pynadath
& Chauvat 2000). Electronic commerce is another area leveraging, albeit
cautiously, the power of intelligent agents (Greenwald & Kephart 1999).
Not all exciting agent applications involve interacting with the real world.
Another important class of applications involves intelligent agents acting in
virtual environments. Military organisations are using agents to improve

32 3. State of the Art

their simulation capabilities, thereby improving testing, training and acqui-
sition processes (Pew & Mavor 1998). Other groups are using intelligent
agents to simulate humans providing an exciting opportunity to verify so-
cial science theories with repeatable experiments, e.g., economic theories
(Luna & Stefannson 2000). Computer game makers are harnessing intel-
ligent agents to make computer games more entertaining and challenging
(Bryson 1999a). Agents are also featured in the movies, e.g., ”Batman Re-
turns” (Reynolds 1995). Notice that despite the huge diversity in domains,
many of the same core agent technologies are applicable across a number of
domains.

3.2 Motivating Adjustable Autonomy

With the exception of some early thinking about the relationships between
humans and machines(Fitts 1962, Chapanis 1965), AA is a relatively new
field. Much of the published literature has appeared in a series of AA spe-
cific workshops over the last few years (Kortenkamp et al. 1999, Musliner
& Krebsbach 1999, Reed 2000, Hexmoor 19995). Other work on AA has
appeared in more mainstream areas, though sometimes referred to under
other names, such as “directability” (Blumberg & Galyean 1995) and “in-
struction” (Bindiganavale et al. 2000). Often, the literature either describes
the requirements for a particular AA application or presents the results of
a particular AA implementation. Some authors have looked at formalizing
A A concepts so they could be built into software for automated AA reason-
ing. However, only a small number of groups have tried to generalize their
experiences with AA. Despite the growing number of publications in the
area there is yet to be a study of the relationships between agent services
and AA capabilities. This work aims to begin to fill that gap.

3.2.1 When is AA Useful?

Building AA is not a goal in itself. Rather AA is a technology that enables
deployment of some types of systems or increases a system’s utility or usabil-
ity. It could be said that AA is to agents what GUIs are to human-computer
interfaces for conventional computer systems. The advent of GUIs opened
up the possibility to build a variety of useful systems that would have been
either cumbersome or impossible to use with, for example, a text based inter-
face. Just as GUIs are not appropriate for every application, neither is AA
appropriate for every intelligent system. Below we extract some properties
of an intelligent system that might indicate that AA will be useful.

3.2. Motivating Adjustable Autonomy 33

The development of effective AA will involve considerable additional ef-
fort and cost, even if the implementation is simple (because the guidelines in
Chapter 4 were followed). Hence, although AA may have some use in every
intelligent system it is only reasonable to develop it if the utility of the AA
outweighs the development costs. Hence, it is important to consider what
AA brings to the system. For example, for some applications AA actually
reduces the time and cost of agent development, because AA can “cover”
weaknesses in the agents and/or help with debugging and testing. For other
applications AA keeps humans in control or allows personal preferences or
allows fast changes or something else. Below we consider some of the spe-
cific properties AA adds to a system, which in turn can help the decision of
whether to include AA in a system.

The fundamental property that AA brings to a system is the ability
to change autonomy dynamically. This immediately implies that a single
entity need not have responsibility for a particular task for the lifetime of
the system. This very basic property has a wide variety of uses, with different
applications taking advantage of the property in different ways.

Overcoming Agent Deficiencies One of the most common uses of the idea
that autonomy is not fixed is for allowing human users to assume decision
making responsibilities when agent decision making is not acceptable. In
particular the human’s input is required to overcome inadequacies of an
agent. The idea is for AA to support a synergistic relationship between the
agent and the human by allowing each of them to operate when the task
is suited to their strengths. There are a number of reasons why an agent
may not exhibit acceptable behaviour. A cross section of the reasons are
described in the following list:

e Sensor, actuator deficiencies: Sometimes parts of an agent’s task may
be beyond its sensing or actuation capabilities (Dorais et al. 1998).

e Moral questions: Decisions with a moral aspect are expected to be
taken by humans (Fox & Das 2000).

e Cost/Time: To create an agent that can perform acceptably in all
situations will require substantially more time and financial resources
than just building an agent to cover common situations (Goldman
et al. 1997, Zhang 1999).

o Unexpected situations: For some applications it is simply not possible
to anticipate all the situations that an agent will find itself in, hence

34 3. State of the Art

the agent might need human input in some situations.

o Complexity: Some tasks may be either too difficult for an agent to
handle or too difficult or vague for a designer to specify an executable
solution to (Wooldridge 2000).

e Difficult to define objectives: In some cases the goal that the system is
trying to achieve is hard to formally define. In such cases user input is
needed to ensure the system meets its goals (Ferguson & Allen 1998).

Personal Preferences For some applications, e.g., personal assistant agents
(Lashkari et al. 1998), it is important that the personal preferences of a user
are respected. However, the agent designer might not know those preferences
at design time, hence the agent must adapt at run-time. AA is a general
mechanism which allows the user to impose their personal preferences on
an agent by taking over parts of the decision making when agent decision
making is contrary to their preferences.

Entertainment Intelligent entities are rapidly becoming important in the
entertainment industry (Maes 1995). Two particular genres are based on
advances in agent technology. First, a range of computer games are starting
to emerge where the enjoyment of the game comes from interacting with or
controlling intelligent entities (e.g., Sims (Smith 2000) and Creatures (Grand
2000)). AA would be a powerful mechanism for giving users more control
over the characters, in turn leading to more enjoyment for players.

More recently (and at higher cost) mobile robots for entertainment have
begun to enter the market, in particular Sony’s AIBO robotic dog (Sony
2001). If experience with simulated dogs is any guide (Blumberg 1997b) it
is likely that AA type functionality will improve a user’s experience with
robot dogs.

Development Cycle The original motivation for this work was to make it
easier for non-expert programmers to change the behaviour of simulated
pilots in a tactical air-combat simulator. We soon realized that getting a
non-programmer to sit down and create a specification for a pilot was very
difficult. However, if given online control, the non-programming experts
might be capable of getting the simulated pilots to behave as they required,
i.e., they could get the simulated pilots to do what they wanted without hav-
ing to interact with the artificial intelligence specialists every time different
behaviour was required.

3.2. Motivating Adjustable Autonomy 35

The solution approach used was to have expert programmers use a spec-
ification system designed for them to specify “generic” behaviour for mis-
sions. The domain experts (i.e., the non-programming experts) would then
tailor the behaviour to their particular goals at run-time. This creates an
even more efficient development cycle than having the domain expert spec-
ify agent behaviour themselves offline. This concept has been demonstrated
and some limited testing performed in co-operation with Saab, using their
air-combat simulator, TACSI (Saab 1998).

This streamlined development cycle might be applicable to other do-
mains where frequent changes are required to agent behaviour and domain
experts have the required knowledge. An obvious example of this is the
movie industry where expert graphics artists and artificial intelligence pro-
grammers could develop generic characters and directors could tailor their
behaviour as required by the script (André et al. 1998).

Training A primary use of the TACSI air-combat simulator is for training
human pilots. Sometimes the trainer will adjust the behaviour of the sim-
ulated entities in the training scenario to better tailor the scenario to the
training needs (Webber & Badler 1993). AA turns out to be ideal for this
because this “tailoring” requires ad hoc changes to all levels of the agent’s
behaviour — precisely what AA can provide.

Multi-agent Systems AA is also important when teams of independent en-
tities work together. Different decision making frameworks will perform
differently depending on the situation (Barber, Goel & Martin 2000). Dy-
namically reconfiguring the autonomy allows the overall system to put de-
cision making responsibility into the hands of those that can best make the
decisions.

Applications for AA

The types of applications with properties as described above span a wide
variety of domains. It is illustrative to look briefly at some of the applications
where AA is already being applied.

For long term manned space missions, particularly a manned mission to
Mars, AA is an essential enabling technology (Dorais et al. 1998, Schooley
et al. 1993). A great deal of autonomy is required on such a mission to
limit the size (and hence cost) of the ground crew required to accomplish
the mission (Kortenkamp et al. 2000). More importantly ground assistance
may not always be possible due to blackouts, the length of time it takes

36 3. State of the Art

messages to get from Earth to Mars and system malfunctions. Autonomous
systems would also free up the on board crew for more interesting work by
taking over simple, repetitive tasks. However, in order to facilitate online
repairs and maintenance as well as allowing opportunistic intervention with
systems to improve performance or handle unforeseen circumstances the
crew needs to be able to interact with the system at whatever level they
deem appropriate.

Another area where AA technology is required is for safety critical intel-
ligent software, such as for controlling nuclear power plants and oil refiner-
ies (Musliner & Krebsbach 1999). It is too expensive and difficult to build
and properly test intelligent software for complex safety critical applications.
If we want to reap the rewards of intelligent systems we need some way of
making them safe. AA is one such way.

Our personal experiences have shown that completely autonomous per-
sonal assistants currently (and probably always will) make too many mis-
takes to be allowed to operate completely autonomously (Scerri, Pynadath &
Tambe 2001). The reasons why the personal assistants make errors include
not knowing the intentions of their user as well as more obvious things like
not being able to adequately sense the environment. Hence, useful personal
assistant agent systems require AA.

In interactive training environments AA can dramatically decrease the
time and effort taken to create appropriate training scenarios (Cremer et al.
1995a). Likewise, interactive theatre applications can be more easily devel-
oped if the character’s behaviour can be changed online. Intelligent homes,
where intelligent software controls everyday devices are also likely to be good
examples of AA systems (Lesser et al. 1999). In such systems, autonomy
reasoning (R) needs to be quite intelligent. For example, the “home” might
check with you during the day (if you are at home) before changing the
temperature but not during the night, when you are asleep.

A A has been applied to the problem of enabling a human and intelligent
agent to build schedules where not all the constraints can be easily expressed
in a way that the agent can understand (Galitsky 1999). In that work the
level of autonomy is directly proportional to the depth of the agent’s rea-
soning capabilities, pruning the agent’s capabilities restricted its autonomy.

A group at Boeing is looking at AA to avoid the prohibitive cost of
building full autonomy for manufacturing production cells (Zhang 1999).
The AA will allow some of the more difficult automation tasks to be left
to humans. AA is already being used to help pilots faced with difficult
situations (Rock 1999). That work was inspired by a number of military
helicopter accidents that occurred with helicopters flying in close formation

3.3. Adjustable Autonomy in the Literature 37

in darkness. The AA will be used to help the pilots maintain an acceptable
distance from each other.

3.3 Adjustable Autonomy in the Literature

In this section we review the literature that specifically discusses AA. We
look firstly at the types of definitions of AA that have appeared in the
literature, then turn our attention to specific AA systems. The AA systems
described are listed in Table 3.1.

‘ System ‘ Description ‘

DAA Multi-agent team, group decision making,
naval radar application

Situated Autonomy Introspective agents, air traffic control appli-
cation

LookOut Mixed-initiative using Bayesian reasoning,
email filtering application

Robotic Wheelchair Combines user and autonomous control sig-
nals

ALIVE Tools for run-time manipulation of the be-

haviour of an intelligent character in an im-
mersive environment

HCSM Tools for run-time manipulation of the be-
haviour of entities in driving simulations

AEGIS AA system based on a reactive planner for
control of large, complex systems

JACK Natural language commands to virtual hu-
mans

MASMA Adjustable user preferences for autonomous
behaviour, application to user schedule nego-
tiation

3T Interaction layer added to three layered con-

troller for complex, autonomous systems

Tab. 3.1: A listing of the AA systems that are discussed below with a brief
description of their functionality.

38 3. State of the Art

Definitions of AA

In a new field it is important that central concepts are clearly defined so that
a common language exists in the community. Two basic approaches have
been taken to defining AA in the literature. The first is to formally define
AA, building on formal definitions of autonomy. The second approach is
to define the properties that an AA system should have without necessarily
formalizing the concept. In this section, we briefly overview some of those
definitions.

Formal Definitions of AA. Formal definitions of AA lead to an ability
for agents to mechanically, explicitly reason about their own autonomy.
Furthermore, formal definitions of autonomy can be used by intelligent
R software for reasoning about appropriate system autonomy configura-
tions. In the Sensible Agents (Barber & Martin 1999b) framework, an
agent’s level of autonomy is modeled by a 4-tuple (R, A, C, I). R denotes
planning Responsibility, A denotes the agents and resources an agent has
Authority over, C denotes Commitment and I denotes Independance. Hex-
moor (2000b) defines situated autonomy using predicate calculus. Falcone &
Castelfranchi (1999), Castelfranchi & Falcone (1998) build a formal model
of AA based on the concept of delegation.

Most formal definitions of AA are tailored to the particular applications
the authors are working with and may not be generally applicable. For
example, the Sensible Agents definition is strongly tied to group decision
making, while Hexmoor’s definition is only relevant to introspective agents.
A general, formal definition of AA would need to cover a much wider range
of AA systems than are covered by the definitions currently appearing in
the literature.

Functional Definitions of AA. The second approach to defining AA has
been to describe the functionality AA brings to a system. Many authors, es-
pecially those who are building AA for existing systems, have taken this ap-
proach. In the context of long term manned space missions, Dorais, Bonasso,
Kortenkamp, Pell & Schreckenghost (1998) state the following aim: “Our
goal is to design a framework for human-centered autonomous systems that
enables users to interact with these systems at whatever level of control is
most appropriate whenever they so choose, but minimize the necessity for
such interaction”. Malin & Fleming (1999) offers a very similar definition.
In the context of an oil refinery control system AA is referred to as “an in-
telligent mixed-initiative ... control system” (Musliner & Krebsbach 1999).

3.3. Adjustable Autonomy in the Literature 39

For a training application, Bindiganavale et al. (2000) describe AA as the
ability for a human to “dynamically refine his or her avatar’s behaviour in
reaction to simulated stimuli without having to undertake a lengthy offline
programming session.”.

As with the formal definitions, the property oriented definitions of AA
are tailored to the specific applications being developed. However, the es-
sential sentiment of all the definitions is the same, i.e., AA implies flexible,
online control at multiple levels of abstraction. This idea is essentially the
same as our definition of AA, although we think of the agent and human
more as a team than as the master-slave configuration the word “control”
implies.

Summary The definitions of AA that appear in the literature capture es-
sentially the same sentiment as is captured in Chapter 2, although our focus
is intended to be broader. Generally, definitions of AA have focused on a
specific application type, e.g., Barber’s focus on agent group autonomy or
Hexmoor’s focus on introspection. The definition presented here aims to
capture the underlying functionality of AA as it applies to a wide range of
applications. However, because it covers more applications it is, by necessity,
also weaker than many definitions in the literature.

Each of the definitions captures the meaning of AA to the systems devel-
oped by the author(s) who presented the definition. None of the definitions
has been shown to be more encompassing or more accurate in defining what
AA is. However, many of the definitions address similar issues and are dif-
ferent perspectives on the same ideas, rather than conflicting ideas. Despite
the common sentiments amoung authors, the wide variety of applications
to which AA is applied and differences in the specific functionality that AA
brings to particular systems means that a specific, widely agreed definition
of AA is still to be achieved.

3.3.1 Reasoned Autonomy

This section contains some short overviews of some of the research being
done with R implemented in software. The survey covers a representative
sample of interesting applications and approaches.

Dynamic Adaptive Autonomy

The University of Texas’ Dynamic Adaptive Autonomy (DAA) framework
allows a group of agents to allocate autonomy amongst themselves in a way

40 3. State of the Art

that results in the best group decision making performance (Barber, Martin
& Mckay 2000). In this system, R is performed by a group of agents. DAA
uses autonomy as an important part of the group decision making process.
Experiments using a simulated naval radar frequency sharing problem, show
that different decision making arrangements lead to different performance
levels depending on the particular task (Barber, Goel & Martin 2000). This
is an important result because it clearly shows AA can improve system
performance (rather than “only” avoiding agent limitations) by showing no
one particular autonomy configuration is right for all situations.

In DAA, autonomy is considered with respect to each goal individually
and is described by three attributes, G, D and C' where G is the intended
goal of the decision making group and C' is the set of agents over which the
decision making group D has authority. In the decision making framework,
D, each agent gets a certain amount of say, represented by the number of
votes it has in the decisions of the group. In the decision making framework
D, for the goal GG, the number of votes an agent has relative to the total
number of votes all the agents in the decision making group have gives a
numerical value for the agent’s autonomy.

Using the formal definitions of autonomy, formal descriptions of different
levels of autonomy can be accurately described. For example, a command
driven agent has no votes in the decision making framework which has au-
thority over it and consensus decision making is when all agents in the set
C are in the decision making framework, D, and have the same number of
votes.

One focus of this work has been the protocol by which the agents work
out what decision making framework, e.g., consensus, master-slave, locally
autonomous, they should adopt given a particular situation (Barber, Martin
& Mckay 2000). This is a difficult problem given that each agent has only
local knowledge and hence cannot know, for sure, what formation is best
for the group. Currently, the system uses a pre-determined mapping from
situations to decision making frameworks to determine which autonomy con-
figuration to adopt. The number of votes that an agent has in a decision is
the feature of the system which the autonomy actuation component (A) can
affect to change the behaviour of the system. At this stage of development
the AA information gathering component (Z) uses a priori simulations of
how different autonomy configurations perform in different circumstances.

Situated Autonomy

Hexmoor (20000) defines Situated Autonomy as an agent’s stance towards a

3.3. Adjustable Autonomy in the Literature 41

goal at a particular point in time. That stance is used to guide the agent’s
actions. A key in this work is that the agent uses introspection to deter-
mine the current level of autonomy rather than autonomy being an external
property of the agent. The agent’s own assessment of its own autonomy is
used in the decision making process. One of the implications of this view
of autonomy is that autonomy and dependence are orthogonal rather than
intertwined.

One focus of this work is on how an understanding of autonomy af-
fects the agent’s decision making at different decision making “frequencies”,
e.g., reflex actions and careful deliberation (Hexmoor 1999a). For example,
for reactive actions only the agent’s pre-disposition for autonomy towards
the goal is taken, while for decisions with more time available a detailed
assessment is done to optimize the autonomy stance.

Some of the ideas have been applied to an air traffic control problem
where agents helping a human air-traffic controller use situated autonomy to
guide their decisions for interacting with the air-traffic controller (Hexmoor
2000q). In that particular application the level of agent autonomy is a (fixed)
function of the priority of the importance of the current task (as assessed
by the agent).

7 sends information directly from the agent’s perception systems at lower
decision making frequencies and uses pre-calculated information at higher
frequencies (Hexmoor 2000b). A changes the behaviour of the agent by
making the autonomy level an input into the decision making process of
action selection for a goal (Hexmoor 2000a).

Later work has looked at how autonomy can be measured by comparing
an agent’s performance with and without its context (Brainov & Hexmoor
2001). The idea being that its autonomy level is related to how much an
agent’s context adds to its performance.

Focus of Attention

Horvitz, Jacobs & Hovel (1999) have looked at AA-like ideas to reduce
annoying interruptions caused by alerts from the variety of programs that
might be running on a PC, e.g., notification of new mail, tips on better
program usage, print jobs being finished and so on. They are emphasizing
the user’s focus of attention and using that as a primary factor guiding AA
decisions. Bayesian theory is used to decide, given a probability distribution
over the user’s possible focii of attention and potential costs and benefits
of action, whether the agent should take some action autonomously. The
agent has the further possibility of asking the user for information in order

42 3. State of the Art

to reduce its decision making uncertainty. In this case then, 7 is presenting
information both from the user and from the agent to R. A prototype
system, called LookOut, for helping users manage their calendars has been
implemented to test the ideas (Horvitz 1999a). Future efforts will look at
more complex situations with hierarchical arrangements of goals (Horvitz
1999b).

The careful determination of the user’s focus of attention is an interesting
complimentary capability for AA because it provides input to R from the
user’s perspective without unduly disturbing them. Other AA approaches
rely on having only the agent’s perspective of a situation, i.e., R, imple-
mented in software, relies on information about the state of agents and,
perhaps, user preferences, but does not usually consider detailed informa-
tion about a user’s current activities.

Assistive Technologies

One area where artificial intelligence is having a significant, direct impact on
the quality of life is in applications where technology is used to assist peo-
ple without abilities common to most of the population (Miller 1998). One
particular application is where robotics and artificial intelligence are helping
mobility impaired people decrease their dependence on human help. Sys-
tems such as NavChair incorporate advances in mobile robotics into powered
wheelchairs to empower otherwise unable people to move around unstruc-
tured environments (Simpson et al. 1998).

Traditional powered wheelchairs have a joystick by which the user con-
trols the direction of the chair. However, a joystick is beyond the capabilities
of some users who must rely on head or even eye movements to control the
chair. Artificial intelligence techniques that help the user avoid obstacles
and otherwise generally assist in the navigation of the chair are extremely
welcome. However, such approaches introduce the need for conflict resolu-
tion between the automatic system and the user. Current solutions utilize
mode switching where the user or system switches between different au-
tonomy modes depending on the current tasks (Miller 1999, Simpson et al.
1998).

An interesting aspect of this application of AA is that sometimes the
software will override the user. This is not because the software does not
“like” the decisions of the human but because it must consider the possibility
that the human was not able to express their decision quickly or accurately
enough. This is different from other AA applications where the artificial
intelligence state of the art and social standards dictate that humans always

3.3. Adjustable Autonomy in the Literature 43

have the final responsibility.

For this type of system, R is particularly concerned with how the user
and human commands are combined. In particular, R can choose between
different modes of operation. For example, in wall following mode the user’s
joystick commands are modified to best follow nearby walls (avoiding ob-
stacles etc.) The modes are chosen depending on the environment, i.e., 7
supplies environmental information. .4 makes changes by altering the algo-
rithm which combines user and agent commands. Experiments have shown
the need for more advanced, intelligent interaction between the parties. In
this context mode switching can be thought of as a discretized version of
AA, ie., only certain autonomy configurations are allowed instead of the
complete spectrum.

3.3.2 Directed AA

The second group of AA applications we look at are those where R is done
by a human. The focus of the development efforts here is not the autonomy
reasoning, rather it is focused on providing an interface that users can use for
R. That interface must provide both the information required for effective
decision making and controls for specifying autonomy changes.

ALIVE

Blumberg & Galyean (1995) were amoung the first authors to note the need
for some kind of external control of autonomous characters for a variety
of applications. They refer to the ability of an outside party to control
an otherwise autonomous creature as directability. This work focused on
autonomous creatures, the most well known of which is Silas the dog, that
could interact with humans in an immersive environment called ALIVE. The
directability functionality was used to allow yet other humans to change the
behaviour of the autonomous creature to improve the interaction experience
of the human immersed in the environment. It was observed that such
interaction was needed at all levels of abstraction and at all times (Blumberg
1997b, pg. 32).

ALIVE characters, like Silas, use a hierarchical, behaviour based archi-
tecture, inspired by ideas from ethology, for action selection. The architec-
ture has many similarities to the EASE architecture described in Chapter 5.
A key difference between ALIVE and EASE characters, is that in ALIVE at
each level of the hierarchy only one behaviour is active, i.e., allowed to act,
although others may provide suggestions, while in EASE each “behaviour”

44 3. State of the Art

has an influence on the character’s actions.

The external control of an ALIVE character is implemented by giving the
user access to the internal data structures of the agent, in particular to the
factors which influence the relative strength of behaviours or groups of be-
haviours in the decision making process. Four types of controls, constituting
A, are provided. First, the user can change the character’s motivation for
engaging in a particular behaviour. Second, the user can change the objects
that are the focus of a behaviour, which in turn changes the probability they
will become active. For example, the marking behaviour of a simulated dog
can be changed to focus on user’s pants leg instead of fire hydrant. Third,
the level of interest a character has in a behaviour can be changed. Finally,
the user has the ability to simply make particular behaviours active at each
level of the hierarchy. A feature of the approach to directability was that it
was not necessary to change the character architecture at all to introduce
the directability (Blumberg 19975, pg. 86).

Although Blumberg’s approach to directability, or AA, is more powerful
and flexible than many other approaches, it is still limited. The user has
a range of control over the existing behaviour hierarchy but cannot change
the hierarchy by adding or removing behaviours. Furthermore, persistent
directions, e.g., never do X, are difficult to express. Another unsatisfactory
aspect of the approach is the way transitions between behaviours are man-
aged. When a behaviour completes, it returns the character to some neutral
state from which the next behaviour knows what to do ((Blumberg 1997b),
pg. 65). If human-like behaviour is required, the technique of returning to
a neutral state might be unacceptable as it is not natural. When an au-
tonomy change is made, ad hoc transitions between behaviours will occur.
Returning the character to a neutral state when making such a transition
may be unacceptable.

Hierarchical Communicating State Machines

Hierarchical Communicating State Machines (HCSMs) are the behaviour
control mechanism for actors in a driving simulation developed by the Uni-
versity of Iowa (Cremer et al. 1995a). The simulation is used to train drivers
and perform experiments on the effects of different factors on driving ability.
To be most effective as a training and experimentation tool, specific driving
situations need to arise in what otherwise appears to be normal traffic.
HCSMs are concurrent, hierarchical state machines that control the be-
haviour of the entities in the traffic scenario. Everything in a simulation from
cars to traffic lights are controlled by a HCSM. Each HCSM has a control

3.3. Adjustable Autonomy in the Literature 45

panel interface that allows other HCSMs or humans to alter its behaviour.
When the HCSM is developed the specific controls on the control panel
are designed and their effects on the state machine “hard-coded”. Thus,
controls for changing complex, abstract aspects of behaviour like a driver’s
aggressiveness or reaction time can be straightforwardly implemented by
creating a control that changes a state-machine in whatever way is required
to achieve that effect. Users “push buttons” and “turn dials” on the HCSM
control panels to change the behaviour of entities and, hence, control a sce-
nario. At run-time the changes that can be made to a HCSM’s behaviour
are limited to those that have been explicitly designed into the control panel.
Special HCSMs called directors are embedded in the environment to create
experimental driving scenarios by “pushing buttons” and/or “turning dials”
on other HCSMs at appropriate times (Alloyer et al. 1997). A graphical
user interface allows a human user to view the current state of the HCSM
for debugging purposes (Cremer et al. 1995b).

AEGIS

Musliner & Krebsbach (1999) at Honeywell are looking at AA as a means
of reducing some of enormous cost of “abnormal situations” in the petro-
chemical industry. The work has resulted in a system called AEGIS (Ab-
normal Event Guidance and Information System) that combines human and
agent capabilities for rapid reaction to emergencies in a petro-chemical re-
fining plant. AEGIS features a shared task representation that both the
users and the intelligent system can work with (Goldman et al. 1997). A
key hypothesis of the work is that the model needs to have multiple levels
of abstraction so the user can interact at the level they see fit.

Both the user and the system can manipulate the shared task model.
The model, in turn, dictates the behaviour of the intelligent system. Inter-
estingly, the authors note that given the AA requirements “first principle”
planners did not provide a suitable basis for the shared task representation
because they require too much detail and do not provide abstraction mecha-
nisms. This observation is in keeping with one of the underlying assumptions
of this thesis, i.e., that thought needs to be given to the design of agents in
order to effectively support AA.

The important aspect of AEGIS for the purposes of AA is the goal-
setting, planning and execution core, called GPE. GPE uses PRS (Ingrand
et al. 1992, Georgeff & Lansky 1987) reactive plans for its reasoning. Goals
are explicitly represented and hierarchically arranged. Different parts of a
goal hierarchy are the responsibility of either the system or human user.

46 3. State of the Art

Certain goals can only be performed by the system or by the human. There
is also an explicit representation of authorization for taking on a particular
goal. PRS incrementally develops plans so showing the user implications of
their actions or the intentions of the system is difficult, however extensions
are being developed to deal with this. Interfaces will be built on top of PRS
that allow users to view and manipulate the system plans. One of the key
features of this approach to implementing AA is that once appropriate user
interfaces to PRS are built a variety of different systems can be controlled
without re-implementing the AA components.

JACK

The University of Pennsylvania is working to build virtual humans for a
variety of domains. The result of the work is a system called JACK. A
major focus of their work is to create good animations of human behaviour
(Badler 1997). The control architecture of the virtual humans is layered,
lower levels look after motion control and animation and PaT-Nets (Parallel
Transition Networks) dictate the high-level behaviour of the system.

A key to the user control of the virtual humans are PARs (Parameterized
Action Representations) that dictate the virtual human’s behaviour. As
their name suggests, these PARs abstractly describe the actions that the
virtual human can perform. Uninstantiated PARs, i.e., UPARs, a sort of
generic action, are stored in an “Actionary” and do not affect the character’s
current behaviour. TPARs are UPARs with parameters instantiated for a
particular situation. The IPARs are linked to the PaT-Nets to control the
character’s behaviour.

A natural language interface allows a (real human) user to interactively
command the virtual human(s) (Bindiganavale et al. 2000). The natural
language processor take a natural language statement and works out which
UPARs should be instantiated, i.e., made into [IPARs, to implement the
change in behaviour the user desires. Both “standing orders” and immedi-
ate actions can be requested via the interface. The natural language proces-
sor can also understand qualifiers like “if” and “for all” and create IPARs
appropriately.

The natural language approach to getting human input is a very effec-
tive way of allowing inexperienced users to control the virtual humans (an
approach also taken by some groups to the control of physical robots, e.g.,
(Perzanowski et al. 1999)). However, the control the user has is limited to
the UPARs in the Actionary and the ability of the natural language proces-
sor to translate each request into appropriate IPARs. The user relies on the

3.3. Adjustable Autonomy in the Literature 47

simulation visualisation to understand the character’s behaviour, i.e., there
is no 7.

MASMA

Cesta, D’Aloisi & Collia (1999) have looked at AA as a way of boosting
trust between an agent and its human user. The idea is that giving the user
more control over their personal assistant agent will allow them to slowly
build up trust in the agent, slowly increasing the agent’s autonomy as their
trust increases. In the system, called MASMA (Multi Agent System for
Meeting Automation), autonomy is equated with initiative. FEach user in
a research organisation has a representative agent that negotiates meeting
times on their behalf. The user can influence the protocol that the agent uses
in the negotiation and the information that their agent makes available to
the other agents. The agents have a variety of different generic negotiation
mechanisms from which to choose. Mechanisms are chosen to best suit the
current user preferences. Over time the user is expected to change a file
containing their preferences, increasing the agent’s autonomy to negotiate
on their behalf. The user also has access to a visualisation of the negotiation
which they can use to influence the running of the negotiation directly.

3T

An AA interface to the 3T architecture (Bonasso et al. 1997) has been im-
plemented to solve human-machine interaction problems experienced using
the architecture in a number of NASA projects (Brann et al. 1996). The ex-
periences showed that interaction with the system was required all the way
from the deliberative layer through to detailed control of actuators. A prin-
ciple that came out of that work was that the machine should be designed
for complete autonomy then the autonomy restrictions relaxed at each level
starting at the top (Bonasso 1999). However, we contend that AA should
at least be considered from the earliest stages of agent development, even if
it is not implemented immediately, to ensure that agents have the features
required to make AA implementation straightforward.

At the deliberative, planning level of 3T the user can influence the devel-
oped plan while the system ensures that hard constraints are not violated.
At the middle level, i.e., the conditional sequencing layer, either the human
user or system (usually a robot) can be responsible for the execution of each
task. Each task has a pre-defined autonomy level that dictates whether the
system should check with the user before starting on the action or just go

48 3. State of the Art

ahead and act. At the reactive level the NASA developers were surprised by
the need for human intervention but did find it necessary, mainly for testing
purposes (Bonasso 1999). The AA at the reactive level is implemented by a
tele-operation skill that lets the user take over low level control, overriding
commands of the system. The AA controls at all layers are encapsulated in
what is referred to as the 3T’s fourth layer — the interaction layer (Schreck-
enhost 1999).

An interesting new problem to come out of the addition of AA to 3T for
mission critical systems is the need to validate the resulting human-robot
system (Malin & Fleming 1999). The complexity and unpredictability that
the human brings to the system makes the job of ensuring the intelligent soft-
ware always works as required significantly more difficult and raises a variety
of new problems. It is an interesting paradox that a technology brought in
to help an agent handle abnormal situations that were not thoroughly tested
increased the difficulty of testing behaviour in “normal” situations.

Summary

Tables 3.2, 3.3 and 3.4 summarise a selection of agent features for the dif-
ferent systems surveyed and the AA facilities those features lead to. The
tables show that the diverse agent architectures offer diverse services to AA
implementations. Clearly, some of the resulting AA facilities are more pow-
erful or useful than others. Notice that nearly all the architectures, though
very diverse, provide substantial Z and A without any major development
effort. Some systems do not have any support for Z, meaning that the user
or software performing R has to watch the ongoing situation and is not privy
to the internal workings of the agents. The A features are generally very
dependent on an existing underlying architecture hence are limited by the
restrictions of that architecture. The systems presented in this thesis, on
the other hand, provide extensive information for Z and a range of controls
for A.

3.3. Adjustable Autonomy in the Literature

49

System Agent Feature T Feature
DAA Pre-computed configurations
Situated Pre-computed information
Autonomy and perception
LookOut Can calculate the user’s fo- | Focus of attention
cus of attention
Natural language under- | Importance of email mes-
standing sages
Robotic Ability to sense its physi- | Evaluation of environment
Wheelchair | cal environment type
ALIVE Behaviour based hierarchy | Goal-hierarchy of actor
HCSM Explicit representation of | State machine visualization
state machines
AEGIS Partial plans Explicit authorization of
plan steps, shared plans
Goal hierarchies Abstraction
JACK User relies on observed agent
behaviour
MASMA Explicit Negotiation Visualization
3T Layering Abstraction

Tab. 3.2: A selection of T features and the underlying agent features that
make them possible.

50 3. State of the Art
‘ System ‘ Agent Feature ‘ A Feature ‘
DAA Voting mechanism for | Number of votes in decision
group decision making making
Situated Action selection algorithm | Direct input into action se-
Autonomy | considers autonomy level | lection
LookOut Will not execute without | Allows, delays or disallows
“permission” from AA an action
Dialog with user Can get additional informa-
tion from user to reduce un-
certainty
Robotic Different modes for com- | Chooses between different
Wheelchair | bining software and user | modes
input
ALIVE Explicit factors influenc- | Change factors affecting ac-
ing action selection tion selection
HCSM State machine controls Control panels
AEGIS Shared task model User can perform some tasks
Mixed-initiative planning
JACK UPARs Natural language interpreta-
tion instantiates UPARs
MASMA Different protocols Preferences file
3T RAPs, planner Explicit representation of
tasks and plans

Tab. 3.3: A selection of A features and the underlying agent features that

make them possible.

3.3. Adjustable Autonomy in the Literature

51

System R highlights

DAA Determined by group with established proto-
col

Situated Auton- | Determined by available time

omy

LookOut Bayesian reasoning

Robotic Mode switched

Wheelchair

ALIVE By human

HCSM Both by human and by director agents

AEGIS By humans

JACK By human

MASMA By human

3T By human

Tab. 3.4: Summary of R for the surveyed systems.

52 3. State of the Art

3.4 Related Ideas

So far we have looked at work specifically focusing on AA. However, there
are other research fields that are closely related to AA which we review
here. We believe many of the ideas from these fields might also be relevant
to AA because the basic goal of having systems and humans work together
is common to all the systems. In particular we look at mixed initiative
systems, teleoperated systems, interactive theatre applications and human
factors work.

In a mixed initiative system all decision making control is transferred
at once, compared to AA where perhaps only some decision making control
is transferred. Hence, in mixed initiative systems G, = 0 VG, = 0. In a
teleoperated system the human user has all the high level decision making
control, hence top_level_goals(G,) = system_goals. For mode switching
systems like some auto-pilots, A, is constrained to take on a fixed, usually
small set of discrete values (each value corresponds to a single mode) hence
there is considerably less flexibility than for AA.

3.4.1 Mixed Initiative Systems

Mixed initiative (MI) systems allow control to be traded between the sys-
tem and a user (Horvitz 1999a). Fleming and Cohen distinguish between
two types of MI systems, strong MI is when users can interrupt the system
freely and weak MI where the timing of user interaction with the system is
restricted (Fleming & Cohen 1999). Strong MI systems have much in com-
mon with AA, though are still less general because the possible autonomy
configurations are more restricted, i.e., G, = 0 V G, = 0. Much work has
been done with mixed initiative systems, in the following we review just a
small selection of interesting MI systems.

Mixed Initiative Problem Solving

A common use of MI techniques is to combine the skills of a human and
intelligent system to solve some (complex) problem (Ferguson et al. 1996).
The system takes responsibility for detailed, repetitive or otherwise machine
suited task aspects while the human looks after aspects requiring creativity,
hard to define objectives or other aspects better suited to human abili-
ties. Mixed initiative planning is a special case of mixed-initiative problem
solving, where a human and a software planner collaborate to produce a
(complex) plan (Veloso et al. 1997, Tate 1997).

3.4. Related Ideas 53

TRIPS (Ferguson & Allen 1998) is a good example of a sophisticated
MI problem solving assistant. TRIPS collaborates with a user to create
complex logistical plans for an imaginary hurricane evacuation scenario. The
authors note that substantial changes needed to be made to the underlying,
existing planning system to support the advanced collaboration features they
introduced. This supports this thesis’ contention that careful consideration
needs to be given to agent design so as not to hinder the development of
AA. In particular, a Problem Solving Manager was introduced to TRIPS
which manages additional planning information (i.e., information not strictly
required by the software planner).

Dialog

Dialog based systems are a common type of MI system (Haller 1997). Dur-
ing a dialog, complete control over the conversation shifts from speaker to
speaker — something that is inherently supported by MI systems. That is,
MI systems inherently support shifting complete control between parties,
just as occurs in a dialog. Donaldson & Cohen (1997) have developed con-
straint satisfaction algorithms which allow intelligent agents to intelligently
share speaking initiative with a human counterpart. The techniques used
there might be applicable to a wider range of AA problems.

3.4.2 Tele-operation

A tele-operated system is one where a human makes all the high level de-
cisions, perhaps based on sensory information received from the system,
and sends low-level commands to the system, usually a robot, to be exe-
cuted(Sheridan 1992). The simplest tele-operated system has no onboard
intelligence and simply executes the commands of its controller (Gilbreath
et al. 2000). Tele-operated systems are an extension of shared control and
traded control systems (Lee 1995). Due to a range of difficulties with “pure”
tele-operation, such as time-delays, lack of operator situational awareness
and high operator workload (T. Fong & Baur 2000), tele-operation re-
searchers have started including more intelligence in the tele-operated sys-
tem, relieving some of the responsibility from the user. As more intelligence
is built into the system tele-operation systems start to more closely resemble
AA systems. Hence, it is useful to look at the work done in the field as the
techniques may be applicable to AA, especially Directed AA.
Tele-operation is used for robotic applications where the robot’s task is
poorly defined, unpredictable or complex and it is infeasible to build all the

54 3. State of the Art

required intelligence into the system. For example, terrain exploration tasks
are difficult to achieve autonomously because it is difficult to know a priori
what interesting features of the terrain deserve closer investigation (Simmons
et al. 1994). Another interesting example of a tele-operated system is a
command and control architecture for processing plants located in space
(Schooley et al. 1993). High level commands are sent to the plant where
they are translated into appropriate low-level commands and in turn into
simple procedures. Telemetry data sent from the plant is used by the Earth
based human operators in their decision making.

Simmons, Krotkov, Hebert & Katragadda (1994) use an arbitrator that
takes both high level navigational input from a human user and low level
obstacle avoidance input from sensors to produce safe paths for a mobile
robot system for terrain exploration. The system allows the user to override
the robot’s safety advice in exceptional circumstances or relinquish complete
control to explore benign terrain, however the system is normally operated
in the intermediate mode they refer to as “safe-guarded tele-operation”.

T. Fong & Baur (2000) have focused on providing better human-machine
interfaces to tele-operated mobile robots. Their work looks at improving
both the sensing interface (i.e., Z) — providing the human operator with a
better understanding of the robot’s environment and state and the control
interface (i.e., A) — allowing more abstract commands to be sent and exe-
cuting the commands more intelligently. Rather than thinking of the robot
as a slave to the human controller they treat the human and robot as peers,
with the humans being taken as an “inprecise, limited source of planning
and information” (Fong et al. 1999). Such an approach is similar to Directed
A A and the interface technique may be extended to an interesting approach
to AA. Lee also takes the view that the robot and user should work together
as partners (Lee 1995).

(Sawaragi & Horiguchi 2000) takes quite a different approach to the
human-machine interface problem by using a virtual reality (VR) environ-
ment as an interface between the parties. The VR environment simplifies the
human-machine interface by giving the human operator “embodied cogni-
tion” and allowing them to better exploit physical manipulation capabilities
when controlling the machine. This type of interaction could be extended
as far as directly coupling a human brain to the robot as has been already
done with monkeys and robots (Wessberg et al. 2000).

Gilbreath, Ciccimaro & Everett (2000) have addressed some of the lim-
itations of tele-operated systems by increasing the abstraction level of the
commands that a user can send to a mobile robot for non-lethal tactical
response. Rather than only “joy-stick” type controls for controlling robot

3.4. Related Ideas 55

speed and direction, camera direction and non-lethal weapon direction, the
user can send higher level commands for, for example, following a wall or
tracking a target. The more abstract commands, combined with an ad-
vanced interface, reduce the difficulty of the robot operator’s task. As the
ability to send commands at all levels increases the system becomes more
like an AA system. If the user can prescribe changes to many aspects of
behaviour at all levels of abstraction then the mechanism could be described
as AA.

3.4.3 Interactive Theatre

Interactive theatre is a domain where Directed AA type ideas have been
extensively used. In interactive theatre applications simulated, animated
characters generally perform a “script” written in more or less formalized
natural language. The characters combine built-in personality traits and
built-in objectives with the high level instructions in the script to tell inter-
esting stories (Bates 1993). One system has a character performing a multi-
media presentation, e.g., a teaching presentation, from a script (André et al.
1998).

The capability of a character to take a script and interpret it at run-time
is almost equivalent to it being able to accept arbitrary end-user commands
and interpret the commands on the fly. So, if the actor can read a script
and accept the commands of the script, incorporating them with its “other”
behaviour then it should also be able to accept commands from an end-
user and incorporate them with its normal behaviour. In fact, quite often,
interactive theatre applications do have provisions for run-time user input,
though these are not as extensively used as the scripting capabilities. Gen-
erally only A functionality and not Z functionality is provided (primarily
because there is no purpose providing information to a static script).

Hayes-Roth, Brownston & van Gent (1997) have implemented a Directed
Improvisation system in which characters can interpret end-user directions,
while taking into account their particular distinctive styles, adhering to so-
cial conventions and meeting other objectives. Abstract control plans deter-
mine a character’s behaviour. Each step of the plans can be instantiated in
different ways, depending on the character’s personality. Users can specify
the control plans interactively at run-time.

Wavish & Connah (1997) translate formalized English scripts into a for-
mat that their characters can understand and perform at run-time. Each
character is made up of a society of simple, interacting agents, called CDAs
— Communicating Deitic Agents. Each CDA is respounsible for some aspect

56 3. State of the Art

of the character’s overall behaviour. A formal script is translated into CDAs
via a sort of “compilation” process. The idea of CDAs is similar to the ideas
in Chapter 5 though there the intermediate compilation step is not required.

In Improv (Perlin & Goldberg 1996), scripts are again used as the mech-
anism for “discrete control of the decisions made by the actor’s mind”. The
characters use a behaviour based decision making architecture. The scripts
use a variety of specification techniques including parallelism, abstraction
and non-determinism, to allow a script-writer to specify a wide range of be-
haviour. Online, end-user control can be added by including specifications
of user interface elements in the scripts. At run-time, the interface elements
can allow the user to control the characters at any level of abstraction, how-
ever the user only has controls that were included in the scripts, hence the
handling of unexpected situations is weak.

3.4.4 Human Factors

Whenever humans and intelligent software work together human factors
questions arise (Flanagan & Huang 1997). One interesting strand of human
factors work has looked at how the total functionality of a system should
be divided so that the performance of the human-software system is opti-
mized. Balanced work is a notion of balancing technology, humans, and
organisation (see Figure 3.1). Furthermore, “balanced work is the result of
an adjustment by the working system to the performance demands” (Bye
et al. 1999). It is argued that not only should designers look at relative com-
petence and/or technical limitations but that system functionality should be
divided so that humans stay in control and maintain their skills (Grote et al.
1995). This consideration is not usually taken into account for AA, where
competence is usually the sole rationale in decision making. Bye, Hollnagel
& Brendeford (1999) contend that a (relatively small) change in function
allocation disturbs the system “equilibrium” potentially causing changes to
the equilibrium of the total work situation. The ideas are being applied to
a study of automation at a nuclear power plant. The effect on human users
is an important issue if an AA system is to continually alter the autonomy
distribution of a complex system as R may have to take into account the
effects on humans.

3.4. Related Ideas 57

Performance resources Performance demands

Organization
Safety Efficiency
Technology Man

Fig. 3.1: Diagram relating the different factors affecting function alloca-
tion. Balanced work keeps the different components in balance
(Bye et al. 1999).

58 3. State of the Art

3.5 Summary

In this chapter we have presented a selection of relevant AA work, as well
as some work from related areas. Many of the applications and ideas are ex-
citing and open up new possibilities for interacting with intelligent systems.
However, in most cases the AA has been added to an existing system and is
thus restricted by the design of the original system.

Despite the number of applications appearing, very few, if any, general
principles for developing AA systems have emerged, particularly regarding
the way agents should be designed. Generally, developers have added AA
controls that are specifically suited to the features of their existing system.
The lack of general principles or guidelines for AA systems means that devel-
opers have no principled way of going about building AA in a way in which
they can be confident of a successful outcome. Thus, it is not surprising that
several authors noted that significant changes were required to underlying
systems to allow AA to be implemented. This work aims to provide some
background knowledge that will help future developers make informed agent
design decisions for AA systems.

4. GUIDELINES FOR BUILDING AGENTS FOR ADJUSTABLE
AUTONOMY SYSTEMS

In this chapter general guidelines for designing agents to be used in Ad-
justable Autonomy (AA) systems are described. The guidelines given here
should be used during the design process when one of the requirements on
the development is that the agents will be used in AA systems. It is our
contention that if agents are designed and built according to these guidelines
AA will be easier and faster to implement.

4.1 Using Guidelines for Capturing Design Experience

Design patterns are one approach that has emerged in the software engi-
neering community to communicate design experience to others (Gamma
et al. 1995). While design patterns for AA would be a desirable way of
communicating AA design experience, the breadth of applications for AA
is simply too broad for patterns to be useful, although specific patterns for
specific AA applications might emerge as the field matures. Instead, we
aim to capture AA design expertise via guidelines. The guidelines capture
our experiences designing agents for AA systems in a way that allows other
designers to leverage that knowledge.

The type of information that we are trying to capture cannot be cap-
tured by metrics or other “objective” measures. The type of information
we are trying to capture is abstract in nature and is more akin to “rules
of thumb” than mathematical proofs or equations. Other authors have also
taken the approach of using guidelines to capture design knowledge. Fleming
& Cohen (1999) have chosen to use guidelines to capture appropriate prac-
tices for building mixed-initiative systems. Shneiderman (1998) provides
guidelines for building graphical user interfaces and Joseph (1986) proposed
and evaluated guidelines for ski lift design. Often standards documents also
provide guidelines for the design and development of some type of system,
e.g., (IEEE 1998). Hence, there is ample precedent for this approach.

60 4. Guidelines for Building Agents for Adjustable Autonomy Systems

4.1.1 Using the Guidelines

When designing intelligent agents many competing requirements need to be
reconciled. Each requirement poses some constraints on the agent’s design.
Not all the requirements are related solely to the observable behaviour of
the agent. For example, there may be particular verifiability, simplicity or
computational requirements on an agent (Scerri & Reed 2000¢).

Designers, implicitly or explicitly, follow guidelines when attempting to
meet some requirement with a design. A guideline is “a statement or other
indication of policy or procedure by which to determine a course of action”
(Heritage 1996). For example, a (simple) guideline to minimize computa-
tional requirements for an agent might suggest avoiding algorithms involving
significant amounts of search. By following appropriate guidelines designers
have a principled, justifiable reason for believing that their design will meet
its requirements. For example, if a design avoids extensive use of search al-
gorithms a designer can argue, with justification (by referring to the above
guideline), that once implemented the design will be computationally effi-
cient.

Many of the guidelines a designer follows come from their own experience
with previous systems. However, learning to design systems through (good
and bad) experiences with previous systems is unlikely to be an effective
method for creating complex software, simply because so much experience
is required to understand the many implications of a design decision on
the resulting complex system. The need for an unreasonable amount of
experience is likely to occur for AA designers as the AA systems are very
complex and the consequences of agent design decisions on the ease with
which AA is developed are not seen until late in development (perhaps even
by a different team of designers).

Clearly, when designing a particular agent there are many things to take
into account other than making AA easy to implement. Most obviously, the
agent must be able to achieve the behaviour required of it. Other design
requirements like the ability to formally verify the agent’s behaviour will
also be made easier or more difficult by the design of the agent. Guidelines,
either explicit or implicit, will advise ways to meet other requirements in a
straightforward manner. In the usual case it will not be possible to design
an agent which makes everything straightforward, i.e., it will not be possible
to follow all the guidelines because of other conflicting requirements.

The design of any complex item is a challenging task, requiring knowl-
edge, experience, creativity, etc. When designing a complex system it is
important to understand how particular design decisions constrain other

4.1. Using Guidelines for Capturing Design Experience 61

design decisions and the functionality of the final system. Some relation-
ships are clear, e.g. using a heavier component on a spacecraft will mean
more thrust is required to get it off the ground. Other relationships are less
clear, e.g. when an architect starts designing a building the impact on the
layout of the tenth floor from the positioning of lifts may not be clear. The
tradeoffs that need to be made, e.g. the extra thrust required for the heavier
component on the spacecraft versus the extra functionality the heavier com-
ponent provides, are often difficult to resolve in a good way. However, if the
relationships between a design decision and its effects on other aspects of
the design are understood at least resolving the tradeoffs can be approached
in a principled, informed manner.

The guidelines here serve as a mechanism for making explicit the rela-
tionships between design decisions and implications with respect to a single
system requirement, namely AA. With the guidelines a designer can at-
tempt to make decisions that lead to agents with features most amenable
to implementations of AA. When the designer makes a design decision that
violates the guidelines, at least the decision can be an informed one taking
into account whether the breaking of the guidelines is an acceptable in terms
of the benefits it provides — given that it is known to have some negative
consequences. In other cases, where competing design alternatives exist, the
guidelines can be used to show which design option is most likely to lead to
a straightforward AA implementation.

4.1.2 Guideline Philosophy

An important underlying assumption to the guidelines is that if something
is easier to do it is strictly better than something that is hard to do. In
particular, being “easy” is directly proportional to the complexity of the
software or the cognitive process in the case of a human, required to perform
the task. We assume that the more complex the required software the more
difficult the task of building it. The guidelines are designed to make AA
as easy to implement as possible, which is equated with being better. The
guidelines help in avoiding agent design decisions that make it very difficult
to implement AA and advocate design decisions that make AA easy to
implement. For example, if a complex mapping is required between the
agent’s representation of some concept and the AA software’s representation
of the same concept it is more difficult to build the software for the mapping.
Hence, the situation is less desirable, than if a simple mapping or no mapping
at all is required to get the agent’s representation into a form usable by the
AA software.

62 4. Guidelines for Building Agents for Adjustable Autonomy Systems

Notice that there is a subtle, important, necessary difference between
having guidelines that lead to “good AA” and having guidelines that lead
to “easy to build AA”. This work is concerned with the services of the
agents that provide the foundation for implementing AA. Clearly, the actual
design and implementation of the AA will also be critical to whether the
AA is effective. The guidelines given here aim at ensuring the AA services
provided by the agent do not handicap the development of that AA and
make it as easy as possible to do but do not advise directly on the actual
design process of the AA. Hence, these guidelines can only make it easier to
build useful AA, but not promise that useful AA will actually result.

Despite the differences in the details of the information requirements for
different AA systems, at the agent design stage we should not be concerned
with details. Rather, the aim should be to provide a solid base for as wide a
range as possible of AA implementations. The guidelines aim to encourage
the design of agents that provide a solid base for implementations of AA. The
precise nature of that solid base will somewhat depend on whether software
or a human is performing R. This, in turn, means that some consideration
needs to be given, at agent design time, to whether a human or software will
perform R.

4.1.3 Guideline Evaluation

The guidelines capture our experiences designing, implementing and work-
ing with AA systems. Two complete, very different, AA systems have been
implemented and evaluated as described in Chapters 5 and 6. Both systems
have been extensively evaluated and our experiences with the AA carefully
analysed. Furthermore, analysis of existing AA literature has been a sig-
nificant influence on the development of the guidelines. Evaluation of the
effectiveness of the guidelines is performed in Chapter 7 by evaluating the
impact of following and violating the guidelines on the system designs.

4.2 Building Agents For Adjustable Autonomy Systems

The guidelines are divided into two groups. The first group of guidelines
are related to Z services, i.e., those services providing information to R.
The second group of guidelines are related to A services, i.e., those services
implementing R decisions. The Z service guidelines are:

e Explicit Information Guideline

e Software Engineering Guideline

4.3. T Services 63

e Design Information Guideline
The A service guidelines are:

e Deterministic Execution Guideline

Explicit Behaviour Guideline

Building Blocks Guideline

No Extra Mechanisms Guideline

Design Expecting Failures Guideline

4.3 7 Services

AA Information services provide the raw information which Z will present
to R. Whatever information Z services do not provide about the state and
intentions of the agent cannot be used in the reasoning. Since R is obviously
limited to reasoning about things it knows about, the Z services limit R and
hence the AA in general. The details of the precise information needed for
R (and hence the precise services required) vary according to the particular
application. Further, the form required for the information depends on
whether a human or software is doing R.

Agent designs differ in the way that information is represented in the
agent and how easily it can be extracted in an understandable (to R) man-
ner. Whether the 7 services are simple, e.g., just providing access to partic-
ular parts of the agent’s reasoning, or very complex, e.g., requiring complex
algorithms to extract information from the agent, depends on the design of
the agent. The key point is that it will be harder to extract information
from some types of agents than from others. AA implementations will be
easier and more likely to be successful if it is easy to extract relevant infor-
mation from the agents in the system. The Z service guidelines presented
below aim to guide designers to create agents where as much useful, under-
standable information as possible can be gathered by simple inspection of
the data structures of a running agent. The guidelines try to avoid the need
for complex algorithms to extract useful information from a running agent.

We propose three guidelines for designing agents which will lead to easy
to build Z:

e Ezxplicit Information Guideline : Represent the agent’s reasoning pro-
cess and reasoning state explicitly and in a format easily translatable
to the format that will be used by R.

64 4. Guidelines for Building Agents for Adjustable Autonomy Systems

o Software Engineering Guideline : Follow good software engineering
practices in agent design to make it easier to build AA.

e Design Information Guideline : Represent information that explains
design decisions implicit in the reasoning process, regardless of whether
or not it is needed for agent reasoning.

In the following sections we describe and motivate each of the Z service
guidelines in detail.

Explicit Information Guideline

The Explicit Information Guideline recommends that all information used,
by an agent when reasoning be explicitly represented in that agent. Goals
that are explicitly represented in the agent can be easily extracted and
clearly show what the agent is trying to achieve. Similarly, an explicitly
represented world model can be more easily extracted than an implicitly
represented one and gives R insights into how the agent sees the world.

More subtlty, the mechanism for performing the actual reasoning should
be explicit and intelligible (Goel et al. 1996). If the action selection process
is a simple, clear, explicit process Z services will more easily be able to
extract useful information. A simple process requires less translation and
inference to be done to get the reasoning state into a useful format for R
than a complex process containing many implicit assumptions.

To see how the design of an agent affects how easily information can
be extracted from it, consider the following two architectures. Agents can
be built from simple, reactive behaviours that produce complex, apparently
goal-directed behaviour when immersed in a complex environment (Brooks
19914, Kelso 1995). When an observer looks at the run-time data structures
of such an agent they will not find the goals it sees the agent pursuing — those
goals are implicitly represented. Because the goals are implicitly represented
either 7 has to try to infer those goals or R has to reason without a clear
idea of what the agent is trying to achieve. Conversely, an agent architecture
like PRS (Ingrand et al. 1992, Georgeff & Lansky 1987) has intentions and
plans explicitly represented. Looking at the data structures of a running
PRS agent would easily give an observer a good idea of what the agent is
doing without requiring any complex reasoning. We contend that it is easier
to build Z, and hence AA, for the latter rather than the former agent type.

More than just having information represented explicitly, the Explicit In-
formation Guideline recommends having information represented in a way

4.3. T Services 65

that is most easily translatable to a form understandable by the entity per-
forming R. In an AA system, a translation between the representation of
the agent and that of the R must be performed (usually by software) — the
simpler that translation the better. The data representation used by the R
will largely depend on whether a human or software is doing the reasoning.
If software is doing the reasoning, formality will be required, but if a human
is doing the reasoning, information needs to be represented in a format a
person can understand. Some translations are trivial, e.g., Australian and
American engineers need to translate between metric and imperial units
when sending each other designs. But, some translations are far more com-
plex, for example, translating a plan into a corresponding set of reactive
rules or vice versa may be very complex and information may be lost or
mis-interpreted. Hence, an agent design that allows simple translations to
be done to the format required by R should imply that better “quality”
information is given to R.

Software Engineering Guideline

The Software Engineering Guideline says that following established software
engineering practices when designing agents leads to an easier AA imple-
mentation task. The important factor is not the coding practices software
engineering advocates, rather it is the important characteristics of software
built according to software engineering guidelines. Many software engineer-
ing practices are specifically designed to make the resulting system easier
to understand and modify (Sommerville 1996). It is especially this ease of
understanding that is important when trying to implement AA. Good soft-
ware engineering will make the process of translating agent information into
a format usable by R easier because the information is already well struc-
tured and clear, with important information explicit in the design. Well
engineered programs are self-documenting and easy to understand (Booch
1994). Furthermore, well engineered programs are easy to change because
modules are well separated and the relationships between them are clear
(Eder et al. 1992). Other principles like good naming conventions, use of
named constants and a simple design are also important. Each of these as-
pects provides something that allows an observer to better and more easily
understand how the agent works and hence why it is doing what it doing
and what it will do next.

In some ways AA can be seen as taking the idea of rapid prototyping soft-
ware engineering to an extreme — i.e., AA is (re-)engineering software while
it runs. Understanding the running of a piece of software is a prerequisite

66 4. Guidelines for Building Agents for Adjustable Autonomy Systems

of knowing how to change it, regardless of whether or not the software is
running or not. The same thought process will be used to make a change to
a piece of software regardless of whether or not it is running. Given the sim-
ilarity between software engineering and AA, it is not surprising, therefore,
that well software engineered agent specifications are easier to understand
and change at run-time and are therefore better than those that are poorly
engineered.

It might be argued that this guideline is obvious and superfluous — clearly
well software engineered agents are better than badly engineered ones. How-
ever, there are two important reasons for including it here anyway. Firstly,
good software engineering gives more to AA development than to other
software development because we actually utilize the good engineering at
run-time instead of just at design-time, i.e., a good design makes the job
of understanding the agent’s behaviour at runtime easier. Secondly, often
good engineering is traded off against other concerns, such as efficiency,
when designing any piece of software. Such tradeoffs are perfectly reason-
able provided that they are based on solid reasoning. This guideline points
out to designers that the cost of trading off good engineering for some other
concern is higher when building agents for AA systems than for some other
types of software.

Design Information Guideline

The Design Information Guideline recommends representing as much design
information as possible explicitly in an agent, regardless of whether or not
that information is required for the agent’s reasoning. Information such
as assumptions, approximations, limitations, etc. should be represented so
that R can understand characteristics of the agent’s behaviour. This type
of information is critically important when R is trying to determine whether
changing decision making responsibilities from one agent to another could
result in better system performance (Dorais & Kortenkamp 2001). For ex-
ample, R may be able to change decision making responsibility for some task
from one agent to another when it sees that the currently responsible agent’s
assumptions are violated by the current situation. Getting relevant design
information, if it is not explicitly represented in the agent, can be extremely
difficult. So, for R to come to a good decision about reassigning decision
making control if the assumptions inherent in the agent’s design were lost in
some designer’s head may be very difficult. Effectively that requires Z to be
able to look at a specification and determine that specification’s strengths
and weaknesses.

4.4. AA Actuation Services 67

Representing dependencies between different parts of an agent’s reason-
ing is an important part of representing design decisions. All dependencies
should be clear and explicit. For example, the design of one behaviour in a
behaviour-based architecture might rely on another behaviour and the ab-
sence of the other behaviour causes it to fail. If the relationship between
the behaviours is not seen at run-time, R might not fully realize the impli-
cations of a change to either behaviour. Hence, changes might be made to
one behaviour with unexpected effects on the agent’s overall behaviour.

For example, imagine the classic subsumption robot example: a wall
following robot (Mataric 1994). In its simplest incarnation such a robot has
two independent motors for wheels on either side of the robot and three
behaviours controlling its actions. One behaviour, the forward behaviour,
makes the robot go forward by providing equal current to both motors. A
second behaviour, the left wall behaviour makes the robot go right by adding
an amount of current to the left motor proportional to the detected distance
to the left wall. A corresponding behaviour exists for the right wall. A naive
user wanting to stop a robot, say, stuck in a corner might try stopping the
forward behaviour expecting it to stop the robots forward movement. But
seeing as though the left wall and right wall behaviours will still provide
current to the motors, if walls are detected to the left or right, the robot
will continue moving. The user makes the mistake because the behaviours
appear independent though they are really very dependent on each other.
Because the dependencies are not explicitly represented it may be difficult
to understand those dependencies.

To summarise, the Design Information Guideline advocates including
design information regardless of whether or not it is required for agent rea-
soning. The information required includes capabilities and limitations and
dependencies between modules. The design information is useful for R and
is difficult to reconstruct if not represented explicitly.

4.4 AA Actuation Services

In its most concrete form, a change in autonomy means a change in the data
structures of an agent. A services implement autonomy changes decided
on by R by changing the internal data structures of agents. Only those
autonomy changes that can be realized by A services can be decided on by
R. Hence, the limitations of the A services strictly limit R and the resulting
AA. In theory, if an agent allows unlimited access to its internal structure,
A could force it to do anything that the agent is capable of, therefore the
A services would be powerful enough to do anything. So, if any part of

68 4. Guidelines for Building Agents for Adjustable Autonomy Systems

the agent’s internal structure can be changed online then the autonomy and
behaviour of the agent could be changed arbitrarily online. However, the
nature of the agent’s representation of its behaviour affects the ease with
which an outside entity can dynamically alter the agent’s behaviour. That
is, it will be harder to make appropriate changes to some agents at run-time
than it will be to change others.

For example, imagine the difficulty of “re-programming” the ants build-
ing an ant hill to build wide flat hills instead of tall and skinny ones. The
new plan would need to be mapped to individual ants and simple pheromone
based rules designed — possible (assuming we could re-design ants) but far
from trivial.

Thus, an important aim when building A is to make the changes required
to the internal structures of the agent to affect a particular autonomy change
as simple as possible, therefore making the AA as easy to implement as
possible.

Further, the more smoothly the agent incorporates any autonomy changes
decided on by R into its ongoing behaviour, the better the behaviour of the
overall system. For example, imagine a team of (human) furniture movers
carrying a piano up a staircase. If their foreman yells out from another room
that one mover is being re-assigned to another job the reassigned mover will
(hopefully) not simply let go of the piano and walk off (leaving his col-
leagues squashed under a piano at the bottom of the stairs) but will make
the piano safe before moving on. Thus, the behaviour of the overall “fur-
niture moving” system would be successful because the reassigned worker
switches between tasks in a reasonable manner. The same idea applies to AA
where smooth autonomy changes mean better system behaviour. Further, if
the agent could exhibit similar “common sense” behaviour of the furniture
movers, R’s task would be simpler because changes can be made without
(unnecessary) consideration given to transitions of the agent’s behaviour.

These guidelines summarise design strategies for building agents whose
behaviour can be most flexibly and easily changed online:

o Deterministic Execution Guideline : Make the reasoning process of
the agent as deterministic, hence predictable, as possible.

e FExplicit Behaviour Guideline : Represent behaviour as explicitly as
possible and in a format that requires the least translation from that
used by R.

e Building Blocks Guideline : Divide overall behaviour into small pieces
that are related to each other in a very semantically clear and simple

4.4. AA Actuation Services 69

way.

e No Extra Mechanisms Guideline : A should not invoke mechanisms
other than the normal reasoning mechanisms used by the agents.

e Design Fxpecting Failures Guideline : The agent should be designed
so that if any part of it fails at any time its behaviour will degrade
gracefully.

In the following we motivate each of the A service guidelines in more
detail.

Deterministic Execution Guideline

The Deterministic Execution Guideline says that the workings of the decision
making system should be predictable so that it is possible to work out what
the agent will do next (within the bounds of the uncertainty in the agent’s
environment). R needs to know what an agent will do in order to decide
whether autonomy changes are required. For example, if an agent will make
appropriate decisions autonomously there is no need for authority to be
withdrawn. Furthermore, if agent decision making is predictable R can
work out what will happen when particular autonomy changes are made,
allowing it to make autonomy decisions confidently and decisively (Rajan
et al. 2000). For example, if R “knows” that an agent will behave “sensibly”
when authority to pursue some goal is revoked it can confidently revoke that
authority (if for some reason revoking that authority is in the best interests
of the overall system.)

The Deterministic Execution Guideline somewhat reflects the old show
business adage “never work with children or animals”. Because the actions
of children and animals are not always predictable, directors and actors have
a hard time making sure a performance comes out as planned. Conversely,
a car is a good example of how deterministic execution makes it easy for
an outside entity to have good control. Although most drivers do not un-
derstand the details of the workings of the car, the car’s actions are very
predictable and the actions the driver takes have very predictable effects on
the car, so drivers can safely (usually) drive. The point is that predictability,
stemming from determinism, leads to better control over an agent.

Explicit Behaviour Guideline

The first step to implementing an autonomy change decided on by R is to
determine what changes to the internal data structures of the agents need

70 4. Guidelines for Building Agents for Adjustable Autonomy Systems

to be made in order to get the desired effect. This guideline builds on the
observation that things that are explicit are easier to change. Getting a
desired effect requires a translation or mapping from the “language” of the
requested change to the “language” of the agent. The more similar these
two “languages” are, the easier the mapping. For example, at the extreme,
a translation from an explicit natural representation to a connectionist rep-
resentation where much behaviour is emergent, is likely to be extremely
difficult. Concepts that are represented explicitly in one “language” but
implicitly in the other, are likely to be problematic for mapping, and hence,
implementing AA is likely to be difficult.

A good example of the usefulness of explicit representation of behaviour
is the ease with which explicitly represented behaviour can be changed as
compared to implicitly represented behaviour in a human society. (The
following example ignores the “human aspect” of the rules and focuses just
on the basic mechanisms for change.) Laws encode explicitly rules by which
human societies must abide. When circumstances change, laws are changed
and society easily changes over to the new system. Driving on the left or
right hand side of the road is a good example of this, as is a change to the
tax system. In both cases society (relatively) easily and quickly changes over
to a different set of rules. On the other hand, social conventions are implicit
in a society. These conventions change much more slowly and erratically
than the explicitly represented rules. For example, it would be fair to say
that society’s behaviour with respect to, for example, woman’s rights or gay
rights, has changed much more slowly and with much more difficultly than
the tax system. The aspects of behaviour that have changed most slowly
are those that cannot be enforced by anti-discrimination laws. Although,
there are other reasons for the slow change in behaviour it is at least in part
because there is no explicit rule regarding, for example, attitudes that can
be easily changed.

Hence, explicitly represented behaviour makes the task of changing the
behaviour of an agent easier because it makes it easier to locate and reason
about the parts of the behaviour that need to be changed.

Building Blocks Guideline

The Building Blocks Guideline recommends aiming for agent designs where
overall behaviour is built up from small pieces combined via some, preferably
formal, well understood mechanism. The pieces are like building blocks
that can be put together in different ways to achieve different results. It is
important that it is clear how the building blocks fit together and what the

4.4. AA Actuation Services 71

effect of a certain configuration of blocks will be. The smaller the building
blocks the more flexibly they can be put together leading to greater flexibility
in the agent’s behaviour. Hence, the smaller the building blocks the more
different behaviours can be achieved without having to delve into the details
of the building blocks. Furthermore, a building block architecture makes it
easier to isolate some aspect of the agent’s behaviour because it is more
likely to be encapsulated in a single “block” than spread out over the whole
architecture.!

This guideline assumes that the mechanisms connecting building blocks
are easier to work with than those internal to the building blocks. It further
assumes that building blocks are easier to configure in different ways than
monolithic structures.

Pragmatically, there is a limit to the changes that can be made to be-
haviour at run-time, e.g., complex equations controlling a non-rigid robot
arm (Chang & Chen 1998) might be too complicated to change safely online.
The size of the building blocks should be equivalent to the smallest detail
of the agent’s behaviour that might change at run-time. This means that
configurations of building blocks can be changed but the building blocks can
be “black boxes”.

The Building Blocks Guideline builds on the software engineering prin-
ciple of high cohesion and low coupling which advocates designs where indi-
vidual software modules have a clear, single purpose and are as loosely con-
nected to other parts of the system as possible (Booch 1994, pg. 137). For
software engineering, this principle simplifies the overall design and makes
it easier to change individual modules. As it does for software engineering,
high cohesion and low coupling make it simpler to put building blocks to-
gether. This simplicity is critically important if we want to combine the
modules at runtime. Clean, high level, flexible interconnections between
behavioural building blocks makes it easier to add and remove blocks.

Architectures in which different aspects of behaviour are tightly cou-
pled, like neural networks, are more complex to change than loosely coupled
ones because the effect of a change has potentially more complicated effects
in tightly coupled agents. Architectures like neural networks have all the
agent’s behaviour coalesced into a single network, while other, for example,
behaviour based architectures spread the overall behaviour out over a num-
ber of smaller modules connected together via a well known mechanism. We
contend that the latter architecture is better for AA because the behaviours

! Though some aspects of behaviour might be due to interactions between building
blocks.

72 4. Guidelines for Building Agents for Adjustable Autonomy Systems

can be switched in and out to produce required overall behaviour more eas-
ily than changing the weightings on neural network nodes to have the same
effect.

Hence, this guideline advocates using architectures where behaviour is
made up from loosely coupled modules, connected via a well defined mecha-
nism because in such architectures it is easier to change an agent’s behaviour.

No Extra Mechanisms Guideline

The No Extra Mechanisms Guideline says that no special purpose mecha-
nisms should be built solely to implement behaviour requested by R (Blum-
berg 1997b). For example, adding the capability for a neural network based
agent to use simple rules just to implement R decisions is inadvisable. The
rationale for the inclusion of this guideline is mainly pragmatic, as complex-
ity and expense increase if extra mechanisms are used. If extra mechanisms
are used, the overall system becomes more complex hence more difficult to
design, build, verify, test, more prone to errors, etc. Furthermore, the AA
is also more complex because the architecture of the agent is more complex.
In any case, the need for extra reasoning mechanisms may indicate a design
flaw in the original agents — why should the AA need to ask something of the
agent the agent cannot do with its “normal” reasoning mechanisms? Hence,
this guideline could be thought of as a guide to errors in a design rather
than pointing out the way something should be done.

Notice that the No Extra Mechanisms Guideline is not in conflict with
the Design Information Guideline. The former says not to build new rea-
soning mechanisms while the latter says that more information should be
built in than is strictly necessary. Hence, although one guideline says “do
not do extra” and the other says “more is needed” they are referring to
quite different aspects of a design and, as such, are not in conflict. A good
example of the distinction is an extension that was required to a PRS based
AA system to show what potential plans that will be used to handle possi-
ble upcoming situations. No change in the basic reasoning mechanism was
required but extensions were needed for the agent to explain what it will
do next (Musliner & Krebsbach 1999). The extensions did not add to the
complexity of the agent design, which did not change, but were required to
make R'’s task less uncertain by letting it know what the agent will do next.

4.4. AA Actuation Services 73

Design Expecting Failures Guideline

The Design Expecting Failures Guideline advocates designing an agent to be
tolerant to failures occurring in any aspect of its behaviour at any time. The
reason for this guideline is that often the effect of AA on an agent is the same
as if an aspect of the agent’s behaviour had failed unexpectedly. When AA
reduces an agent’s autonomy (e.g., takes away responsibility or authority)
the effect is similar to the effect of the component pursuing the goal failing.
In one case the agent suddenly has no authority to do something it did
have authority to do while in the other case it suddenly could not achieve
something it thought it could. For example, consider an agent with a certain
sequence of sub-goals planned to achieve some top-level goal. The effect of
the AA suddenly withdrawing an agent’s authority to pursue a certain sub-
goal on the agent’s overall plan is effectively the same as the sub-goal failing
to be achieved. Hence, if the agent has mechanisms to deal with its own
failure the same mechanisms may well deal with changing autonomy.

As with the Software Engineering Guideline, this guideline should prob-
ably be adhered to for all types of agents, even those not likely to be used
in AA systems. However, the rationale for including it is the same as that
for the Software Engineering Guideline, i.e., the guideline encourages agent
features that provide extra benefit to AA, hence tradeoffs causing violations
of this guideline should be taken even more seriously than they normally
would be.

Further, designing for failure builds robustness into the agent that will
give more flexibility to the AA at run-time. If the agent is capable of dealing
with problems in some of its components then R and A can be less “careful”
when making autonomy changes, instead relying on the agent to deal with
minor details, via its failure mechanisms. That is, an unexpected change to
one of its components can be dealt with by the agent as if it were a failure. If
the agent has good failure handling then A needs to “worry” less that some
change it makes to the agent will cause an overall failure, clearly making A
easier to implement.

From an anthropomorphic perspective the Design Expecting Failures
Guideline goes some way to providing the “common sense” of an agent. In
other words, an agent’s ability to react “intelligently” to some changing au-
thority or responsibility via appropriate reactions can be seen by an observer
as common sense. We contend that the flexible, robust handling of changes
to behaviour will result in behaviour that gives the impression of “common
sense” and make the functioning of the overall system better in the face
of autonomy changes. For example, an agent for controlling an unmanned

74 4. Guidelines for Building Agents for Adjustable Autonomy Systems

aircraft might be designed so that if any part of its mission failed it would
return to its home airport. When an AA system removed its authority to
enter some airspace rendering the mission impossible the aircraft will return
to its airport — a “common-sensical” reaction.

Thus, the Design Expecting Failures Guideline advocates designing an
agent as if any part of it could fail at any time because the resulting agent
features make the agent and system behaviour more reasonable when au-
tonomy is changed.

4.5 Summary

The guidelines presented above give recommendations for the design of in-
telligent agents to be used in AA systems. Each guideline focuses on issues
that are important to consider when designing agents to ensure that AA will
be easy to design and implement. Clearly, not all guidelines can be followed
at all times, but at least the guidelines give a designer an opportunity to
make informed tradeoffs when designing agents.

Each guideline is designed to encourage the development of specific fea-
tures of an agent which, we contend, make some aspect of the task of build-
ing AA simpler. Table 4.1 summarises the intended agent features for each
guideline and why those features are useful for AA.

In the following chapters two systems, developed according to the above
principles, are presented and evaluated. An evaluation of the guidelines,
using the presented implementations is given in Chapter 7.

4.5. Summary

75

Guideline

‘ Agent Feature

‘ AA Usage

z

Explicit Infor-
mation Guide-
line

Explicit representation of
important information

Reasoning explicitly repre-
sented

Easy extraction of impor-
tant information

Easy to understand what
agent is doing

Software Engi-
neering Guide-
line

Software easy to under-
stand

Software easy to change

Easy for Z to understand
workings

Easy for A to change soft-
ware

haviour Guide-
line

agent’s behaviour explic-
itly represented

Design In- | Capabilities, limitations, | Provides useful informa-
formation dependencies, etc. explic- | tion for R
Guideline itly represented
\ A
Deterministic Predictable execution Ability to know what
Execution agent will do next
Guideline
Ability to know the effects
of changes
Explicit Be- | Important aspects of | Agent behaviour easier to

change

Easier to map from re-
quired change to actual
change

Building Modular, semantically | Flexibility at runtime
Blocks Guide- | clear design
line
Easier to isolate data
structures responsible for
behaviour
No Extra | None AA does not increase
Mechanisms agent complexity
Guideline
Design Expect- | Robust failure handling | A needs to consider less
ing Failures | mechanisms detail
Guideline

Tab. 4.1: Summary of the agent features intended to be encouraged by
each guideline and why those features are useful to AA.

76 4. Guidelines for Building Agents for Adjustable Autonomy Systems

5. ADJUSTABLE AUTONOMY FOR INTERACTIVE
SIMULATIONS

Virtual environments, inhabited by intelligent actors are emerging as a useful
tool with a variety of purposes. Those uses include training (Tambe et al.
1995, Dorner et al. 2000, Cohen et al. 1989), testing (Craft & Karr 1996,
Pew & Mavor 1998) and entertainment (Doyle & Hayes-Roth 1998, Reynolds
1995). Intelligent actors often play the roles of humans or other intelligent
entities in the virtual environment. Functionality which allows a user to
have run-time control over the behaviour of an actor is useful because it
gives the user more control over the progress of the simulation. Adjustable
Autonomy (AA) is one way of providing a user with that run-time control
of an actor in a simulation. Bringing AA into interactive simulations means
that the behaviour of the actor is not fixzed when the simulation begins. This
property opens up new, exciting possibilities for developing and using actors,
as well as solving some existing problems.

In this chapter we describe the problem of building actors which support
the straightforward development of powerful, flexible AA systems. We con-
tend that following the guidelines from Chapter 4 when designing actors will
make it straightforward to build those Z and A interfaces. We describe a
specific actor development tool called EASE (End-user Actor Specification
Environment). EASE supports a type of Directed AA, i.e., the autonomy
reasoning (R) is performed by a human while the AA information collection
task (Z) and the realization of autonomy changes (A) are performed by soft-
ware. An EASE actor is not “aware” that its autonomy is being changed,
the user simply makes decisions about appropriate behaviour and enforces
the effects of those decisions on the internal data structures of the actor.

The focus of this chapter is on the features of the EASE actor design
that support the development of effective 7 and A interfaces. Prototype
interfaces have been developed and are presented to illustrate the utility of
the AA services provided by an EASE actor. EASE was designed accord-
ing to the guidelines from Chapter 4, hence an evaluation of the simplicity
with which AA interfaces can be developed serves as an evaluation of the
guidelines.

78 5. Adjustable Autonomy for Interactive Simulations

The remainder of this chapter is organised as follows. Section 5.1 in-
troduces the domain of interactive simulations and, in particular, the two
simulation environments in which EASE was tested. Section 5.2 looks at the
specific requirements that such simulation environments pose for AA. Sec-
tions 5.3 through 5.8 look at the design and implementation of EASE. The
description highlights the AA aspects of the system and especially looks at
the influence of the guidelines on the design. Section 5.7 gives an extended
example of the use of the AA in EASE for making run-time changes to the
behaviour of a simulated combat aircraft pilot. The chapter concludes by
looking at some similar systems for developing simulated actors.

5.1 What are Interactive Simulations?

For the purposes of this work an interactive simulation is a simulation of
some virtual environment where intelligent software entities and humans in-
teract. Simulations of virtual environments have a variety of different uses.
A common use is for testing and analysing the properties of some complex
system before detailed design of the system is done or physical prototypes
are built. For example, before going through the long, expensive process
of designing and building a new military aircraft, designers can evaluate
the anticipated abilities of the new aircraft in a simulated theatre of war to
determine desirable properties of the new aircraft (Craft & Karr 1996). A
variety of popular computer games, such as Creatures (Grand & Cliff 1998),
EA Sports NHL (EASports 2000) and The Sims (Smith 2000) rely on having
intelligent characters inhabiting an interesting virtual environment. Virtual
environments are also used as a cheap, effective training aid. Flight simu-
lators are one of the most common and cost effective virtual environment
training systems (Saab 1998), but many other types of training, including
disaster management training for emergency services personal can be ef-
fectively performed with an interactive simulation (Tadokoro et al. 2000,
Granlund 1997).

In interactive simulations it is necessary to not only simulate physical
artifacts but also the intelligent entities, usually humans, that inhabit the
environment. The intelligent entities in an interactive simulation are called
actors (Banks & Stytz 1999, Wavish & Connah 1997).! The actors are an

! Wavish & Connah (1997) uses the term actor when referring to agents playing roles
of humans because no effort is made to make the agent brain work in the same way as a
human brain, rather, like a human movie actor the agent tries to give the illusion of being
something they are not.

5.1. What are Interactive Simulations? 79

integral part of the simulation and the believability of their behaviour is
often essential to the usefulness of the simulation (Tambe et al. 1995).

Over the years many approaches have been taken to creating intelligent
actors for simulation environments, e.g., (Blumberg & Galyean 1995, Wav-
ish & Connah 1997, Pew & Mavor 1998, Hayes-Roth 1995, Fischer et al.
1994, Rosenbloom et al. 1991). A variety of very different research themes
have been pursued — ranging from how to build human like characters (Burt
1998) to dealing with resource constraints (Ogasawara 1993) to easing en-
gineering problems (Bryson & McGongile 1998) to empowering end-users
to specify an actor’s behaviour (Travers 1996, MacKenzie 1996) to getting
actors to learn (Davidson 1998). The current state of the art allows intel-
ligent actors with a wide range of behaviour to be built with a reasonable
amount of effort. However, although it is often possible to get intelligent
actors to perform as we would like, achieving the required behaviour can be
a time-consuming and costly process.

AA for Streamlining Actor Life-Cycle

A feature common to much actor research is the actor’s life-cycle (see Figure
5.1). First, an actor expert, i.e., an expert in developing actors, probably
an AT researcher or professional, specifies the behaviour of the actor using
some language. Then, the actor specification is used by a domain expert
in some simulation environment. The domain expert is the person who
is actually interested in the results of the simulation, e.g., trainers, game
players or analysts (Pew & Mavor 1998, pg. 11). If the actor does not
perform as the domain expert requires, the simulation is stopped. The
required behaviour changes are communicated to the actor expert who makes
appropriate specification changes and delivers the actor back to the domain
expert.

The need to stop the simulation when actor behaviour is not as de-
sired, call in the actor experts and restart the simulation is a costly, time-
consuming and error prone process. AA provides a mechanism to interac-
tively change the actor’s behaviour. AA provides the functionality which
allows a user to take over aspects of an actor’s decision making, without
having to take over permanent or complete control. The user’s decisions
about how the actor should pursue some goal or what goals it should pursue
are realized via changes to the actor’s internal data structures. For example,
a user might assume decision making responsibility for a particular goal the
agent is not acting appropriately towards or assign to the agent goals they
are currently pursuing.

80 5. Adjustable Autonomy for Interactive Simulations

Al Expert Specifies Actor Behavior

Simulation
Started

Domain Expert Decideg

Simulation Change is Required
Stopped

Fig. 5.1: Standard life cycle of an actor. FEach time the domain expert
requires a change in behaviour the simulation is stopped and an
actor expert consulted to make the change.

AA can be leveraged as the basis for a radically different, simpler and
cheaper actor life-cycle, as shown in Figure 5.2. In this life-cycle, like the
previous one, an actor expert specifies the behaviour of the actor and the
simulation is started. However, if the domain expert decides that the actor’s
behaviour should be changed they can simply change it online, themselves —
without even stopping the simulation. Such a life-cycle promises significant
savings in time and cost, thereby making interactive simulations a more
useful tool.

Furthermore, with such a life-cycle in place, aspects of the actor speci-
fication that are unusually difficult or time-consuming to create can be left
out of the specification and the domain expert relied on to “assist” the actor
through the “hard to handle” situations when they occur.

The idea of using A A to increase the utility of simulation environments is
not a new one. As early as 1995, Blumberg & Galyean (1995) had noted the
need for such functionality and implemented a system which allowed humans
to manipulate the behaviour of actors in interactive theatre applications (see
also Section 3.3.2).

Notice that the use of AA in interactive simulations leverages the same
basic features of AA as are leveraged in other domains, but for interactive
simulations AA is a useful technology rather than an essential one. That
is, we could stop the simulation and make the required changes but this

5.1. What are Interactive Simulations? 81

Simulation
User Specifies Actor Started

User Specifies Change Change Regired

Fig. 5.2: Actor life-cycle for an EASE actor using AA to change actor
behaviour online. Notice that the cycle is much simpler than the
one shown in Figure 5.1.

would be a tiresome process — AA allows a faster process. In other domains,
e.g., for control of manned spacecraft, intelligent systems will simply not be
deployed without AA technology, i.e., for those systems AA is an essential
technology.

Defining AA for Interactive Simulations

AA for interactive simulations is a special case of AA as defined in Section
2.1. In interactive simulation environments, AA allows a human to dynam-
ically take over decision-making responsibilities from an actor when they so
desire. In particular, there are only two intelligent entities in an AA system
for interactive simulations, the actor, denoted a, and the user, denoted w.
Potentially there could be more than one actor, but each actor-user pair can
be treated as a separate AA system, so we need to concern ourselves only
with the simpler case. The user is strictly in command of the simulation,
hence the user’s authority set, C,,, will be constant throughout the simula-
tion. However, the actor’s authority set, C,, can change, provided that at
all times C, C C,,.

For the purposes of interactive simulation we assume that all the in-
structions that the user gives will be accepted by the actor. For example,
a simulated pilot will not refuse to, say, attack some target when ordered
to by the user. However, sometimes conflicts with higher priority goals

82 5. Adjustable Autonomy for Interactive Simulations

may mean concrete actions are not taken by the actor towards an assigned
goal, i.e., actions toward the newly assigned goal might conflict with higher
priority goals so no actions are taken to achieve it.

In terms of the definitions from Chapter 2, the system will transfer
decision-making responsibility from G, to G, when the user takes over de-
cision making for a goal. Conversely, goals move from G, to G, when the
human gives control to the actor. Notice, a request to the actor to take on
an additional goal should be granted only if g € A, i.e., the actor should
not be asked to do something of which it is not capable.

The transfer of decision-making responsibility will not always be explicit
and, in particular, the actor may not even be “aware” it has lost or gained
decision making control over some goal.

Z must provide information to the user about the state of the actor’s
reasoning. This information is extracted via the Z services provided by the
actor. A changes the behaviour of the actor according to the decisions made
by the user. The decisions are realised via changes to the actor’s internal
structures, accessed via the A services. Because R is being performed by a
human, human-computer interfaces need to interface between Z, A and the
user.

The results of the user’s decision making, for the goals for which they
have taken over decision making control, are realized directly by changes
to the actor’s internal data structures. That is, when the user has decision
making control, they make decisions and realize the effects of their decisions
on the actor by changing the actor’s internal data structures. The user
is responsible for both R and decision making, i.e., when the user decides
that a change will be made to the actor, they are (explicitly or implicitly)
deciding that for some goal the actor’s reasoning is inappropriate and that
they should assume decision making responsibility. For example, a user
might decide that an actor’s decision making for acquiring materials to build
a house was not going well and might assume decision making for that goal
— this is performing R. A transfers decision-making responsibility for the
acquiring materials to build a house goal from the actor to the user. Then,
the user fulfills their responsibility to the goal by deciding the best thing to
do would be to go to the forest and cut down trees. The user might decide
that the sub-goal of cutting down trees in the forest should be assigned
back to the actor. That is, A is used to give decision-making responsibility
for the destruction of the forest to the actor. Thus, the user has assumed
decision-making responsibility for the high level goal, decided on a course of
action and forced the actor to decide on the details of that course of action.

5.1. What are Interactive Simulations? 83

5.1.1 Evaluation Simulation Environments

EASE has been evaluated by creating and using actors for two simulation
environments: air-combat simulation and RoboCup football. Additional
projects using EASE to provide the intelligence and AA functionality are
being undertaken at Orebro Universitet and the Swedish military. Students
at Orebro Universitet are applying EASE to a disaster management simula-
tion and the simulation experts at a Swedish military college are evaluating
EASE for use in a command and control simulator.

RoboCup Simulation

The first of the simulation environments used was the RoboCup football sim-
ulator (Noda 1995). In RoboCup actors are players in a simulated football
match. RoboCup players need to react quickly, yet strategically in a highly
dynamic and very complex environment. RoboCup simulation presents chal-
lenges to actors such as uncertain and incomplete sensing and acting, limited
communication, a complex, dynamic environment, hostile, intelligent oppo-
nents and a need for team coordination (Kitano et al. 1997).

The RoboCup simulator uses a client-server architecture where each
client represents one player in the football game. Each player can only com-
municate with its team-mates via a strictly limited communication channel
provided by the server.? The players can take one of three actions, dash, kick
or turn, during each simulator cycle. The player can also turn its neck to see
a different part of the world. Sensing and acting cycles are asynchronous, so
the player must reason about the effects of its action on the world because
it will not always get sensor input about the changes caused by previous
actions before selecting its next action. Players benefit from careful strate-
gic analysis of game situations but the short time between actions (100ms
in World Cup competitions) means that any deliberation either needs to be
very fast or performed over a number of cycles.

RoboCup players are generally quite complex and need to act in an en-
vironment that presents a very wide variety of scenarios. When developing
players, two types of tasks take a large amount of a developer’s time. The
first is debugging player behaviour. Re-creating problems and determin-
ing their cause takes a significant amount of developer’s time and, hence,
has attracted a considerable amount of attention from RoboCup developers,
e.g. Stone et al. (2000) and Takahashi (2000). Finding and correcting prob-

2 We actually do not use this communication channel at all, so our players do not
communicate.

84 5. Adjustable Autonomy for Interactive Simulations

Fig. 5.3: Snapshot of the RoboCup simulation monitor. The larger half
light and half dark circles represent the 11 players of each team.
The lighter side of the player shows the direction it is facing.
In the bottom left hand corner is a record of the commands the
automatic referee has sent to the players. In the bottom right
hand corner is a record of the commands sent by the players to
the server.

5.1. What are Interactive Simulations? 85

lems with complex actors in complex environments is a notoriously difficult
task (Ndumu et al. 1998). Strange behaviour by a player may be due to
strange timing between the server and player, may be due to errors in a
specification, may be due to uncertainty in actions or sensing or may be a
result of an unexpected situation which the players mis-interpret.

AA can speed up the debugging process in two ways. Firstly, presenting
the state of the actor’s reasoning to the developer can make the process of
forming a hypothesis about the reason for unexpected behaviour faster and
more accurate. The 7 part of the AA provides the information the user needs
to form hypotheses about the cause of a problem. Secondly, AA speeds up
the process of testing hypotheses by allowing the user to interactively make
changes to the specification of the actor and immediately see the effects.

Debugging requires creativity, experimentation and freedom, using intu-
itions based on detailed design knowledge (Beizer 1990, pg. 10) — the AA
should support this. A typical debugging routine might be to observe the un-
expected actor behaviour, form some hypothesis about why the behaviour
occurred, make some change to the specification to confirm (or perhaps
deny) the hypothesis, then run the simulation with the new specification.
If no hypothesis can be formed as to the reason for the incorrect behaviour
“random” changes to the actor might be made, in the hope that the resul-
tant behaviour will provide hints to the cause of the problem. EASE speeds
up the debugging process by allowing a developer to interact with a run-
ning actor, to test hypotheses and try solutions. Anecdotally, developers of
the Headless Chickens IV RoboCup team, based on EASE, found the AA
facilities invaluable for debugging incorrect player behaviour(Scerri, Reed,
Wiren, Lonneberg & Nilsson 2001).

A second time consuming problem for RoboCup team developers is eval-
uating tactics in a variety of different game situations (e.g., corner kicks, at-
tack, defense, late in the game, etc.) against a variety of different opposition
tactics. Running hundreds of games, hoping all possible situations occur,
and observing the results is not an efficient way of meeting this aim. In such
situations, the user is trying to answer questions starting with phrases like
What would happen if ...¢ or How can I ...?. This process can be sped up
if the developers can interactively specify changes to the player’s behaviour,
allowing different things to be tried with less effort (Cremer et al. 1995a).
With AA, the user can experiment very quickly, making changes and di-
rectly seeing the results. AA capabilities allow developers to more reliably
and quickly create situations for testing, which could have a significant im-
pact on the time it takes to develop a RoboCup team.

86 5. Adjustable Autonomy for Interactive Simulations

Air-combat simulation

— Trajectories e | |

Fig. 5.4: Snapshot of the TACSI air-combat simulation. Solid lines show
the path of the different aircraft as they engage over the East
coast of Sweden. The three aircraft in the bottom right corner
are engaging the three in the top left part of the screen.

The second test bed used for evaluating EASE was TACSI (TACtical
SImulation), a beyond visual range air-to-air combat simulator developed at
Saab Aerospace (Saab 1998). Beyond visual range air combat involves highly
complex, military aircraft, fairly widely separated, relying mainly on missiles
to attack each other (Coradeschi 1997, Andersson 1995, Thorstensson 1997).
The TACSI simulator was originally developed for evaluating systems and
tactics but is now also used for pilot training, in conjunction with a “dome”
cockpit simulator and desktop units.

In TACSI, actors play the roles of the simulated pilots of both enemy

5.2. AA Requirements 87

and friendly aircraft. It is very important that the observed behaviour of
the simulated pilots is as close to the behaviour of the human pilots they are
simulating as possible (Tambe et al. 1995). Situations develop more slowly
in TACSI than in RoboCup allowing more time for the simulated pilots to
plan and execute a strategy. Because more time is available for computation,
the simulated pilots are expected to seem more intelligent than the football
players.? A simulated aircraft is a far more complex system to control than
a simulated RoboCup football playing robot, with many more degrees of
freedom and more complex constraints on dynamic behaviour. For example,
the pilot must control the aircraft’s speed, altitude, radar, missiles, etc., each
of which is complexly constrained by the abilities of the real aircraft, e.g., the
turning circle and acceleration of an aircraft are strictly limited (whereas a
RoboCup players acceleration is almost infinite and virtually independent
of the player’s current state). The most important difference between the
domains, from an actor designer’s point of view, is that a simulated pilot
will be simultaneously attending to multiple objectives while a RoboCup
player can perform acceptably well focusing on only a single objective at a
time (Scerri & Reed 1999). This is significant for AA because an actor’s
behaviour is significantly more difficult to understand through observation
if multiple objectives are being pursued simultaneously.

5.2 AA Requirements

The actor life-cycle utilizing AA set out in Section 5.1 provides a framework
from which we can determine general requirements on AA for simulations.
In this section these requirements are examined in detail and mapped to spe-
cific requirements on the AA services actors should provide. In subsequent
sections a solution, i.e., EASE, meeting the requirements is presented.

In Section 2.3, a conceptual model of AA was presented. The model has
three parts: Z supplies relevant information to R which makes autonomy
decisions that are realized by A. In simulation domains, Z and A are im-
plemented in software. Z extracts information about the state of the actor
and presents it to the user. A changes the internal data structures of the
actor in accordance with user requests for changes in behaviour. R is the
responsibility of the user because the user needs to decide when the actor’s
behaviour should be changed. Figure 5.5 shows the instantiation of the
conceptual AA model for interactive simulations.

3 We will avoid the question of whether the same would be expected in real life.

88 5. Adjustable Autonomy for Interactive Simulations

Hﬁman-Computer Interface

| A

ate Changes

Software
System

Fig. 5.5: The conceptual configuration of actor, user and AA for interactive
simulations. Z and A are implemented in software while a human
does the R. Some type of human-computer interface needs to
connect the software parts to the human reasoning.

5.2. AA Requirements 89

5.2.1 What should AA Information Do?

Recall from Section 2.1.2 that Z is responsible for eliciting and presenting
relevant information about an actor’s state for use by R. Figure 5.6 shows
the basic flow of information from the actor to the user. The user, i.e., the
entity performing R, knows what the actor should do. Z needs to help the
user understand why the required behaviour is not happening and what they
can do to make the actor do the right thing. The information provided by Z
supplements the information the user can gather about the actor’s behaviour
by observing a visualisation of the simulation. The visualisation shows the
actor’s external behaviour and the 7 gives its internal reasoning.

%, ¢

User Interfaces

Actor

Services

X Ximplies Z!
1010010101101 X->Y ™~
1010101001010 Y>z Yy T
0010100101010 X->T '

z @

Fig. 5.6: This diagram shows the flow of information from the actor, via T
services and T to a user. When the user receives the information
it is in a format they can understand. Across the bottom of the
diagram is an example of the types of information representations
that might be used at each step.

The 7 services need to extract relevant information from the data struc-
tures of the running actor. Eventually, 7 will need to make the information
it gets from the AA services intelligible to the human user. A variety of
techniques might be required to implement the desired functionality of the
human computer interface. Independent of how the actual interface will
work, the more humanly intelligible the information passed from the actor
services to Z, the easier it will be to implement the 7 interfaces. The less in-
telligible the information the Z services provide the more work that needs to
be done translating it, simplifying it, abstracting it, etc., before presenting

90 5. Adjustable Autonomy for Interactive Simulations

it to the user.

When debugging an actor’s behaviour, the user will require detailed in-
formation about the actor’s reasoning (Brann et al. 1996). The user will be
attempting to find anomalies in the reasoning process. To this end they will
require both the status of the actual reasoning process (i.e., what is the actor
thinking?), the information that is used in the reasoning process (e.g., does
the pilot think that tank is a threat?) and the behaviour specification the
actor is following (e.g., what will the pilot do when when it realizes it cannot
climb out of range of the tank?). In training scenarios there is a requirement
that nothing untoward happens when the trainer makes a behaviour change
because strange actor behaviour will disrupt the training. Hence, Z needs to
communicate the effects of proposed changes on actor behaviour so the user
can assess those effects a priori. For pre-emptive avoidance of problematic
actor behaviour the user needs to know what the actor intends to do. For
example, will the simulated pilot pull the aircraft up before it collides with
the ground or does the user need to direct the actor to do so? If the actor is
not taking some action that it appears it should be taking, the user needs
to know if there is a valid reason for the lack of action that they have not
recognized, e.g., is the aircraft avoiding a missile or positioning itself for
attack?

5.2.2 Summary of AA Information Service Requirements

For 7 to be effective 7 services need to supply the following basic informa-
tion:

e The current, future and past state of the actor’s reasoning process;

e The information on which the reasoning is based, i.e., the actor’s un-
derstanding of the world and the specification of its behaviour; and

e The likely implications of user actions on the actor’s behaviour.

5.2.3 What should the AA Actuation Do?

Sometimes a user will decide that different behaviour is required of an actor
and will take over decision making to change the way something is done.
The job of A is to realize the behaviour changes in the actor. The flexibility
that A has to realize changes and the elegance with which it can do so is
dependent on the services provided by the actor to change its own behaviour.
Further, the ease with which A can be developed is directly related to the
properties of those actor services — some services will make it easy to develop

5.2. AA Requirements 91

interfaces, others will make it difficult. Via some interface the user needs
to describe the required changes to the actor’s behaviour. The basic flow of
information, describing the required changes, from the user to the actor is
shown in Figure 5.7.

In the most abstract terms, the changes that A needs to affect are simple
— the user will want the actor to start doing something, stop doing something
or (un)constrain the way something is done. An essential element of all the
tasks is translating from the “language” of the user to specific changes in
the actor. Hence, the closer the representation of behaviour in the actor to
the representation the user uses, the easier the translation that is required
and hence, the easier the development of the required software.

Not only must A make changes to the behaviour of the actor, it must
make them in a way that allows the overall behaviour of the actor to remain
reasonable, during and after the change. If changes requested by the user
bring about abrupt or non-sensical actor behaviour (when abrupt or non-
sensical behaviour is not required) the realism of the simulation may be
compromised and, hence, the utility of the simulation reduced. For example,
if a RoboCup player is dribbling the ball into an open goal and it is assigned
the additional objective of conserving stamina, it should not slow down
immediately (allowing defenders to take the ball away) but continue with
the high priority objective of scoring before conserving stamina. Even better,
the timing of the shot could be changed, e.g., a kick from further out, to
save stamina and score the goal. A clean, smooth transition from the old to
the new behaviour allows the simulation to remain effective. Furthermore,
smooth transitions are likely to encourage the user to use the AA more
because the actor behaviour is more believable — an important characteristic
of a successful simulation (Sengers 1998, Blumberg 1997b).

Adding Goals or Constraints One type of behaviour change a user might
want to make is to assign additional goals or objectives to the actor. If the
user wants actions towards the goal to be immediately undertaken then, in
terms of the definitions from Chapter 2, goals are added to G,. That is,
the new goal is added to the set of goals the actor has current decision-
making responsibility over. Adding goals to GG, should mean that the actor
immediately starts working towards the goal. If the user wants the actor to
be able to consider pursuing some goal if an appropriate situation presents
itself, then the goal is removed from the set C;. Then, the actor may choose
to pursue the goal if a situation arises where achievement of the goal is
deemed to be useful. How easily this is performed in a particular actor

92 5. Adjustable Autonomy for Interactive Simulations

depends on the design of that actor.

Removing Goals or Constraints The second type of behaviour change the
user might want to make is to stop the actor from pursuing certain goals.
If the user wants to immediately stop the pursuit of some goal, the goal is
removed from G,. If the actor should not attempt to pursue the goal at any
stage the goal should be added to C,. This type of change allows users to
reduce the authority of the actor.

5.2.4 Implementation Issues

Conceptually, the idea of AA for actors is clear, however implementing the
changing goals and constraints on an arbitrary actor is not trivial. For
example, the goals that the user wants to be achieved might not have a
direct counterpart in the actor, e.g., if the user wants a RoboCup player
to perform a three man weave but the player does not know what this is
then somehow the behaviour needs to be explained to the player. The same
difficulty occurs in reverse when removing goals from the actor. For example,
to remove a goal that is the result of interactions between simpler goals and
the environment (Brooks 1991a) requires mapping back to the goals that
are actually represented in the actor and making changes to them. A needs
to be able to translate from the user’s request for adding or removing goals
to the specific addition or removal of goals from G, and/or Cj,.

Furthermore, the translation can only be done like this if the actor has
an explicit representation of goals. The actor may well not represent goals
explicitly or even represent its own behaviour explicitly! For example, if the
actor is controlled by a neural network, which has no explicit representation
of goals, A would need to translate the user request into appropriate changes
in node and connection weightings to affect the change in behaviour.

5.3. Overview of a Solution 93

1 %

A
User Interfaces
Actor
Services
10101001010 (remove([xy])) (remove ([x.y]) *Click* End Goal X Stop X
01010001010 (notify ([k,IT)

11101101001

Fig. 5.7: This diagram shows the flow of commands from the user, via A
and A services to implementation in the actor. Along the bottom
of the figure is an example of how a command from the user might
get translated into changes in the actor.

5.3 Overview of a Solution

The previous sections detailed the requirements on Z, A and the services
underlying those sub-systems for interactive simulations. In this section
we provide an overview of our prototype solution, called EASE (End-user
Actor Specification Environment), that fulfills the requirements. EASE is
described in some detail and AA interfaces described to show that the ser-
vices provided by the actor perform the job required of them. We do not
claim that this is the best or only actor architecture for implementing AA,
only that this architecture makes implementing AA straightforward. For
other applications, different tradeoffs may need to be made with respect to
the capabilities of the actor architecture, for example, to do more sophisti-
cated planning or be able to learn, which leads to a different architecture on
which AA can be implemented just as straightforwardly.

EASE has a hierarchical organisation of simple agents for decision mak-
ing. The basic idea is conceptually similar to the “Society of Mind” ideas
of Minsky (1988) and that of behaviour-based architectures (Mataric 1994).
Each agent in the agent organisation is responsible for pursuing a single
goal of the overall actor. Explicit contracts between agents capture their re-
lationships to one another. Agents in a gemneric pool of agents, representing
the latent abilities of the actor, wait to be called on to pursue their par-

94 5. Adjustable Autonomy for Interactive Simulations

‘ Agent feature ‘ T service ‘
Agents Goals of actor (G,)
Hierarchy Abstraction
Negotiation Explicit reasoning process, conflict
resolution
Determinism Implications
Generic pool Abilities/authority of actor (A4, — Cy)

Tab. 5.1: Selection of EASE actor features and the T service they provide.

ticular specialty when (and if) it is required. Explicit negotiation between
agents at the leaf nodes of the hierarchies determines the concrete actions
to be taken by the actor.

For an EASE actor, the services that provide information to Z are
straightforward to build. Table 5.1 shows the important actor features from
T’s perspective and the information they eventually provide to the user
(more detail is shown in Table 5.7, pg. 114). The current state of the agent
organisation, which is explicitly represented, captures the state of the actor’s
reasoning. All the Z services do is make this state information available to
the user. The hierarchical aspect of the agent organisation is useful because
it provides a built in abstraction facility which can be used to easily filter
information for the user (Bryson 1999b). Little translation is required by 7
because the hierarchical goal structure is intelligible and intuitive to users
(Travers 1996). The deterministic workings of the organisation make it easy
for the history of the organisation to be maintained by monitoring changes
to the organisation. The negotiation process by which the agents at the
bottom of the hierarchies reach a decision on an actor action is explicit and
easily extracted and translated so the user can see the conflicts between
goals (and their resolutions).

A can also be straightforwardly implemented. Table 5.2 lists some im-
portant actor features from A’s perspective and the controls they give to
the user (more detail is shown in Table 5.7, pg. 114). Addition or removal
of goals corresponds to addition or removal of agents from the agent organ-
isation. Addition or removal of constraints corresponds to changing which
agents can or cannot be contracted, i.e., adding or removing agents from the
generic pool. A variety of other mechanisms allow details of agent behaviour
to be manipulated.

5.4. A Note About Agents and Actors 95

‘ Agent feature ‘ A service
Adding agents Assigning goals
Removing agents Withdrawing goals
Removing/adding generic | Changing constraints
agents
Changing named constants Changing aspects of abstract be-
haviour
Changing intrinsic priority Changing relative importance of goals

Tab. 5.2: Selection of EASE actor features and the A service they provide.

5.4 A Note About Agents and Actors

/ User

T

Virtual environment

Fig. 5.8: Relationship between an actor, agents and a user.

The terminology of actors and agents may be a little confusing. An actor
contains an agent organisation (see Figure 5.8). We use the name “agent”
because we believe it best characterizes the autonomous goal directed be-
haviour of the components. Our concept of an agent is quite similar to the
idea of a behaviour in a behaviour-based system.

The user interacts with the actor. In this particular prototype there is

96 5. Adjustable Autonomy for Interactive Simulations

no AA within the agent organisation, i.e., a particular agent’s autonomy
relative to the other agents is constant. The autonomy of the actor relative
to the user changes dynamically. Other similar architectures may have AA
between agents, e.g., (Gerber et al. 1999, Barber, Martin & Mckay 2000),
but for EASE the AA is only between the actor and the user.*

5.5 EASE

Actor

O
QQ

O

Pool of generic agents

Negotiation

Actions

Fig. 5.9: A high level view of the EASE run-time architecture

Decision making in an EASE actor is performed by a society of interact-
ing agents, called the agent organisation, as shown in Figure 5.9. The agents
are hierarchically arranged, with agents higher in the hierarchy contracting
agents further down the hierarchy to achieve specific goals for them. We
use the names contractor and contractee when referring to the parent and
child agent of a contract. Agents at leaf nodes of the hierarchy are referred
to as engineers, as they are the agents that actually get things done. Other
agents in the system are called managers — their job is to find and contract
others to get things done.

4 The ability to change the intrinsic priority of agents provides similar functionality to
changing the number of votes in DAA (Barber, Martin & Mckay 2000).

5.5. EASE 97

Agents further up the hierarchy are responsible for more abstract tasks,
while their contractees are responsible for more specific tasks (similar to
Blumberg (1997a)). As the goals that the actor needs to achieve change, con-
tracts are made and broken, hence the structure of the organisation changes.
At any point in time the organisation, in particular the hierarchies, reflects
the current task breakdown of the actor. Each agent in the organisation
corresponds to exactly one g in G, and the contracts correspond exactly to
a parent-child goal relationship.

Engineers negotiate with each other about the concrete actions the actor
will make. Each engineer “argues” for actions it decides will lead to the goal
it is responsible for achieving. The negotiation algorithm draws inspiration
from behaviour fusion algorithms (Saffiotti 1997) and partial distributed
constraint satisfaction algorithms (Eaton et al. 1998, Ghedira 1994) but has
been adapted to the requirements of a soft real-time environment.

As well as the agents within the agent organisation there is a pool of
generic agents, each of which can be contracted to perform its specialty by
an agent already part of the agent organisation. The generic pool effectively
represents the abilities, A,, of the actor, i.e., each agent in the generic pool
represents something the actor can do. If there is an agent in the generic
pool capable of achieving some particular goal then the actor can achieve
that goal by contracting the agent to pursue it. If there is not an agent
with the capability to pursue a certain goal in the generic pool then the
actor cannot pursue that goal.> If the actor’s authority to pursue a goal is
withdrawn the agent(s) with the capability to pursue that goal is marked
“unavailable”, meaning that it may not be contracted. Hence, the agents
that can actually be contracted from the generic pool correspond to A, —C,,.

It is useful to compare the running of an EASE organisation with that of
a human organisation. In a human organisation a manager will be respon-
sible for a complex, abstract task like Sales. Subordinates of that manager
are responsible for specific aspects of Sales, for example Melbourne Sales or
After Sales Service. These people might have other people under them until
finally we get down to the people that perform the concrete tasks that are
the actual work of the company, e.g., selling to a customer. EASE agent
hierarchies are designed and work in an analogous manner to such human
organisations.

5 The goal may still be achieved by the actor, but unintentionally rather than inten-
tionally.

98 5. Adjustable Autonomy for Interactive Simulations

5.5.1 Social Conventions

All organisations require some conventions, rules or procedures to keep them
running smoothly — the EASE agent organisation is no exception. The social
conventions in the EASE agent organisation are far simpler than in most
organisations. A contractee must inform its contractor about its progress
toward the goal it has been assigned (we look at the process of forming a
contract in the next section).

A contractee has three different status messages it can send to its con-
tractor. The messages abstractly describe the agent’s progress towards its
assigned goal and allow managers to make decisions based on the status
of sub-goals. One message indicates that the goal has been achieved (or is
being maintained), one indicates that the goal cannot be achieved and one
indicates that normal progress is being made towards the achievement of the
goal (i.e., there is no reason to believe the goal cannot be achieved but it is
not yet achieved). These messages are the only communication that occurs
between agents once a contract is made. Although some aspects the or-
ganisation’s functioning might be improved if, say, more status information
were shared, the simplicity of the interconnections between agents makes
the adding and removal of agents to and from the organisation easier. Being
able to add and remove agents easily is critical when the user wants to add
and remove agents, i.e., add or remove goals, at run-time.

Continuing the analogy with the human organisation, status messages
are analogous to an employee keeping their manager informed of their prog-
ress toward the task(s) assigned to them. The manager uses this information
in their decision making, as well as informing their superiors if the status
of their own task is impacted by the information received from their sub-
ordinates. Without such information flowing around the organisation the
organisation’s operations would likely fall apart.

Contracts

There are three types of contracts a manager can make: fixed, dynamic or
list contracts. The contract types differ in the way an agent is found to fulfill
the needs of the contractor. The designer specifies which type of contract
the manager will make at design time, the manager does not decide which
is appropriate at run-time. The different types of contracts are summarised
in Table 5.3 and discussed in more detail below.

Agents may be capable of fulfilling a generic goal, i.e., goals that can
be tailored to a specific situation via the instantiation of parameters. The

5.5. EASE 99

‘ Contract Type ‘ Properties ‘
Fixed Specific agent to contract known in advance
Dynamic Agent to contract found via capability matcher
List One agent per environment feature contracted

Tab. 5.3: The three different contract types a manager can make and their
basic functionality.

instantiated parameters for the goal are part of the contract with the agent.
For example, a generic get to waypoint agent for a simulated pilot might
have parameters specifying the location of the waypoint. The actor designer
can parameterize agents very flexibly and the more generic the agents are
the more reuse of agent specifications is possible.

Notice that the making of a contract actually creates a new instance of
the contracted agent. Hence, the same “generic agent” can be contracted
simultaneously many times and have many instantiations. This is an imple-
mentation detail that does not effect the basic functionality of the system.

Once entered into, each contract type works in the same way, i.e., the
contracted agent continues working toward its assigned goal informing its
contractor of its progress until specifically told to stop. If it achieves its
goal and is not told to stop the agent may work to maintain the goal state
or be idle. Contracts corresponds closely to the idea of delegation (Falcone
& Castelfranchi 1999). In terms of the definitions given in Chapter 2, the
process of finding and contracting agents to contract corresponds to the
breakdown of a goal into sub-goals.

Fixed Contracts A fixed contract is used when a pre-determined agent will
be used to perform a specific task at run-time. When the contractor deter-
mines that a particular sub-goal should be fulfilled at run-time it is already
known precisely which agent will work toward the goal. If that agent is not
in the generic pool, the sub-goal immediately fails, i.e., the contractor gets
a failure message. Fixed contracts implement a fairly standard hierarchical
decomposition of overall behaviour, e.g., Edmund (Bryson 1999b). Figure
5.10 shows the designer interface for specifying a fixed contract.

Dynamic Contracts For a dynamic contract the developer specifies only
the capability required of the agent to be contracted. So the designer is
specifying what needs to be done, rather than how it should be done. This
is a more high level form of specification where more details are left to the

100

5. Adjustable Autonomy for Interactive Simulations

Fig. 5.10:

Tool for specifying a fixed contract. The manager being specified
will make contracts with a safety agent, a conserve fuel agent and
a patrol mission agent. The patrol mission agent contract has
two parameters, “Rules of Engagement” and “Minimum Height”
which are instantiated with the values “Aggressive” and “Safe
Altitude” (which are named constants or more complex expres-
sions).

5.5. EASE 101

system. This type of contracting means that changes to the actor are easier
to make because the structure is more flexible. For example, when an agent
for pursuing some goal is removed and replaced with another agent that
pursues the goal in a better way the contracts do not need to be changed.

At run-time the contracting manager checks with a capability matcher
to find an agent with the required capability. The capability matcher in
the prototype is very simple, merely doing string comparisons between the
advertised agent capabilities of agents in the generic pool and the required
capability. If a capable agent is located, a contract is created between the
capable agent and the contractor. If no agent can be found with the required
capability then the contractor receives a failure message and takes the same
actions it would have if an agent had been found but failed to fulfill its as-
signed goal. Dynamic contracts are similar to Hayes-Roth’s abstract control
plans (Hayes-Roth et al. 1997), PRS’s plans (Ingrand et al. 1992) and even
somewhat like the idea of synergies (Kelso 1995). Figure 5.11 shows the
interface for specifying a dynamic contract.

I Specify Subcontracts I
¥l Use Dynamic Contracting E dit

|Safety ‘ - ‘ ‘ Add Parameter |

Fig. 5.11: The end-user tool for specifying a dynamic contract. In this case
an agent is required with the capability “Safety”.

List Contracts It has proven to be useful to implement one more type of
contracting. In the domains we have looked at there are often multiple in-
stances of an object in the environment all of which need to be dealt with
in a similar manner. For example, a number of aircraft that need to be
avoided, a number of football players that need to be marked or a number
of missiles that need to be tracked. As a development aid for these situations
list contracts were introduced. The designer specifies that for every instance
of a particular environmental phenomena (e.g., an aircraft) the contractor
will contract a separate agent with the particular environmental phenomena
used to instantiated a parameter in the agent contract. Each object of that

102 5. Adjustable Autonomy for Interactive Simulations

I Satisfaction

Register with factory

Avaid Aircraft {(Mission)

Remowve

List Type

Fig. 5.12: The tool for specification of a list contract.

type that is “detected” at run-time, e.g., by the simulated radar or vision,
results in one agent being contracted. So, for example, a separate agent
might be contracted to track each missile or a separate agent might be con-
tracted for watching each football player or a separate agent contracted for
avoiding each aircraft. The system handles the details of contracting agents
as instances of the object are detected. All the contracted agents report to
the same manager — a special list contract manager, who in turn reports to
the original contractor. Figure 5.12 shows the interface for specifying a list
contract.

5.5.2 Managing Conflicting Goals

The agent organisation makes decisions about the actions of the actor via
a negotiation process between engineers, i.e., the agents at leaf nodes. The
basic idea is that each engineer argues selfishly (i.e., it argues for actions that
will lead to its goal being achieved) and the negotiation protocol ensures that
a fair (i.e., taking into account all the agents’ wishes) outcome is reached.
The way that such a process leads to good overall decisions is described
mathematically in Ossowski & Garcia-Serrano (1999) and informally below.

Each engineer has a set of ideal states it wants to bring about. It also
has a model of the how each possible action will change the state of the
environment and a model of the distance between an arbitrary state and
its ideal state(s). The agent’s satisfaction with an action is proportional

5.5. EASE 103

to the relative reduction in the distance between the current state and its
ideal state(s) that can be expected from that action compared to other
possible actions. So, the action(s) expected to lead to the biggest reduction
in distance to the ideal state(s) will completely satisfy the engineer. Any
actions expected to increase the distance to ideal states will completely dis-
satisfy the engineer. All other actions, i.e., those that are expected to reduce
the distance to the ideal state(s) but not so much as the best action(s) will
satisfy the engineer to some level proportional to the relative reduction in
distance to the ideal state(s) they are expected to result in.

The engineer’s satisfaction is captured by a satisfaction function which
takes the current state of the environment and the proposed action and
returns a satisfaction level. The satisfaction function can be specified in the
spreadsheet-like function specification tool included with EASE. Figure 5.13
shows a screenshot of the tool.

The negotiation process involves generating potential actions (either ran-
domly or via some intelligent stochastic algorithm) and asking each engineer
for their satisfaction with the proposed action. The best action is determined
by considering the relative satisfaction levels of the engineers for that ac-
tion and their priority (see below). The higher the priority of the agent the
more influence it has on the negotiations. The best action is “recorded” and
periodically executed.

Only engineers are directly involved in the negotiation. However, the de-
sires of the managers are conveyed indirectly via their contracts. Engineers
involved in the negotiations will have been contracted by managers. Those
engineers represent an aspect of the manager’s interests in the negotiation.
The manager affects how much influence its contracted engineers have in
the negotiation via its influence on their priority (see below).

Negotiation / Behaviour Fusion There are a variety of other mechanisms
that could have been used to settle conflicts between engineers. Brooks’
original architecture used subsumption which meant behaviours could inhibit
other behaviours preventing them from acting (or just reducing conflicting
effects), hence allowing the agent’s observed behaviour to be (relatively) co-
hesive. However, determining appropriate inhibition relationships in more
complex behaviour based agents is difficult. Recent research has looked at
mechanisms which allow active behaviours to vote on possible agent actions.
The voting ideas introduced in DAMN (Rosenblatt & Thorpe 1995) sparked
a flurry of research into better voting schemes, including (Yen & Pfluger
1995, Riekki 1998, Pirjanian 1998). Another way of resolving conflicts be-

104 5. Adjustable Autonomy for Interactive Simulations

LT Dl e

Ball Kiclkabla Activtian (K rhing

Kick Joml & [icieng)
Ford Bgt) il | s JH)] 3

Tarm Ball & Hickiag)

th Farn Dgan & Hickong)

e] R s P AT S Pl

3

§] o pa i T £ P pascad A

i ol Vinion dog e Jcdng)

3 FA Jan OF 4 b 4% CET 3001

15 mhelie Lodl i o B me i g by s Do hbeeed Arelle” degees

Ol o 'imon Angi (K Kkng|

Fig. 5.13: A snapshot of the condition specification sub-system for end-
user programming of complex agent functions, showing a user
editing one cell, a comparison between other cells, in the center
of the window. At the bottom of the window is information
about where the cell is used and the cells it uses. On the right
of the window are the cells that have already been created.

5.5. EASE 105

tween behaviours is to use fuzzy logic (Passino & Yurkovich 1998, Saffiotti
1997, Tunstel 1996). Different methods for defuzzification approximately
mimic different voting algorithms. A variety of behaviour fusion algorithms
are now well understood and have been used in a variety of real applications.

Priority

The importance of an agent is reflected by its priority. The priority of an
agent affects how much influence it has in negotiations about actor actions
— directly for engineers and indirectly for managers. An agent’s priority, p,
is a function of three factors, one static and two dynamic:

p = min(e * i, 0) (5.1)

where e is the environmental priority of the agent, o is the organisational
priority of the agent and 4 is the intrinsic priority of the agent.

Environmental priority, e, is the importance of the agent given the cur-
rent state of the world. For example, clearly, avoiding an aircraft is more
important when the aircraft to be avoided is close than when the aircraft is
far away. Environmental priority will be higher when the obstacle aircraft is
close and hence the agent with that environmental priority will have more
influence on negotiations. Figure 5.14 shows an example of an environmen-
tal priority function for an obstacle avoidance agent. The environmental
priority of the aircraft is higher the more directly the aircraft heads towards
the obstacle and/or the shorter the distance to the obstacle.

Intrinsic priority, ¢, is the basic priority of the agent given the task it is
assigned. Intrinsic priority allows the designer to capture the fundamental
importance of the achievement of the goal, e.g., for simulated pilots avoiding
aircraft is fundamentally more important than getting to a waypoint.

Organisational priority, o, is the component of the agent’s priority given
the task it is part of. For example, flying to a waypoint is more important
when it is part of the task of rescuing trapped allies than when it is part of
a routine reconnaissance mission. The organisational priority is a function
of an agent’s contractor’s priority.

Table 5.4 gives some sample priority calculations, showing how the fac-
tors combine.

Agent Internals

We have so far skipped over how an individual agent makes decisions. Pri-
marily, this is because it is not particularly important how the agents work

106 5. Adjustable Autonomy for Interactive Simulations

Environmental

A \ il
— N\
"I’I’ X § ‘ Priority

XX YVVYV ¢§§§\
— OONAKOO
— ARRRRO0000 Y

\

A_X

oS o= >S5 8 8 X

Distance to Relative Heading to Obstacle

obstacle

Fig. 5.14: An example (simple) environmental priority function for an ob-
stacle avoidance agent. The agent’s environmental priority is
higher if the obstacle aircraft is close and/or the aircraft is head-

ing towards the obstacle.

5.5. EASE 107

Situation le |i |o [min(exi,o) |
Near obstacle, contracted by | 1.0 | 0.6 | 0.3 | 0.3
keep low profile manager
Near obstacle, contracted by | 1.0 | 0.6 | 0.9 | 0.6
safety manager
Obstacle detected, but dis- | 0.5 | 0.6 | 0.9 | 0.3
tant, contracted by safety
manager

No obstacle detected, con- | 0.0 | 0.6 | 0.9 | 0.0
tracted by safety manager

Tab. 5.4: Some examples of how overall priority is a function of environ-
mental, organisational and intrinsic priority for a priority func-
tion in the obstacle avoidance agent.

— any decision making mechanism will do. The important characteristics of
the EASE architecture from the perspective of AA is that the complexity
and “intelligence” of an actor is a function of the organisation and the nego-
tiation process. This means that we can consider the inner workings of an
agent to be a “black box” which cannot be observed or manipulated. The
agents are intended to be simple. Such an approach is consistent with the
Building Blocks Guideline. We describe the inner workings of the agents
only because it makes understanding the architecture and subsequent eval-
uation easier.

The external properties of the agents are important to the organisation.
For the proper running of the organisation, managers need to act by making
contracts, engineers must participate in negotiations and all agents need
to abide by the organisation’s social conventions. How individual agents
achieve these properties is irrelevant (and need not even be homogeneous
across the actor) provided the external properties are correct. The important
external characteristics of the agents and the role each characteristic plays
are summarised in Table 5.5.

In the prototype, agent decision making is done via simple Moore state
machines.® In each state, a manager contracts particular agents or, in the
case of an engineer, uses a particular satisfaction function in negotiations.
Figure 5.15 shows a screenshot of the end-user tool for specifying a state-

6 State machines were chosen because they were most familiar to the intended users of
the system — Saab system engineers.

108 5. Adjustable Autonomy for Interactive Simulations

‘ Agent feature Reason for feature ‘

Important to organisation

Satisfaction function Used in negotiations

Activation function Determines environmental importance of
the agent

Capability Specifies the tasks(s) that the agent can
achieve

Success/Failure status Fulfills social responsibility

‘ Implementation details ‘

State machine Determines agent’s discrete behaviour
Success/Failure transi- | Handling of contractee status messages
tions

Tab. 5.5: Summary of the different aspects of an agent and their effect on
overall agent behaviour.

machine. As well as the state machine, each agent has a function that
determines the environmental aspect of its priority.

To fulfill its social obligations each agent must inform its contractor of
success or failure (no message is assumed to mean “normal progress”). This
is implemented by allowing the designer to designate certain states as success
states or failure states. When the agent transitions into or out of one of these
states a corresponding message is sent to the agent’s contractor.

Two special state transition types are provided which allow the behaviour
of an agent to depend on the success or failure of its contracted agents or
its performance in negotiations. Failure transitions provide a mechanism
with which the designer can deal with the failure of an agent’s sub-goals,
i.e., the failure of contracted agents. Success transitions provide a means for
the designer to specify how the agent is to move on with other parts of a
task when certain milestones have been reached. If any contractee has sent
a failure message then a failure transition can be taken. Conversely, if all a
manager’s contractees have sent success messages to the manager a success
transition can be taken if it has one from the current state. Likewise an
engineer can take a success transition if satisfied by the negotiations or a
failure transition if dissatisfied by the negotiations. Table 5.6 summarises
the transition conditions.

5.5. EASE 109

Fig. 5.15: The end-user state machine specification tool, showing a state
machine for a simple patrol agent. Circles represent states, while
arrows represent transitions. The state in the top left corner,
i.e., take-off, with an extra line is the start state. Success tran-
sitions are colored green while normal transitions are annotated
with the condition for their traversal.

‘ Transition ‘ Engineer ‘ Manager ‘
Failure Completely unsatisfied with ne- | Any contractee failing
gotiation
Success Somewhat satisfied with negotia- | All contractees suc-
tion ceeding

Tab. 5.6: The table shows the conditions under which an engineer and
manager will take success or failure transitions.

110 5. Adjustable Autonomy for Interactive Simulations

5.6 Actor Services and Prototype Interfaces

In this section we describe the functionality of the EASE AA services and
the interfaces built using those services. The services provided by the actor
provide a large volume of information for Z. In addition, the actor services
allow a wide range of control over both the agent organisation and generic
agent pool giving A, and thus R, a wide range of flexibility. Figures 5.16,
5.17 and 5.18 show the relationships between the actor software and the
different actor services.

Available
Agents
oS

Structure

]

Agent
Organization

Status
Pool of generic agents

Changes

/

Negotiation
Status

Negotiation

Fig. 5.16: Information extracted from the agent organisation and generic
pool. The surrounding box represents the extent of the EASE
actor software. The arrows out of the box show what infor-
mation is extracted and the parts of the software where that
information originates.

Recall from Section 2.1.2 that Z provides information to the user (via
whatever abstraction, inference and/or presentation techniques are required)
which supplements the information the user gets from observing the simu-
lation. A implements changes of decision making responsibilities from actor
to user and vice versa, as well as realizing the results of the user’s decision
making on the behaviour of the actor.

5.6. Actor Services and Prototype Interfaces 111

Current state

State
(success/failure)

State machine

Completely satisfied
Current satisfaction

Priority

Priority B | e

Fig. 5.17: Information extracted from a single EASE agent. The large
circle represents an agent, the arrows show which information is
extracted from where.

112 5. Adjustable Autonomy for Interactive Simulations

Add/

O O —

Agent
Organization

Pool of generic agents
Intrinsic
Priority

Constants

Negotiation

Fig. 5.18: How the different AA actuation services affect an actor. The
box represents the extent of the EASE software and the arrows
show where A changes occur.

Notice that the interfaces presented below are only prototypes, built to
demonstrate the properties of the actor AA services and are not necessar-
ily suitable for practical use. Better interfaces could and should be built
if average end-users are to have a good level of control over actors in real
environments. However, it is only the details of the human-computer in-
teraction that are lacking in the interfaces. The interfaces do provide the
basic functionality required for R to be performed by the user. Hence, by
showing that interfaces with the basic required functionality can be built,
given the services provided by an EASE actor, we show the utility of those
services, which is our aim.

5.6.1 Information Services

The Z services provide the following information to Z:
e The configuration of the current agent organisation

e The status of each agent in the organisation, including whether it is
succeeding or failing, its priority and the current state of its state
machine

5.6. Actor Services and Prototype Interfaces 113

e Details of ongoing negotiations
e Structural organisation changes that will result from different events
e Details of all the calculations performed by all the agents

e Available agents in the generic pool and the details of the agents,
including their intrinsic priority and capabilities

e The values of named constants

Table 5.7 shows the important actor features and the services they pro-
vide to Z. The table also shows how each of the guidelines were followed in
some aspect of the design and further led to desirable AA services. We show
the value of each of the services by showing prototype interfaces that have
been built leveraging the service. By showing the strengths and weaknesses
of the prototype interfaces we demonstrate the strengths and weaknesses of
the underlying services.

Together the different pieces of information provided by Z services give
the user an accurate and comprehensive picture of what the actor is doing,
what it has done and what it will do next, which are important according to
Brann et al. (1996). The user is responsible for finding the particular infor-
mation they need to make decisions. Finding the appropriate information
from the large amount generated and presented may be far from trivial but
the format is generally appropriate for the task.

A key to the effectiveness of the EASE design for making Z easy to
develop is that the interactions between the agents are explicit and very
limited. Each agent has a clearly defined purpose. Most relevant informa-
tion is explicitly represented by the organisation, either in its structure or
explicitly in an agent. The organisation is easy to understand because the
agents are simple and loosely coupled.

Below we look at each of the services and the prototype interfaces lever-
aging the services. The prototype Z interfaces and the information they
provide to the user are summarised in Table 5.8.

114 5. Adjustable Autonomy for Interactive Simulations
Guideline ‘ Agent Feature ‘ AA Facility
Explicit In- | Agents and contracts | Goal hierarchy easily extracted,
formation actor intentions known
Guideline
Negotiations Conflict resolution easily ex-
tracted
Design In- | Agent hierarchy Abstraction, decomposition in-
formation formation
Guideline
Design names kept at | Easily understood functionality
run-time of components
Software Naming conventions | Design information
Engineering
Guideline
Parameterization Simplified implementation of
user commands
Hierarchical decom- | Relationships between agents
position clear
Deterministic | Agent organisation Implications viewer
Execution
Guideline
Explicit Agent organisa- | Goal hierarchy is easy to change
Behaviour tion mirrors goal
Guideline hierarchy
Named Constants Changing behaviour dictated by
constants
Building Agents Flexibility in changing be-
Blocks haviour
Guideline
No Extra | None required
Mechanisms
Guideline
Design Ex- | Success and failure | Smooth addition and removal of
pecting transitions goals
Failures
Guideline

Tab. 5.7: Summary of some of the useful EASE actor features resulting
from adherence to each guideline and the subsequent AA facili-
ties.

5.6. Actor Services and Prototype Interfaces

Information provided ‘ EASE property

‘ Tool

Structure of the cur-
rent organisation

Explicit representation
of agents

The Boss

Contents of the generic
pool

Explicit representation
of capabilities

Generic Pool Viewer

Details of specification
calculations being car-
ried out by specific
agents

High level representa-
tion of calculations

Calculation Debugger

Details of the goal con-
flict management pro-
cess

Explicit goal conflict
management process,
i.e., negotiation

Negotiation Viewer

Details of the priorities
of goals

Explicit representation
of agents and their pri-
orities

Priority Viewer

Current values of all
system constants

High level representa-
tion of calculations

Constant Viewer

History of the organi-

Explicit representation

Transition Viewer

sation of agents
Effects of organisa- | Deterministic execu- | Implications Viewer
tional changes tion

115

Tab. 5.8: The relationships between information provided by the system,
the property of EASE that makes that information available and
the end user tool that leverages that information.

The Boss

The Boss is a tool that (among other things) shows the status of the agent
hierarchy within the actor. A snapshot of The Boss is shown in Figure 5.19.
The tool is nicknamed The Boss because it provides most of the functionality
for controlling an actor. A tree (or forest) is used to display the hierarchy (or
hierarchies) in the agent organisation. A simple, collapsible tree structure
allows the user to interactively change the amount of hierarchical detail
that they see, i.e., the user changes the level of abstraction at which they
see the organisation by expanding or collapsing branches. Details on the tree
nodes show the type of agent (via colour), its name and its current state (in
parentheses). The visualisation gives an accurate and comprehensive picture

116 5. Adjustable Autonomy for Interactive Simulations

of the agent organisation. The user can extract information such as “the
actor is attempting to do X because goal Y is currently in a state where
achievement of X is necessary” or “the safety management agent of the
simulated pilot has not reached the point where it believes it is necessary to
do an emergency climb”, by making simple interpretations of the hierarchy.

! Active Agents

= AC Avoidance (LIST)

= Smooth Manager {Low Priority) |

= Patral Mission (WP1)

Sat Trace Trans Trace Act Trace

End Fail End Success Create Contract

Pause Agent

Fig. 5.19: The Boss visualisation of the agent organisation. The state of
each agent is shown in parentheses after its name. Agents with
a small circle to their left are managers which can be clicked on
to show contracted agents.

The information for The Boss comes directly from the structure of the
organisation which is explicitly represented in the actor. Notice that the
interface makes virtually no translation from the underlying situation to the
view presented. Firstly, this means the interface was (more or less) trivial
to build. Secondly, it means that under a very wide range of circumstances
the interface presents a faithful picture of the underlying situation. Any
technique that needs to do a non-trivial translation will sometimes lose or
mis-interpret information. Hence, the need not to do any translation gives
us increased confidence in the accuracy of the visualisation.

Notice that it is the user’s responsibility to determine what information
is relevant. For example, the visualisation shows the whole hierarchy, but

5.6. Actor Services and Prototype Interfaces 117

only some parts will be important for any particular user purpose and the
user needs to determine what those important parts are. Notice also, that
the user is responsible for determining when details are and are not required
(by expanding or collapsing branches of the tree). Better interfaces might
be designed with some “intelligence” used to bring important parts of the
organisation to the user’s attention, e.g., agents that are failing. These more
“intelligent” designs would, however, not necessarily require that the actor
provide any additional information, the difference would be in the processing
that the interface does with the information before presenting it to the user.

Transition Viewer

The Transition Viewer maintains a record of all the organisational changes
and individual agent state changes that occur and the reasons for those
changes. The Transition Viewer is shown in Figure 5.50, pg. 158, as a part of
the example at the end of the chapter. For example, the viewer shows which
transition became active to cause a state transition. From the point of view
of the actor services, no different information needs to be provided than is
provided for The Boss, i.e., both viewers use information about the changing
state of the agent organisation but present that information in different ways.
In The Boss a snapshot of the current state of the organisation is always
available, in the Transition Viewer a history of important changes is shown.

The information in the Transition Viewer allows the user to see the
development of the organisation over time. This can in turn help answer
questions regarding why the system is in the state it is. Intelligent filtering
facilities are likely to be useful for larger systems or information overload
might occur because so many transitions will be executed and organisational
changes made.

Negotiation Visualisation

The Negotiation Viewer tracks the results of the negotiation (see Figure
5.32). At the end of each cycle the viewer adds a point on the graph for each
engineer, representing the engineer’s satisfaction level with the negotiation.
Over time a graph builds up showing how each engineer’s satisfaction level
varied.

There is a direct correlation between the satisfaction an engineer has
with the ongoing negotiations and the success it is having in achieving its
goals. In particular, if an engineer is satisfied by the negotiations it will be
making progress towards its goals (provided its satisfaction function has been

118 5. Adjustable Autonomy for Interactive Simulations

designed correctly). If an engineer is having success in a negotiation then
its progress towards its goals is not being hindered by conflicts with other
goals. A manager is not being hindered by goal conflicts if the engineers
it has contracted (either directly or indirectly via other contractees) are
succeeding at their tasks, i.e., are being satisfied in negotiations.

The negotiation process allows the achievement of different goals to be
traded off with one another, e.g., conserving fuel and gaining altitude might
“compromise” to an intermediate altitude which partially achieves both ob-
jectives simultaneously. Such tradeoffs are clearly shown in the Negotiation
Viewer.

The user can also use the Negotiation Viewer to see how sets of different
goals conflict. For example, by noticing that consistently when one engineer
was satisfied another was unsatisfied the user can detect a conflict between
the engineers (and therefore a conflict between the goals). Perhaps the
conflict was obvious a priori, e.g., conflicts between the conserving fuel and
rapidly gaining altitude goals are inevitable, but in more complex cases,
more subtle conflicts can manifest themselves in unexpected ways. In other
cases, the consequences are major, e.g., in TACSI having a ground avoidance
and aircraft avoidance in unresolvable conflict is a major problem.

Conflicts are an inevitable part of a complex task, the key is to find
unexpected, problematic conflicts that need to be resolved. The aim is to
have the right goal being satisfied by the negotiation process at the right
time.

Notice, the importance of a conflict needs to be determined by the user
because the actor has no knowledge of the importance of the conflict. For
example, the actor does not “know” that a conflict between conserving fuel
and gaining altitude is inevitable. This is a good example of how a vio-
lation of one of the guidelines, i.e., the Design Information Guideline, by
not representing which conflicts are important and which are not, leads to
limitations in what Z can do. For example, if we had followed the guideline
the actor would have a representation of which conflicts were important and
which were not, so Z could provide information about only the important
conflicts, instead of them all.

The actor does have some implicit knowledge of the importance of goal
conflicts, via the environmental priority functions. Priority reflects the im-
portance of the agent given the current situation. If two agents are conflict-
ing when both their priorities are high it is likely to be more of a problem
than if their priorities are low (or even if one of their priorities is low). No-
tice, this sort of implicit information is more difficult to extract and less
reliable than explicit designer information. However, it is easy to imagine

5.6. Actor Services and Prototype Interfaces 119

a more intelligent visualisation that uses simple reasoning based on satis-
faction levels and priority levels to highlight conflicts that are likely to be
important.

If it appears the circumstances should allow achievement of a goal the
Negotiation Viewer provides some of the information necessary to under-
stand why it is not being achieved. If the agent responsible for a goal is
satisfied with the negotiation outcome but the goal is not being achieved
then there is probably an error in the agent’s satisfaction function. Alter-
natively, if the agent is not satisfied with the negotiation outcome then it is
likely that another, higher priority, engineer is responsible for a conflicting
goal.

That such an informative visualisation of the goal conflict resolution can
be easily built is due to the explicit, human interpretable nature of the
negotiation mechanism. In a negotiation each engineer summarises its point
of view on the actor output with a single number. The relative size of these
numbers for different engineers gives over time all the information described
above when interpreted in a straightforward manner.

This Negotiation Visualisation has a clear deficiency — only the agents’
satisfaction levels for the actual actions taken by the actor are shown. It
would be useful to see the satisfaction levels for rejected actions, as such
information may be useful for determining why other actions were not taken.
This is potentially as useful as knowing why the chosen action was taken.
For example, understanding why a simulated pilot banked instead of diving
to avoid an incoming missile might be shown by looking at the satisfaction
information for the rejected diving action. This is purely a deficiency with
the current interface — the services provide information about losing bids
but the interface ignores that information. The reason why the information
is not shown is that it is difficult to create an appropriate visualisation of
the data.

Another deficiency of the visualisation is that only the effects of engineers
are shown so the user is required to calculate the effect of a manager (if
such information is required). Since there is a straightforward relationship
between managers and negotiations it would be straightforward to add a
visualisation of a manager’s impact on the negotiation.

Priority Viewer

The Priority Viewer is a simple viewer that shows the engineers’ chang-
ing priority levels over time. The viewer uses the same visualisation tech-
niques as the Negotiation Viewer. This information supplements information

120 5. Adjustable Autonomy for Interactive Simulations

supplied by The Boss, and compliments information from the Negotiation
Viewer. If the Negotiation Viewer shows that an engineer is not being satis-
fied in negotiations, the priority viewer can be used to check whether priority
is the reason for the lack of success. That is, the Priority Viewer can be used
to identify the higher priority engineer with conflicting preferences that is
“winning” the negotiation.

Potential goal conflicts may also to be discovered with the Priority
Viewer. Agents’ goals may not currently conflict but may conflict later,
in which case the higher priority agent will be satisfied at the expense of the
lower priority agent. The user can check which engineer will succeed, if a
conflict occurs, and consider the consequences of this (potentially forcing a
change) before the situation occurs. Notice, that such a check is not com-
pletely safe because the environmental component of priority may change.

Implications Visualisation

Dynamic Actor View

State Ch... Success

End Fail

Fig. 5.20: Implications Visualisation tool for investigating the implications
of different actions on the agent organisation. The buttons along
the bottom of the window allow the user to specify different
changes to the organisation.

The Implications Visualisation allows the user to experiment with the
organisational hierarchy of the actor without the effects actually occurring
in the actor (see Figure 5.20). The Implications Visualisation provides a
sort of “intelligent blackboard” with which the user can experiment. This
visualisation allows the user to make a limited check (excluding the negotia-
tion outcome) on the implications of their actions before they actually take

5.6. Actor Services and Prototype Interfaces 121

them. The user is presented with a view of the hierarchy and can view sim-
ulations of the effects of different changes they might wish to make on the
agent organisation. The user can also see the effects of the success or fail-
ure of different agents and of different state changes occurring in the agents
which can be used to see what will happen if environmental circumstances
or conflicts lead to failure or success.

The information provided by the Implications Viewer supplements the
user’s mental model of the organisation. When working with a very complex
actor a user may not be capable of completely understanding the effects of
a particular action they intend to take without the Implications Viewer to
assist.

The Implications Viewer is possible because the functioning of the agent
organisation is deterministic. The user can be shown exactly what will
happen inside the actor when a change is made because the outcome of that
change is certain.

This visualisation does not show (potential) changes to negotiation sta-
tus, only changes to the agent organisation. Showing potential negotia-
tion outcomes is not possible because the negotiation is non-deterministic.
(Neither does the visualisation take into account potential environmental
changes.) This is an example of where breaking our guidelines, i.e., the
Deterministic Execution Guideline, makes it difficult to develop AA. If the
negotiation process was deterministic then the Implications Viewer could
have shown the outcome of the negotiation after user changes. Not showing
the outcome of the negotiation restricts the user’s ability to assess the effect
of their AA decisions before they commit to them.

Calculation Details Display

All the calculations to be performed by each of the agents in the actor can
be specified in the spreadsheet-like function specification tool included with
EASE (see Figure 5.13). If the spreadsheet facility is used to specify a
calculation then at run-time the details of the calculation can be displayed
for the user, as shown in Figure 5.21. Such information is primarily useful
for debugging calculations. For example, close examination of an agent
calculation may reveal that the agent is making correct calculations but
sensors are inadequate to provide correct information.

This detailed display is possible because the spreadsheet calculation is
“compiled” into a tree structure that executes the calculation. To display
a calculation the tree is traversed and intermediate results displayed to the
user. Thus, the service, which is simple because of the EASE design, is to

122 5. Adjustable Autonomy for Interactive Simulations

Satisfaction Trace : Goal Kicker
Update

Ewaluating satisfaction fhome/pausci/thesisirobocupSpecsiEASE SpecsiTest/Kicking .cndKick Geal 5
using factory Action
alculation named Kick Goal 5
etting sensor function : Kick to Goal 5
Factory suggestion SUGGSESTICONACtion#KickPowsr evaluates to : 0.0
onstant Zeno evaluated @ 0.0
Executing Plus with 0.0 and 0.0 result is 0.0
Factory suggestion SUGGSESTIONAction#Kick#EDirection evaluates to : 0.0
onstant Zemo evaluated : 0.0
Executing Plus with 0.0 and 0.0 result is 0.0
Sensor Kick to Geal 5 returned : 3.0
alculation fhorel pauscithesis/robocup S pecs/EASE Specs/Test/Kicking.cnd Kick Geoal S returns 2.0
Satisfaction value is © 3.0

Fig. 5.21: The Calculation Trace window shows the details of a calculation
one of the agents is performing. FEach line shows the result of
computing the value of one cell. The names used to describe the
cells are used to name the intermediate results. The bottom line
in the window shows that the satisfaction calculated was 3.0.

traverse the tree and provide intermediate results.

The compilation process is an example of retaining design information
explicitly, i.e., adherence to the Design Information Guideline, so it can be
used for AA. It turns out to be very useful for understanding the details of
the actor’s behaviour. Notice that both the structure of the calculation and
the names of intermediate calculations are retained in the agent, hence they
can be displayed in the viewer. A more “standard” compilation process
(e.g., to binary code) would render much design information unusable at
run-time. This happens when the spreadsheet tool is “avoided” by coding
calculations directly in a low-level Java program. However, we still often
specify expressions in Java because it results in a more efficient actor. This
is a good example of a trade-off between designing for AA services and
meeting other constraints.

5.6.2 Actuation Services

The A services allow the following actions to be taken:
e Add agents to the organisation

e Pause agents in the organisation

5.6. Actor Services and Prototype Interfaces

123

‘ EASE service ‘ Effect Tool

‘ Agent organisation change
Add agent to the or- | Add goal to be imme- | The Boss
ganisation diately perused
Suspend agents in the | Suspend pursuit of | The Boss
organisation goal
Remove agents from | Stop pursuit of goal The Boss

the organisation

Generic pool change

Add agents to the

generic pool

Add capabilities to ac-
tor

Generic Pool Viewer

Remove agents from
the generic pool

Remove
from actor

capabilities

Generic Pool Viewer

Change the intrinsic
priority of agents

Increase importance of
goal in overall actor
behaviour

Generic Pool Viewer

Change constants

Dependant on the use
of the constant

Constant Viewer

Tab. 5.9: The table maps the different actuation services offered by an
EASE actor to the resulting changes in behaviour.

e Remove agents from the organisation

Add agents to the generic pool
Remove agents from the generic pool
Change the intrinsic priority of agents

Change named constants

The A interfaces provide the user with the controls needed to manipulate
the behaviour of the actor. Once the user has decided on an appropriate
change in behaviour, they need to issue the instructions to ensure the ap-
The A interfaces build on A services which in
turn make actual changes to the actor’s internal data structures. The A
services are of two types: those that deal directly with the current agent
organisation and therefore the current actor behaviour; and those that deal

propriate change occurs.

124 5. Adjustable Autonomy for Interactive Simulations

indirectly with the actor behaviour by manipulating the generic agent pool.
Manipulation of the agent organisation produces immediate, but transient
effects on the actor behaviour, i.e., they only last until the contract with
the affected agent is ended. Manipulation of the generic agent pool does
not necessarily have immediate effects on the actor’s behaviour, because the
generic agents are not doing anything, but the effects of such changes are
persistent, i.e., the effects on the actor’s behaviour occur every time the
changed generic agent is contracted.

A interfaces are easy to build because the EASE architecture provides
a solid base. Interfaces that allow flexible, powerful manipulation of actor
behaviour are possible largely because the agent organisation is represented
explicitly at run-time in the agent. The agent organisation represents the
goal hierarchy explicitly making the actor’s goals easy to manipulate. If
the organisation was “compiled” out at design time it would be significantly
more difficult to realize the changes because it would be harder to map the
required changes to the internal data structures.

The social conventions obeyed by the organisation mean that the actor
can often handle the details of user changes, allowing the user to focus only
on the specific aspects that interest them. The idea is that the details and
inter-relationships involved when changing a single agent will be looked after
by the social conventions of the organisation. The relative independence of
the agents from each other (they are related only via contracts and nego-
tiations) is the key factor in allowing the agents (and hence the goals) to
be easily added and removed from the actor. So, when an agent is removed
from the actor, the other agents in the actor (often) do not need to be altered
by the user, though changes managed by the system may occur because of
the changed situation, e.g., another agent may make a state transition to
deal with the removed agent.

This section describes prototype A interfaces that have been built and
the details of the services underlying them. The descriptions of the interfaces
below are only brief, providing just enough information to show the use
of the service. By showing how each of the agent features are used by
different interfaces to provide different controls, we illustrate why the EASE
architecture is an appropriate one for building actors for AA systems.

Manipulating the Agent Organisation

The most commonly used A services allow a user to add, remove or sus-
pend agents (or agent hierarchies) in the organisation of a running actor.
Those services correspond to the user facilities of being able to start, stop

5.6. Actor Services and Prototype Interfaces 125

or suspend the pursuit of goals. The mechanism works effectively because
of the independence of, and teamwork between, the agents, which means
(fairly) arbitrary changes to the agent organisation can be made without
undue disruption to its overall smooth operation.

User manipulation of the agent organisation is done via The Boss (Figure
5.19). To add an agent to the organisation the user clicks “Create contract”,
then uses a dialog box to select which agent to add and instantiate any pa-
rameters of the agent’s contract. To remove an agent from the organisation
the user selects the agent in The Boss and clicks the “End Success” or “End
Failure” button. “End Success” means that before finishing the agent will
report that it has succeeded to its contractor, while “End Failure” means a
failure message is sent to the contractor. The user can suspend an agent in
a similar fashion. We discuss each of these actions in more detail below.

Adding agents

When adding agents to the agent organisation, the user is adding goals
for the actor to pursue, i.e., conceptually each agent added to the actor
corresponds to a goal being added to G,. The goals/agents that are added
are handled in the same way as any other goals of the actor. It is possible
that a whole hierarchy of agents is eventually contracted to achieve the
added goal, e.g., if the user adds a manager to the organisation the manager
will contract other agents in the normal manner.

In the usual case a newly added agent, or its contractees, will result in
some change in actor behaviour due to its involvement in negotiations. For
example, if an agent for flying at some particular altitude is added to the
agent organisation of a simulated pilot, the aircraft might climb (or dive)
to that altitude while continuing to pursue whatever other goals it has.
However, the addition of new goals will not always be so smooth.

If the added agent’s priority is low and there are agents with higher
priority and conflicting goals, the addition of the agent may have no effect
on the actions of the actor because the higher priority agents “win” in the
negotiation.

Alternatively, the effect of adding an agent may be subtle, with a small,
qualitative change in the actor’s behaviour because higher priority, existing
agents can be satisfied by a different course of action than they are currently
taking that also satisfies the newly added agent. That is, the higher priority
agents accept less satisfactory actions because they allow both themselves
and the added agent to be at least partially satisfied. For example, adding
a fuel conservation agent (which dislikes fast turns) to the organisation of

126 5. Adjustable Autonomy for Interactive Simulations

a simulated aircraft actor might result in waypoints being rounded more
smoothly than before. During a turn the agent responsible for getting to
a waypoint will be less satisfied (because it prefers to fly directly at the
waypoint) but both the waypoint and fuel conservation agents will at least
be partially satisfied.

If an added agent (or its contractees) has sufficiently high priority so that
it has a significant say in negotiations it is possible that the achievement of
other goals already in the system are detrimentally effected. That is, if
goals conflict, the lower priority ones (that were already in the hierarchy)
may be unsatisfied by the negotiations to the newly added agents. The result
is that agents that were previously satisfied may now be failing because of
conflicts with (higher priority) added agent(s). For example, originally a low
priority agent for making a simulated pilot actor keep a low profile might
be satisfied by staying at a low altitude, but when another, higher priority
agent is introduced requiring that the aircraft move to a higher altitude the
agent for keeping a low profile might fail.

Removing Agents

The removal of agents from the actor has the opposite effect of adding them
(naturally). The goal that the removed agent was pursuing is removed from
the set of goals the actor is pursuing, i.e., it is removed from G,. Analogous
to the effect of adding goals, the removal of goals could potentially allow
previously failing goals to succeed, i.e., the removal of some engineers from a
negotiation may allow other (previously lower priority) engineers to succeed
where they were previously failing.

If the user removes a manager, the manager’s contractees are also re-
moved, i.e., removing a goal means that sub-goals are also removed. So,
the set of goals that are removed, R, when g is removed by the user is
R={r:r € G, (parent(g,r)V (parent(z,r),z € R))}.

If the removed agent is contracted by another agent (i.e., if the agent
has goal g, —~is_top_level _goal(g)) it is necessary for the ongoing smooth func-
tioning of the actor that before finishing the removed agent informs its con-
tractor that it will no longer be pursuing its assigned goal. The question
is what the contractor should do in such a situation. In keeping with the
No Extra Mechanisms Guideline, we reuse the built in social conventions
of the organisation for this purpose. The agent may send either a success
or failure message to its contractor before terminating activity. The user
decides which message is sent depending on how it wants the contractor to
react to the removal of the agent. In both the success and failure cases the

5.6. Actor Services and Prototype Interfaces 127

messages that are sent are the same as would have been sent if the agent
detected its own success or failure (rather than being removed and having
the success of failure information provided by the user). The two options
give the user the ability to provide semantic information to the contractor
which it can use in its decision making. For example, if the agent’s goal had
become irrelevant the user might specify that a success message is sent so
that the contractor moves onto the next stage of its task.

The contractor agent uses the success/failure information to guide its fu-
ture actions. Clearly, success messages indicate that the contractor should
act assuming that the goal assigned to the (now defunct) contractee has been
achieved. Conversely, failure messages imply that the contractor should as-
sume that the contractee has failed in their assignment and act accordingly.
Precisely what the contractor will actually do will have been specified by
the designer via the use of success and failure transitions in the contractor’s
state machine.

Suspending agents

As an additional aid to users, agents can be suspended. While suspended
agents have no effect on the output of the actor. All contractees of a sus-
pended agent are also suspended. The paused agents can be restarted again
in the same state they were in when they were paused. We will not discuss
this facility in detail because it is functionally equivalent to removing then
adding the same agent to the actor.

Modifying the Generic Pool

The second group of services an EASE actor provides are those for modify-
ing the generic pool of agents available to the actor. These services allow
manipulation of the authority of the actor. They are possible because the
agents which can be contracted for specific goals are explicitly represented
and because the process of finding capable agents is a flexible, run-time pro-
cess. As well as changing which agents are available to be contracted the
user can modify other properties of an agent, including its intrinsic priority
and constants used in its calculations.

The generic agent pool contains the agents which can be contracted
to pursue their specific capability. When dynamic contracting is used the
capability matcher looks in the generic pool for agents with the capability to
pursue the goals they need achieved. (When fixed contracting is used, the
agent that will fill the contract is known at design time.) The existence or

128 5. Adjustable Autonomy for Interactive Simulations

Sodl Kicker
Turn to Ball
Do MNothing
Cash Fast

Goal Kicker

[v¥| Awailable

Open file |

Fig. 5.22: The tool for modifying agents in the generic pool. Unchecking
the “Available” checkbox would mean the “Goal Kicker” agent
could not be contracted. The list on the left shows all the agents
in the generic pool. The slider in the middle allows the intrinsic
priority of “Goal Kicker” to be changed.

otherwise of agents with the required capabilities affects whether contractor
agents can achieve their goals and the details of the contracted agents dictate
precisely how the goal is achieved.

To add agents to the generic pool the user opens the file containing
the agents to be added. Adding agents to the generic pool gives the actor
the authority to pursue the goals the added agents are capable of. Thus,
when the achievement of the goals is deemed useful they can be pursued. For
example, if the user adds an agent for dummy move (i.e., the player pretends
to do something to confuse its opponent), a RoboCup actor, previously
without that authority could now call on it when appropriate. Obviously,
an agent already in the organisation will need to attempt to contract the
agent with this capability for it to be useful. In other words, adding an
agent to the generic pool only allows the actor to contract it, it does not
necessarily mean the actor will attempt to pursue the goal by contracting
the agent.

To remove agents from the generic pool the user selects, via a dialog
box, the agents from the generic pool that should be removed. The agent is
marked “unavailable” so it can be easily reactivated later. When the user

5.6. Actor Services and Prototype Interfaces 129

removes agents from the generic pool they remove the possibility for any
agents in the organisation to contract those agents, potentially removing the
authority of the actor to pursue the goals pursued by the removed agents.
For example, if the user removes the only agent in the generic pool with a
capability to dribble, a RoboCup actor will no longer be able to dribble.

In terms of the definitions in Chapter 2, adding generic agents to the
generic pool gives the actor the authority to pursue the added goals. Hence,
added agents correspond to goals being removed from C,. (Recall C, is
the set of goals the agent may not pursue.) The opposite is true for the
case of removing agents from the generic pool, i.e., it corresponds to goals
being added to C,. An alternative way of viewing this might be to think
of adding or removing agents as changing the actor’s ability to pursue some
goal. However, we prefer the authority view because we believe it is non-
intuitive to change something’s ability at run-time but reasonable to think
about changing its authority.

A combination of remove and add allows the user to substitute one agent
that will achieve a goal by following one course of action with another agent
that will achieve the same goal via a different course of action. For example,
there might be an agent in the generic pool with the capability of dribbling.
That agent might implement, for example, a very cautious form of dribbling
(i.e., keeping the ball close, moving slowly). By replacing that agent with one
that implements dribbling in a very aggressive manner the user can change
how the player dribbles — every time the player needs to dribble. Making
such a replacement allows a user to change the way an actor goes about
achieving goals, i.e., effectively changing constraints on the way goals are
achieved. Table 5.10 gives an example of this type of exchange in a RoboCup
actor. Part way through simulation the user removes the dribble_normal
agent from the generic pool and replaces it with another agent with the
same dribble capability but that dribbles faster. Subsequently, a striker
agent contracts the new dribble_fast agent.

Furthermore, the ability to exchange agents also opens up a neat mecha-
nism for debugging and fixing long running simulations. Agents the are not
functioning correctly can be removed and replaced with updated versions.
Such a capability might be very useful for some applications (Maes 1994b).

Intrinsic Priority The user can adjust the intrinsic priority of an agent
using a “slider” in the generic pool manipulation tool (see Figure 5.22).
This functionality is built on top of the ability to get and set the explicitly
represented priorities of agents. Increasing the intrinsic priority of an agent

130 5. Adjustable Autonomy for Interactive Simulations
Event Striker Contract Generic Pool
State
Waiting watch_ball {dribble_normal, ... }
Ball comes close | Chasing get_to_ball {dribble_normal, ... }
Get to ball Dribbling | dribblecnormal | {dribble_normal, ... }
Opponent near Pass pass {dribble_normal, ... }
Pass succeeds Return to | go_to_position | {dribblenormal, ... }
position
At position Waiting watch_ball {dribble_normal, ... }
User changes | Waiting watch_ball {dribble_fast, ... }
“dribble_normal”
for “dribble_fast”
Ball comes close | Chasing get_to_ball {dribble_fast, ... }
Get to ball Dribbling | dribble fast {dribble_fast, ... }
Opponent near Pass pass {dribble_fast, ... }

Tab. 5.10: An example of how exchanging one agent with another with
the same capability can affect a RoboCup actor’s behaviour.
The first column lists the events that triggered changes. The
second column lists the state of some striker agent responsible
for trying to make the player kick goals. The third column lists
the contracts the striker agent has. The final column lists part
of the contents of the generic pool.

5.6. Actor Services and Prototype Interfaces 131

increases the importance of the goal the agent is pursuing. Decreasing the
intrinsic priority has the inverse effect. Notice that the effects of increasing
priority applies to both engineers and managers. The organisational priority
of contractees will increase (decrease) when the intrinsic priority of their
contractor is increased (decreased). Hence, the influence of the manager
in negotiations is changed by changing its intrinsic priority. The effect of
changing the intrinsic priority of an engineer is directly on its influence in
negotiations.

Conceptually, changing an agent’s intrinsic priority allows the user to
dynamically change the relative importance of different goals. One case
where this would be important is when there are conflicting goals (i.e., agents
in the negotiation that cannot agree) and the wrong agent is “winning” the
negotiation. A change in priority can change the “winner” of the negotiation
by giving agents more or less say in the negotiation.

Zero

Small Angle

Max Satisfaction
Min Satisfaction
Low Satisfaction
Vision Width
Mid Activation
Max Activation

Min Activation

My Goal X

180 degrees

360 degrees

Fig. 5.23: The tool for changing the value of named constants while an
actor is running. The name is on the left, the current value in
the middle and a button for making the changes on the right.

132 5. Adjustable Autonomy for Interactive Simulations

Changing constants Another run-time tool allows the user to change the
value of named constants that the actor is using in calculations (see Figure
5.23). This facility is built over a simple service that allows getting and
setting the values of explicitly represented constants. Named constants can
be used in any agent function, e.g., satisfaction functions, state transition
conditions, environmental priority functions and contract parameters. If the
actor has been well designed, named constants will capture abstract aspects
of the actor’s behaviour. Hence, the ability to change those constants opens
up a wide range of control to the user. Precisely what effects changes to
constants have on the behaviour of the actor will depend on exactly what the
constant represents and how it has been used in various agent functions. For
example, a well designed RoboCup player might have a constant representing
desperation. The constant could be used, for example, as a parameter in
environmental priority functions for shooting for goal and dribbling, e.g., the
higher the desperation the more likely the actor is to shoot for goal in a risky
position and go more directly towards goal when dribbling. Hence, changing
the constant changes how the actor behaves. Thus, the constant captures
an abstract characteristic of the actor’s behaviour which can be changed at
run-time.

Changing constants is functionally similar to the “control panel” ideas in
HCSMs (Cremer et al. 19954) (see Chapter 3) and hence it suffers from the
same limitation, i.e., only those constants explicitly designed in at design
time can be changed at run-time. For example, if the designer has used no
desperation constant the user cannot use the constant to change that aspect
of the behaviour (although, in EASE unlike HCSMs, there may be other
ways to achieve the same change).

5.7 Example

In this section we present an extended example of an EASE actor for the sim-
ulated air-combat domain using Saab’s tactical air-combat simulator (Saab
1998). The aim of the example is to illustrate the breadth and use of the
various A A interfaces, so as to show that a useful AA system has been imple-
mented. The actor’s behaviour is fairly simple so we can focus more easily
on the AA aspects of the example.

5.7.1 The Scenario

Figure 5.24 shows the starting positions of the aircraft in the scenario. An
EASE actor is controlling the aircraft labeled with a “1” in the upper left

5.7. Example 133

Trajectones

Fig. 5.24: A snapshot of the TACSI visualisation at the start of the sce-
nario.

134 5. Adjustable Autonomy for Interactive Simulations

part of the screen. The other aircraft will fly from right to left of screen at a
fixed altitude (they are not controlled by EASE actors). The scenario takes
place over the water just off the east coast of Sweden. When the scenario
begins all the aircraft are in the air (at the same altitude) and fully fueled.

In the example, the actor has control over the altitude, heading and
speed of the aircraft. Low level routines built into the TACSI simulator
perform the very low level details of keeping the aircraft in the air. For
example, built-in TACSI routines might engage the after-burners when the
aircraft does a tight turn. Notice also that the dynamics model built into
TACSI restricts what the aircraft can do. For example, even if the actor asks
for an immediate 180 degree turn the aircraft cannot, and will not, perform
that turn instead it will turn as quickly as the flight dynamics allow.

5.7.2 Actor Specification

Agent File Stop YWatch Factories
Yi¥atch Agents Yatch Transitions Change Constants
Generic Poal

|Examp|e.act |

Fig. 5.25: A snapshot of the “Start control” tool from which the actor and
other tools are started.

Figure 5.25 shows the “Start control”. This is the central tool for an
EASE actor. The EASE actor is started and stopped with this control.
(The “Start” button has changed to “Stop” since the actor was started.)
Other tools are launched by clicking buttons in the window. The name of
the actor specification being used is displayed in the text field at the bottom
of the window. In this case the specification is named Ezample.act.

The user clicks on the “Watch Agents” button to launch The Boss. Fig-
ure 5.26 shows the initial agent organisation, consisting of three agent hier-
archies. At the top is the AC Awoidance list manager. This manager will
contract agents to avoid each aircraft the actor detects.

Second from the top is an engineer called Hard deck which is responsible
for ensuring that the aircraft stays above a certain altitude. The Hard deck
agent has all those states where the aircraft is above a fixed altitude as
its ideal states. Hence, in negotiations, the Hard deck agent will be fully

5.7. Example 135

— Agent Display | -]
ﬁ Active Agents

AC Avaidance (LIST) |

Hard deck {Stay Up)

$ Smooth Manager {Low Priarity) |

Low Priarity Smoocth (Smoocth) |

Sat Trace Trans Trace Act Trace

End Fail End Success Create Cantract

Pause Agent

Fig. 5.26: The Boss showing the starting agent organisation of the actor.

satisfied with actions that lead to the aircraft staying above the minimum
altitude and completely dis-satisfied with actions that lead to the aircraft
going below the minimum altitude. The Hard deck agent’s intrinsic priority
is high and its environmental priority function returns a medium, constant
value.

The final hierarchy, i.e., the one headed by the Smooth Manager, is for
maintaining a “smooth” line for the aircraft. This hierarchy is responsible for
ensuring turns are not too tight and the aircraft does not try to change speed
or altitude too quickly. This hierarchy requests much smoother changes than
are enforced by the low-level aircraft dynamics routines in TACSI.

Maintaining a smooth line conserves fuel, which is a good thing but not
a high priority, unless the aircraft starts running low on fuel in which case
it becomes a high priority. This is modeled by having the Smooth Manager
transition between a state where it contracts a low priority smooth agent and
one where it contracts a high priority smooth agent, when fuel levels become
low. Despite having different priority functions, the contractee agents have
the same satisfaction functions, i.e., their ideal states are those where the
aircraft is not changing speed, altitude or direction too quickly. Notice,
that the same functionality could also have been modelled with a single
engineer which transitioned between states when the fuel level dropped or
with a single engineer with a single state but with an environmental priority

136 5. Adjustable Autonomy for Interactive Simulations

function that depended on the amount of fuel remaining. (The design was
chosen for the purposes of this example.)

The initial agent organisation configuration does not have the actor ac-
tually doing anything, i.e., the agents only prevent the actor from doing
“bad” things but none give it a “purpose”. It is basically a “generic” pilot
specification that needs to be given a mission. Figure 5.27 shows the user
selecting a Patrol Mission agent after clicking on the “Create Contract”
button on The Boss. The mission implemented by the Patrol Mission agent
is to fly to a patrol area about 80km south-south-east of the starting point
then fly a triangular patrol pattern. The patrol is flown indefinitely (there
are no airports in the simulation so landing is not part of the necessary
behaviour of the actor.)

The Patrol Mission agent is a manager which contracts parameterized
agents to get it to each of the mission’s waypoints. The contractees are
found dynamically, i.e., the Patrol Mission agent requests the capability
matcher find an agent capable of getting it to the next way point. The
agents for getting to waypoints will send success messages when they reach
the waypoint. The Patrol Mission agent reacts to the success messages
by cancelling the current contract and creating a new contract with a new
waypoint agent for the next waypoint.

Figure 5.28 shows The Boss after the Patrol Mission agent has been
created. Now the actor has something to achieve and after some simple
negotiation, the actor turns the aircraft toward the patrol area.

— Create Agents | - |1
AC Avoidance

Smeooth Manager

Soto &y

Fly Heading

Fly Altitude

Circle

Low Priarity Smooth
Hard deck

High Priarity Smooth
Patrol Mission

Create H Edit Parameters

Fig. 5.27: The user has selected the Patrol Mission agent to be added to
the agent organisation.

5.7. Example 137

— Agent Display | -] |

ciive Agents

AC Avoidance (LIST)

@ Smooth Manager {Low Pricrity) |

@ Patrol Mission (WP1) |

Sat Trace Trans Trace Act Trace

End Fail End Success Create Contract

Pause Agent

Fig. 5.28: A snapshot of The Boss after the Patrol Mission agent has been
contracted.

5.7.3 Avoiding Aircraft

A short time into the mission, the EASE controlled aircraft detects an air-
craft that needs to be avoided (Figure 5.29 shows the situation). The AC
Awvoidance list manager contracts a specific AC Avoidance agent for the job.
Figures 5.30 and 5.31 show two snapshots of The Boss after the engineer
has been contracted. The first figure (Figure 5.30) shows The Boss with the
visualisation of the hierarchies fully expanded giving a detailed view of the
actor hierarchy, while the second figure (Figure 5.31) shows the hierarchies
collapsed giving a more abstract view.

The AC Awoidance engineer will be satisfied by actions that lead to
either a reasonable “lead angle” to the obstacle aircraft or a reasonable
altitude difference. That is, the ideal states for the agent are those where
the aircraft is either at a much different altitude to, or flying away from,
the obstacle. Such a satisfaction function is very simple, paying no heed to
relative directions of motion, upcoming positions, etc.

The negotiation process becomes more interesting when the AC Avoid-
ance joins because all engineers can no longer be completely, simultaneously
satisfied. (Before the obstacle was detected, the Smooth, Hard Deck and
Go to (x,y) engineers could be easily satisfied by flying directly at the way-
point.) Figure 5.32 shows a trace of the satisfaction levels of the agents as

138 5. Adjustable Autonomy for Interactive Simulations

Fig. 5.29: A snapshot of the TACSI window shortly before the EASE con-
trolled aircraft (labeled “17, at the top) takes evasive actions.

5.7. Example 139

Fig. 5.30: A snapshot of The Boss, with hierarchies fully expanded, af-
ter an aircraft avoidance agent has been contracted to avoid a
detected aircraft.

Fig. 5.31: A snapshot of The Boss, with hierarchies fully collapsed, after an
aircraft avoidance agent has been contracted to avoid a detected
aircraft.

140 5. Adjustable Autonomy for Interactive Simulations

the obstacle aircraft is avoided. Each line on the graph shows the satisfac-
tion level of one of the engineers over time. The mapping between colours
and lines can be seen in the legend in the top right hand corner. The level
of satisfaction that all the agents are at when the snapshot is taken is shown
to the right of the graph. When the snapshot was taken all engineers were
completely satisfied. The line across the bottom of the graph represents
complete dissatisfaction. There are sharp dips in the satisfaction levels of
the Go to (x,y) and Smooth agents as the aircraft makes small turns to en-
sure the obstacle is safely avoided. The dips do not go all the way to the
bottom of the graph, indicating that some compromise was reached so no
agent was completely dis-satisfied. Notice that the high priority engineers,
Hard Deck and AC Avoidance are always completely satisfied. Notice also,
that the dips of the other agents are very brief (less than one second).

The path taken by the aircraft is shown in Figure 5.33. It shows a fairly
smooth curve around the obstacle (which has since moved on). At no time
has the aircraft made sudden movements. This is because of the influence of
the Smooth engineer. Furthermore, a fairly direct path has been maintained
towards the waypoint due the influence of the Go to (z,y) engineer. The
aircraft’s path has a distinct impact from the lower priority engineers, i.e.,Go
to (z,y) and Smooth, despite the deep dips in their satisfaction levels at
different times.

5.7.4 Suspending Agents

So far this example has looked pre-dominantly at the autonomous behaviour
of the actor (with the exception of the adding of the Patrol Mission agent).
The actor could continue to act autonomously but the aim of this example
is to show the usage of the AA facilities.

The first thing we will do is show how the effect of a particular agent on
the overall actor behaviour can be investigated by suspending the behaviour
of that agent. In this case we look at the influence of the Smooth Manager
on the aircraft’s behaviour.

By selecting the Smooth Manager and clicking “Pause Agent” the in-
fluence of that manager is removed. Figure 5.34 shows a snapshot of The
Boss after the Smooth Manager has been suspended. Notice that the whole
hierarchy has been suspended. Figure 5.35 shows a trace of part of the pa-
trol. The longer, smoother turn at the bottom was made while the Smooth
Manager was active while the tighter turns at the top were made when
the Smooth Manager was suspended. In this case the effect of the Smooth
Manager is evident but not extremely strong. The designer might use this

5.7. Example

141

~ Mioewing A

L Cyois Dmin

Fig. 5.32:

worth of negotiation.

A snapshot of the Negotiation Viewer shortly after an aircraft
was successfully avoided. The graph shows about two minutes

observation to alter the specification later on, e.g., by increasing the priority

of the Smooth Manager to make turns smoother.

142 5. Adjustable Autonomy for Interactive Simulations

Trajectories

Fig. 5.33: The scenario shortly after an aircraft was successfully avoided.
The path of the EASE controlled aircraft (on left) is shown with
a trail behind it. Notice the small curve near where the paths of
the two aircraft cross showing the slight turn the aircraft made
to avoid the obstacle.

5.7. Example 143

Fig. 5.34: A snapshot of The Boss with the Smooth Manager agent sus-
pended.

144 5. Adjustable Autonomy for Interactive Simulations

Traksciores

Fig. 5.35: A trace of the aircraft’s path during the patrol. The turn at the
bottom (one long turn) was made while the Smooth Manager

was active and the tighter turn at the top was made while the
Smooth Manager was paused.

5.7. Example 145

5.7.5 Changing Generic Pool

Next we show how the generic pool can be manipulated. The Generic Pool
Viewer is opened by clicking on the “Generic Pool” button on the Start
Control. The starting state of the Generic Pool is shown in Figure 5.36. A
second file of agent specifications is opened, using the “Open file” button at
the bottom of the viewer, and the Generic Pool changes to the state can be
seen in Figure 5.37. Among other things, the second file contains a second
agent capable of getting the aircraft to a waypoint, called Go To (z,y) -
Fast.

G Pool
=
Fry Hisiaiing
High Priotiy Bvemia
Paiml e
Lo= P ity Srmooth
IE I8 [ELES
Hard deck
A3 Rl
Ermoth Marager
Fip At

pan lika

Fig. 5.36: The starting state of the generic pool, showing the ten available
agents.

With two agents in the Generic Pool having the capability of getting
to a waypoint, when the Capability Matcher (on request from the Patrol
Mission agent) looks for an agent with that capability, either will be chosen.
To ensure the “fast” agent is chosen, the “normal” one (i.e., the original Go
to (z,y) agent) is made “unavailable” by clicking on it then unchecking the
“Available” checkbox (see Figure 5.38). This effectively removes it from the
Generic Pool (although it still appears in the window so it can be easily
reinstated.)

Taking the generic agent out of the generic pool does not mean it also
comes out of the organisation. Hence, the instance of the “normal” waypoint
agent, i.e., Go to (z,y), that is currently contracted by the Patrol Mission
agent is still getting the aircraft to its current waypoint. However, when the
aircraft reaches the waypoint the Patrol Mission agent breaks the current
contract and, via the Capability Matcher, finds an agent to get it to the next
waypoint. The Go To (z,y) - Fast is found and contracted. It is actually a

146 5. Adjustable Autonomy for Interactive Simulations

Fig. 5.37: The state of the generic pool after a second file of agent spec-
ifications has been opened. The generic pool now contains 13
agents.

Fig. 5.38: Making the agent Go to (x,y) unavailable to be contracted in
the generic pool.

5.7. Example 147

manager agent and contracts more specific agents for flying towards the new
waypoint and increasing speed. Notice, that the “normal” waypoint agent
was an engineer and the new Go To (z,y) - Fast agent is a manager but
this is OK. In fact, the Patrol Mission agent does not even know whether
it has contracted a manager or an engineer only that it contracted an agent
that can get it to a waypoint. Figure 5.39 shows The Boss after the new
contracts have been made.

— Agent Display \ - |
Ij Active Agents

Sat Trace Trans Trace Act Trace

End Fail End Success Create Con...

Pause Agent

Fig. 5.39: A snapshot of The Boss with the Go To (x,y) Fast manager and
its contractees.

5.7.6 Changing Constants

After the patrol has gone on for some time the fuel level of the aircraft should
start to drop and the Smooth Manager should make a state transition to a
state where being “smooth” is a high priority. However, after some time this
transition has not occurred. The fact that the transition has not occurred

148 5. Adjustable Autonomy for Interactive Simulations

possibly indicates an error in the specification.

To investigate, the Smooth Manager is selected (after first being reac-
tivated) and the “Trans Trace” (i.e., Transition Trace) button is clicked to
see the calculation the manager is doing to decide whether to take the tran-
sition. Figure 5.40 shows the trace. The details of the calculation are not
particularly clear in this case because the details of the calculation have
been implemented in Java code (rather than the Condition Specification
spreadsheet). The third line shows the name of the transition condition
being checked. The fifth line shows the value (10.0) of the named constant
(Low Fuel Level) that represents a low fuel value. Even with the limited
information, the user can quickly work out that the problem is that Low
Fuel Level is in the wrong units and should be 1000.0 instead of 10.0.

—| Transition Trace : Smooth Manager | g |J
Update

iZ hecking Transition 0 of 1

= hecking transition EASE. Senzing.Engine. TransitionCondition@ 1142 544

Calculation named Fuel Low T

Setting sensor function : Fuel Low?

Constant Low Fuel Level evaluated : 10.0

Sensor Fuel Low? returned : false

Calculation fhermefpauscithesisitacsiS pecs/Example/Example.cndFuel Low T returns false
Mot Applicable

State change will net occur

[|5i5:5] . ID

Fig. 5.40: A trace of the calculations the Smooth Manager is doing to
determine whether a state transition should be made.

Fortunately, the Low Fuel Level was created as a named constant. The
user opens up the Change Constants window (see Figure 5.41) and changes
the value of Low Fuel Level to a more reasonable number. As soon as the
value of the named constant is changed the Smooth Manager makes a state
transition. Figure 5.42 shows the situation after the state change has been
made.

Next, the user changes the value of one of the constants representing a
waypoint coordinate. The resulting flight path is shown in Figure 5.43. The
y component of the waypoint is changed to be very far north, so the aircraft
immediately turns slightly to the left and heads (almost) directly north.

5.7. Example 149

Fig. 5.41: A snapshot of the tool for viewing and changing the values of
named constants.

150 5. Adjustable Autonomy for Interactive Simulations

— Agent Display | <
[Active Agents

Sat Tra... Trans ... Act Tr...
End Fail End 5__.. Create ..
Pause

Fig. 5.42: A snapshot of The Boss after the Smooth Manager makes a
state transition. (Notice that the user has also replaced the
Patrol Mission agent with a Circle agent.)

5.7. Example 151

Trajstiopies

Fig. 5.43: A trace of the path of the aircraft when the location of one of
its waypoints is dynamically changed. The “turn” on the right
is actually where the waypoint location was changed to be much
further north, rather than north-east.

152 5. Adjustable Autonomy for Interactive Simulations

5.7.7 User Taking Over High Level Decision Making

If the user wants to take over all the high level decision making of the actor
they need to stop the high level decision making of the Patrol Mission agent.
This is achieved by selecting the agent and clicking on either “End Fail” or
“End Success” buttons. In this case it does not matter which button is used
since the agent has no contractor to send a message to, anyway. Figure
5.44 shows a snapshot of The Boss after the Patrol Mission agent has been
stopped.

— Agent Display | -]l
U Active Agents

AC Avaoidance (LIST) |

- Smooth Manager {(Low Priority) |

Sat Trace Trans Trace Act Trace

End Fail End Success Create Con...

Pause Agent

Fig. 5.44: A snapshot of The Boss after the Patrol Mission agent is
stopped.

Next, the user can get the aircraft to follow a particular heading by
creating a Fly Heading agent. Fly Heading is a parameterizable agent, where
the parameter is the heading the aircraft should take. Figure 5.45 shows
the user creating the agent and instantiating a heading. In this case, the
required parameter existed and was quickly instantiated. In other cases, the

5.7. Example 153

parameter might not exist and would need to be created using the Condition
Specification tool (Figure 5.46). In the example, the user creates a simple
constant, though arbitrarily complex expressions could have been created.
In this case the user decides to make the aircraft go directly east (perhaps
as the first stage of a defection to the east?). Figure 5.47 shows the resulting
organisation in The Boss and Figure 5.48 shows the subsequent path taken
by the aircraft.

Notice that, importantly, the user did not need to plan the low level de-
tails of the aircraft’s behaviour. The AC Avoidance, Hard Deck and Smooth
agents kept performing their functionalities so the user could focus only on
the aspects of behaviour that interested them. For example, if another air-
craft had been detected it would have been avoided by the AC' Awvoidance
manager without further involvement from the user.

=]
- - Gy g

wyl s P i
(LR]

e d g
51y &)
]
B e PEpy SOl
Harl foci
=gh Ml p Savet
[l e ey

|¢—H||!ﬁl—-l'-

Fig. 5.45: Creating a Fly Heading agent and instantiating the “Required
Heading” parameter.

154 5. Adjustable Autonomy for Interactive Simulations

Cordition Specification
Fim L] Edr
e — —
......... | Paimi e -
Divdeval -ﬁ
B [rarms pa sy im0 pac s © e u“r--ll
B]
LEL T A P O ma s
WO B
WRLE f ey
i — TR T 1l
ol / i
= WP e I
.
Cmrmi Do Himiony Lol -t T :
=T i
=t [e £
Pebar ol i g s Bl o vl
et i (T

LU ey Wl y

&0 Mierasd 8 peed (Fsrgrie

- i
L T
F Bz
4 [e p sscy na e 5 pacn © mnpiss E e
i @a Ta fesdeg Sai (xemee
i raw Ceoe Sai E g
I Srxii. Sai Eoampad -
ST T T IR T I T

Fig. 5.46: Condition Specification tool for specifying calculations to be per-
formed by the actor.

5.7.8 Detail Traces

Finally, we look at the tools that allow a detailed examination of the actor’s
behaviour.

Figure 5.49 shows in great detail how the Go to (z,y) engineer calculates
that for a suggested heading of -146 degrees it is 99.8% satisfied. Each line
in the calculation shows an intermediate result. For example, the waypoint
positions, WP1X and WPI1Y, can be seen to be both 0.0. A “complex”
sensor Head to (z,y) takes the suggested heading, which is -146, and the re-
quired waypoint and returns a satisfaction value, i.e., 99.81. This “complex”
sensor has been implemented in Java so the details of that calculation are
not shown.

Figure 5.50 shows a small part of the trace of events that occurred in the
agent organisation. This particular snapshot shows some state transitions
that have occurred in the organisation. Notice that where agent names
should appear “??7?” appears instead. This is because at the level of the
state machines (from where this information comes) the agent’s name is
not known. This is a simple example of how not representing information
internal to an actor can cause difficulties for AA (though it is a reasonable

5.7. Example

155

— Agent Display | A

[Active Agents

?

Sat Tra... Trans ... Act Tr...
End Fail End 5__. Create ..
Pause

Fig. 5.47: A snapshot of The Boss after the user adds the Fly Heading

agent.

156 5. Adjustable Autonomy for Interactive Simulations

Trasciories

= e

Fig. 5.48: The route taken by the aircraft after the user stepped in and
started making high level decisions. Notice the turn to the east
near the left of the screen.

5.7. Example 157

Satisfackon Trace - Go o (vl

U p=timin

e P imneiiasa i
i BT]l A e T e el o e P b sl e e oo Heed W s el
Laing laciary Actiar

akcuision nemed Hasd @ &y Sal

ailing mrecr farcion : Heed T3 4]

araianl WK s laked | DD

' T e e 0 DU

LU T R S L L)

Farain WE LY ssabeniel DD
FamTaiEr T e bovias o 00
Fammaiar Saquiesd ¥ swiaiss iz 34

aciory raggemioe BUEGE ST O R ol Hoed ing s/muedor o <1480

aralan Jan embaked | ED

e A g FIuS =il -12h 3 A U el B -1 D
Hesd oo Gophrenaresd 880815 SR TR
o i k] e (TR L e A Ao B peea e e carepds cred Hssd 50) Rl s S50 36077 S 8 TR
(S i mlacion vl @ BOUR1 4TS 30 S0 EA

Fig. 5.49: A trace of a Go to (x,y) engineer’s reasoning for its satisfaction
with the selected actor action.

software engineering decision to decouple the agents for their state machines
so other decision making mechanisms could be easily added).

The last snapshot in this example, Figure 5.51, shows a trace of the
calculation the Hard Deck agent performs to calculate its environmental
priority. The environmental priority part is a calculation using the named
constant “Max”, which evaluates to 100. The intrinsic priority component is
50. This agent has no contractor (i.e., parent) so there is no organisational
priority component. The overall priority of the agent is calculated as 5000.0.

Summary of Example The example has illustrated some of the AA func-
tionality in a simple patrol mission for a simulated pilot. We showed agents
being added, removed, suspended and changed at run-time. The example
aimed to show the functionality of some of the AA facilities rather than
showing how they would be used in a real situation.

158 5. Adjustable Autonomy for Interactive Simulations

9% changed Trom Er muole ko Ao oJ b kg ELEE Ergirm Trr = ALAETY
Ca kvl ion e &1 AT Q) T
ol) e Pt B Pl | A0 el P Doy
AP n WO L el i DD
P e X bt o 00
Fammaiar X coar of s ypo el asaheriss mc 00
raiant W Y o baeied - DD
Fammaiar ¥ wmbrianin: 00
Famvaiai ¥ coarl ol muypoic]l ambales . 0.0
Pl o] vl T B DL e M
BT T TV . Pl At i Do i i E o ol 1 WF Qg T TR e

% chargad bom WP ko WED tacsesss 4§ conrecis sscrmsd ing fwssd on will cocar

TTchangs lrem D mulw ko Srved becovss Shecking fessdion E45E Eemeing Engia Tmfcnlomd ol 1 B

Eula | e Aaved G WP gl T
BV S P g B | AL T L
reEland TR Ewa kintad 1AL D
o e X e e toc 103E0LD
Fammaiar X coord of wE ypoi vl s kedes b 101000
Eaorsian WETY e baled | TEHED
FamTelai ¥ om bk o 10IHLD
WA T im0 o vl e B sl b b T TOER0 0

T da] wll o0 B) G T
Eulaimn e L crad &l ‘W) T miwra ines

7717 changsd lrem YWPI ko WP bacwsrs &1 conmmcts wecesd ing tesed ion will eooar

g Efg) e Tl irflanilo il ey | E bl

T b 1o B Wuke b Siiieed 3 Pl i ¥ EREE
WL e)W gLy T
Biing s raar lrcien - Al eASTON DY)
[ECaraiani B i asnianied | DD
Fammaiar ¥ asbaiss o 00
Fameiar K coord o smypoicl ssmbaiss o 00
Caralan WFZY awbaled | TOHED
AT T e b D0 1GEDD
00 TR M T o T ol e ol RS T TORC0LD
rr] ol e i P R Tl L
Euinion o usc S et oy Coema T amps o bl 'WF Ep] T mioms isea

T chargel lem WP o WP s L0 confiechy weccoed ing essdion wilf ooon

L e En ks s -- ELAE B I

Fig. 5.50: A trace of some of the changes in the agent organisation and the
reason for those changes.

5.8. Limitations 159

— Priority Trace : Hard deck | - |

Update

Calculation named Max

Constant Max evaluated : 100.0

Calculation fhormel pauscithesisitacsiSpecs/Example/Example.cnd Max returns 100.0
Envimport : 100.0

Instrinsic priority . S0.0

(Total priority : S000.0

_Agent has no parent

Fig. 5.51: A trace of a Hard Deck engineer’s reasoning for its priority.

5.8 Limitations

EASE is a good architecture for straightforwardly building powerful AA
functionality. Straightforward mappings exist for things like changing goals,
changing capabilities, changing priority, etc. However, there are aspects of
an actor’s behaviour that are considerably harder to understand and change.
We have presented some of these in the description of the system, e.g., the
problems with a non-deterministic negotiation algorithm, and briefly look
at some others here.

A feature of behaviour based style architectures (like this one) is that
some observed behaviour may be an emergent property of the interactions
between several behaviours (in our case agents) and the environment. Such
emergent behaviour does not have an explicit representation in the actor,
hence is difficult for Z to present to the user and A to (intentionally) change.

Some (often abstract) properties of the actor’s behaviour are not rep-
resented, because they were never explicitly captured at the design stage.
For example, the aggression of a simulated pilot might not be explicit in
the specification, hence will not be easily available for presentation by Z
and changing by A. Such information could be captured by appropriate
use of named constants however, in a violation of the Design Information
Guideline, it is likely to be fairly common that not all abstract aspects of
behaviour will be represented. Those that are not represented are hard to
view and change at run-time.

The ability of the user to predict what the actor is going to do is limited
by the ability of both EASE and the user to predict changes in the envi-
ronment. That is, the user can never know exactly what the actor will do

160 5. Adjustable Autonomy for Interactive Simulations

because they cannot know what will happen in the environment. EASE has
no explicit model of what it expects to happen in the environment, so it is
difficult to present to the user a picture of even what is likely to happen
in the environment and hence to the actor’s behaviour. Such a limitation
might be important for safety critical applications where it is very important
for the user to anticipate and counter any problematic behaviour.

Our use of the AA tools discussed above, has shown that the speed and
dynamic nature of the domain sometimes makes it very difficult for the user
to make changes in time to be effective. This is partially a problem with the
interfaces which are not always very efficient to use but also a fundamental
property of the environments. For example, by the time the user realizes
a RoboCup goal-keeper is not going to come off the goal line to attack a
striker with the ball it may be too late to make a change that will force it
to. It is quite noticeable that it is much easier to make effective changes to
the slightly less dynamic TACSI actors than in the more dynamic RoboCup
ones. Since the underlying speed of the environment is fixed it may not be
possible to build any system where the user has useful control at the lowest
levels of abstraction.

5.9 Other Behaviour/Agent Based Actor Architectures

To conclude this chapter we very briefly review some of the literature regard-
ing actor architectures with a similar philosophy to EASE. Other Directed
AA applications were discussed in Chapter 3, here we look only at some
background to the behaviour based style of architecture.

Actor architectures aiming for emergent intelligence without having a
central reasoning centre primarily developed from the seminal work of Brooks
on subsumption architectures (Brooks 1991a,b). Similar work by Minsky
also described how a society of simple agents could produce intelligence
through their interactions with one another and their environment (Minsky
1988).

Subsumption architectures were a radical departure from mainstream Al
ideas that careful, abstract centralized reasoning was required for intelligent
behaviour. Subsumption architectures use a set of fairly simple behaviours
interacting via primitive controls (i.e., subsumption) and the environment.
In such architectures an actor is decomposed in a behaviour oriented man-
ner rather than a functionally oriented one (Steels 1994). The observed
behaviour of the actor is an emergent property of simple behaviours inter-
acting with each other and with a complex world. Subsumption architec-
tures depart from the assumption that the agent should (or could) maintain

5.9. Other Behaviour/Agent Based Actor Architectures 161

an accurate, abstract model of the environment with which to reason. In-
stead, each behaviour (at least conceptually) senses and acts in the world
independently, sensing only what is required to achieve its specific task.

Early successes of the subsumption approach resulted in many others
following the ideas. A good summary of the key properties of behaviour
based systems can be found in Mataric (1992). Mataric (1994) developed
groups of behaviour based robots for her PhD thesis work. Parker (1998)
also worked with behaviour based robots, focusing on fault tolerance and
team behaviour with hierarchical arrangements of behaviours. Blumberg
(1997b) uses hierarchical behaviour based architectures to produce interest-
ing character behaviour, usually of animals, for interactive theatre appli-
cations. Tyrell (1993) returned to the biological inspiration for behaviour
based systems by sticking closely to ethological models in his realization of
a behaviour based system.

Inspired sometimes, by Minsky, other authors have used simple agents,
instead of behaviours, working together to produce complex behaviour (Ger-
ber et al. 1999, Neves & Oliveira 1997, Nakashima & Noda 1998), although
the basic ideas are essentially the same as behaviour based systems. The dif-
ferences between agents and behaviours are subtle, the key difference being
that agents are slightly more independent and autonomous than behaviours
(MacKenzie 1996). Using agents instead of behaviours clouds the border
between behaviour based agents and distributed AI because the agents need
not be physically co-located. Ossowski’s agent-based ProsAs architecture
is a good example of an architecture that could be looked at either as a
distributed Al system or a single behaviour based actor controller that uses
agents instead of behaviours (Ossowski & Garcia-Serrano 1999). Agents
seem to provide a better metaphor for inexperienced users to understand,
hence agent based architectures have been used as the basis for creating
complex behaviour in several end-user development tools, e.g., AgentSheets
(Repenning n.d.) and ToonTalk (Travers 1996).

EASE has the same basic ideas as all these architectures. We chose
to think of our components as agents instead of behaviours because agents
seem to provide a better metaphor for end users to understand the ac-
tor’s behaviour. EASE is probably simpler than most of the architectures
mentioned above, mainly because the simplicity aids the effective imple-
mentation of AA. This may mean that EASE cannot produce as complex
behaviour as some other architectures but it also makes the architecture
easier to work with, especially when changes are needed at run-time.

162 5. Adjustable Autonomy for Interactive Simulations

5.10 Summary

In this chapter we have described EASE, an end-user system for building ac-
tors for interactive simulations. EASE uses a hierarchical society of agents,
explicitly represented in an actor, mirroring the goal hierarchies of the ac-
tor, for decision making. Agents at the bottom of the hierarchies negotiate
with each other to decide on concrete actions of the actor. EASE has been
designed with AA in mind from the earliest stages of development. At run-
time, a user has access to a wide range of information about the reasoning
of the actor and a wide range of controls to change the actor’s behaviour
while it continues to run. That powerful AA interfaces supporting Directed
AA can easily be built is due to characteristics of the underlying architec-
ture. Since the guidelines were followed, the simplicity of the AA interface
implementation can be seen as support for the utility of the guidelines. The
extended example showed that the user does indeed have a wide range of
control over the actor’s behaviour at run-time.

6. ADJUSTABLE AUTONOMY FOR PERSONAL ASSISTANTS

An exiting use of intelligent agents is to streamline everyday processes in hu-
man organisations (Tambe, Pynadath & Chauvat 2000). Agents, acting as
personal assistants, can find information, make purchases, filter email, order
lunch and perform a variety of other routine tasks on behalf of their human
user (Maes 1994a). Furthermore, teams of agents can work together, each
agent acting on behalf of one user, to streamline co-operative processes in a
human organisation. Figure 6.1 shows the conceptual relationships between
the agents and humans in a multi-agent system for human collaboration.
Teams of agents can coordinate the activities of their users, balance sched-
ules, arrange meetings and so on. The aim of the agents is to free up their
user’s time for more productive, knowledge level work.

- - /”m
‘\\MO\QMO\Q

S gt
AN

Communication

%

Human Team

3

Human

Fig. 6.1: A conceptual visualization of the relationships between humans
and agents, human teams and agent teams.

164 6. Adjustable Autonomy for Personal Assistants

A human organisation is an extremely challenging domain for even the
most intelligent agent to always act appropriately. The complexity of human
behaviour and the intricate and unpredictable social interactions between
people provides a challenging environment for intelligent humans and an
even bigger challenge for intelligent agents. Furthermore, despite an array
of high tech sensors and communication devices (e.g., Palm Pilots, GPS,
WAP-enabled phones), it is not always possible or convenient for agents to
know the location of particular users and certainly not possible for agents
to know their user’s intentions. Even if an agent does have an accurate
picture of the world and a good understanding of organisational procedures,
choosing actions that actually improve the running of that organisation is
far from trivial.

It is simply not reasonable to expect that agents can act autonomously
in a human organisation without occasional, costly mistakes being made
and without personal preferences being occasionally “bulldozed” by the au-
tonomous agent. The dilemma is to try to take advantage of the strengths of
agent technology without suffering for its weaknesses. The ideal situation is
to have agents acting when their actions will be useful but leaving decision
making to humans when agent actions are more likely to have undesirable ef-
fects. Introducing Adjustable Autonomy (AA) into a human collaboration
agent system provides a mechanism that can allow the limitations of the
agents to be avoided while letting the agents use their capabilities to help
users with everyday tasks. Thus, the aim of the AA is to remove autonomy
from agents when their behaviour is not useful, but give agents autonomy
when their behaviour helps the running of the organisation.

In a human collaboration system, agents will be working around the
clock in the service of their users. An important implication of this is that
autonomy reasoning (R) must be performed by software because the users
will not always be around to make decisions. R needs to identify agent
actions that are likely to be costly, annoying or otherwise undesirable and
stop agents from taking those actions. When R is deciding whether an agent
should be able to act, many factors need to be considered, including the
potential costs and benefits of the action, potential mis-coordination with
the team, trust and timing. However, R needs to be performed in the same
complex, dynamic, inaccessible environment as the “core” agent decision
making. Thus, R must also deal with things like uncertainty, incomplete
information and unpredictability.

The remainder of this chapter is organised as follows. Section 6.1 gives
an overview of the functionality of the E-Elves, a fully deployed agent system
for human collaboration. The description of the E-Elves sets the context for

6.1. Electric Elves 165

the rest of the chapter. Then we look at what AA means in such a human
collaboration context, highlighting the important issues that arise for AA
developers. Section 6.3 gives a high level description of the design of the
E-Elves system. Section 6.4 looks in more detail at the implementation, in
particular showing how the system design meets the guidelines from Chapter
4. Evaluation of the influence of the guidelines on the ease with which AA
can be implemented is in the next chapter. Section 6.5 gives some results
of the E-Elves in actual use. The chapter concludes with a look at some
related work.

6.1 Electric Elves

\

Ament i | Agent

l'i'-i' ¥ | .-5 'r_“?':'."'_

[nruulmumuﬂ
' brvaade ast o _:

A

Agenl

Fig. 6.2: Basic architecture of the E-Elves. Agent proxies, supporting their
users activities, communicate via broadcast nets.

The E-Elves, is a fully deployed multi-agent system supporting human
collaboration. The E-Elves has been in use at the University of Southern

166 6. Adjustable Autonomy for Personal Assistants

Fig. 6.3: Dialog for delaying meetings. R has decided that the human
should decide what action should be taken. Friday is asking the
user, via a dialog on their workstation, what meeting delay action
should be taken (if any).

95| sow perants|

Fig. 6.4: Friday, the user’s agent proxy, reporting that is has ordered dinner
from California Pizza Kitchen.

6.1. Electric Elves 167

California since June 2000. The E-Elves framework described below is due
primarily to the efforts of Milind Tambe, David Pynadath and others at
the University of Southern California.! The system consists of around 15
agents. Ten of the agents are prozies for human users, while the other agents
perform a variety of auxiliary functions, such as interfacing to a calendar
tool. Each proxy is called Friday (from Robinson Crusoe’s servant Friday)
and acts on behalf of a single user. Agents are members of various teams,
mirroring the way their user is a part of different (human) teams. The agents
communicate with other agents in their team via a broadcast net (see Figure
6.2). The agent team works around the clock, every day of the year to help
facilitate the continuous smooth operations of the research group.

In the remainder of this section we describe the functionality of the
system and discuss some of the problems that arise in everyday use. In sub-
sequent sections we present our technical solutions to the problems, focusing
on the AA services and their implementation.

The ultimate goal of the E-Elves project is to build agent teams that
assist in all an organisation’s activities, enabling coherent, robust attain-
ment of dynamic mission goals and swift reactions to crises (Chalupsky
et al. 2001). Results of the E-Elves work are potentially relevant to a va-
riety of organisations, including the military, disaster rescue organisations,
corporations and research institutions. For example, in a crisis, such as
a natural disaster, E-Elves-like agent teams may help an organisation to
urgently locate relevant personnel, coordinate their movement to the cri-
sis site, coordinate the shipping of their equipment, provide them with the
latest information, etc.

The current implementation of E-Elves includes a range of functionality
for helping users with everyday tasks. Friday can delay meetings (see Figure
6.3), order meals for its user (see Figure 6.4) and volunteer its user for
different roles, such as the role of meeting presenter. To help users find
each other, Friday posts its user’s probable current location on a web page
(see Figure 6.5). Teams of agents can fill open roles in the group and re-
schedule meetings. The functionality of Friday, and the E-Elves in general,
is continually being expanded, with new tasks being assigned to the agents
as the capabilities become available.

If a user is delayed to a meeting, Friday can request that the other Fri-
days (i.e., proxies for other users) reschedule the meeting. If the meeting is
rescheduled, each Friday informs their respective human user of the change.

! The author visited the group for six months in 2000 and worked with the group to
improve the AA capabilities of the system.

168 6. Adjustable Autonomy for Personal Assistants

E [
Fim Ecdl Vew @G0 Commnicior Halp |

R B R R - - -~ — _'|

Elves system Ranjit Noir |

has been Current Lacation; not_ISI Office: 949 (Ted: x88762)

running o

continuously Email: noiri@is edu

Sce Information posted at 14:28 on 0309701

-

lst JUNE 2044

Friday People
Locator
Service

Current Users

AT ~.5'|

Fig. 6.5: A webpage showing that Ranjit Nair is not currently at ISI (as
of 14:28 on 03/09/01).

6.1. Electric Elves 169

Friday uses mobile devices incorporating the Global Positioning System
(GPS), as well as workstation activity, to reason about the user’s current
location. Due to limitations in these sensing abilities, Friday’s reasoning
about the user’s location is somewhat uncertain. Simple spatial reasoning is
used to reason about whether it is possible and/or likely that the user will
get to upcoming meetings on time. Even if such spatial reasoning does not
preclude the user arriving on time, Friday’s model of the user’s behaviour
might suggest that the user will arrive late. A common example of such
reasoning is for Friday to decide, just before a meeting, that a user not yet
at the department for the day is likely to be late. Once Friday determines
there is some reasonable probability that the user will be late, it needs to
determine what (if anything) it should do to minimize inconvenience to all
meeting participants, while maximizing the probability that the meeting
will occur. We look at the details of this decision making process in Section
6.4.2.

The agent team acquires knowledge of upcoming meetings via communi-
cation with commercial meeting calendar software, wrapped with an agent
proxy. Team plans require agents (and eventually their users) fulfill different
roles in the meeting, e.g., the role of presenter. The team auctions off open
roles to find suitable candidates. The auction mechanism allows the team to
consider complex combinations of factors (Boutilier et al. 1999) and assign
the best-suited user to the role. Fridays communicate bids to one other and,
as a team, decide which is the best bid. In the current implementation a
bid has two parts: the user’s willingness to take on the role; and the user’s
capability for that role. A capability matcher (also implemented as an agent)
manages data about the capabilities of the users to perform different roles.
Friday looks up its user’s (binary) capability to perform the role and sub-
mits a capability bid to the team. The user usually inputs the willingness
part of the bid manually but Friday can make a decision autonomously if
time pressure is high. Figure 6.6 shows the auction tool that allows human
users to view auctions in progress and intervene if they so desire. Notice this
is a wisualisation of the auction, not an integral part of it. In the auction
in progress in Figure 6.6, Jay Modi’s Friday has bid that Jay is capable of
giving the presentation, but is unwilling to do so. Paul Scerri’s agent has
the “best” bid (i.e., capable and willing) and was assigned the role.

Friday communicates with its user using wireless devices, such as per-
sonal digital assistants (PALM VIIs) and WAP-enabled mobile phones, as
well as via pop-up dialogs on the user’s workstation. Figure 6.7 shows a
PALM VII connected to a GPS device, for tracking users’ locations and al-
lowing communication between users and agents, even when the users are

170 6. Adjustable Autonomy for Personal Assistants

TEAMCOREZD presenter
team-team
fgent capability willinaness Overall
Paul scerri 1.0 1.0 1.0
David Pynadath 1.0 0.0 0.3
Milind Tambe 1.0 0.0 0.3
ay Modi 1.0 0.0 0.3
Shriniwas kulkarni 0.0
Hyuckechul Jung 0,0 0,0 0.0
Lei Ding 0.0 0.0
Takavuki Ito 0.0 0.0
Ranjit Mair 0.0 0.0
ather—friday 0.0

Assian |

Fig. 6.6: The E-Elves auction tool. The top left corner shows the meeting
involved in the auction. To the right of the meeting name is the
role being auctioned. Underneath the meeting name is the team
that will attend the meeting. Empty spaces in the bid information
are where information has yet to arrive.

6.2. AA in Human Collaboration 171

away from their desks. Communication via each of the different devices has
different costs. For example, sending a message to a WAP phone is finan-
cially expensive and potentially quite annoying. On the other hand commu-
nicating via a workstation is financially free and, usually not a significant
annoyance. The cost of communication needs to be taken into account by
the agents and by R.

Fig. 6.7: Palm VII connected to GPS device.

6.2 AA in Human Collaboration

AA is an essential part of a human collaboration system because it is re-
sponsible for minimizing the negative impact incorrect agent decisions may
have on their users. The role of the AA is to remove agent authority when
agent decisions are likely to be costly and wrong but allow the agent to

172 6. Adjustable Autonomy for Personal Assistants

act otherwise. The basic aim of the AA is to maximize the autonomy of
the agents while minimizing their harmful actions. Clearly, the more au-
tonomous Friday is, the more time it saves its user. If Friday can correctly
delay meetings without the user having to call or email other meeting par-
ticipants user time is saved (or other participants time saved if the user was
not in a position to inform the others). If Friday can, correctly, bid in an
auction for a role without having to actually ask the user, time and effort of
the user is saved. However, each time Friday makes a mistake the user may
be badly effected.

In general, the AA is designed to have Fridays taking actions because
this is what saves user’s time — the user should only be consulted if there
is a potential problem with agent decision making. Two types of problems
potentially require autonomy to be taken from Fridays: technical and social
problems.

Technical problems are caused by limitations in the technology the agent
is using, including the limitations in sensing and actuation capabilities. For
example, Friday may not always be able to detect the user’s location or
detect whether a meeting is actually occurring. Such technical limitations
cause corresponding problems in Friday’s decision making. For example,
a meeting could be delayed because Friday wrongly believed the user was
away from their office.

Social problems are those where agent decisions are wrong in that they
contradict social conventions or norms. Such mistakes are caused by the
differing, (often) unknown preferences and intentions of unpredictable users
and the implicit, sometimes contradictory social conventions that govern
their behaviour. For example, some people may prefer to inform other
meeting attendees when it is likely they will be a few minutes late for a
meeting while other users might believe that the notification is more incon-
venient than the short delay. Other social conventions like, perhaps being
more likely to attend a meeting on time with someone more senior than with
someone more junior are not (and probably should not be!) written down
in way agents can use them. Friday should try to respect such preferences,
but if this is not possible, autonomy should be relinquished.

So R should look for both social and technical problems with the aim
of withdrawing agent autonomy whenever either type of problem occurs.
Although humans as well as agents will sometimes make such mistakes, we
assume that it is always strictly better for the human to make a mistake
than the agent. Notice also that the user might preempt Friday by explicitly
requesting a particular action be taken. This is outside the framework of
the AA, hence we do not consider the possibility in detail below.

6.2. AA in Human Collaboration 173

6.2.1 Issues

A wide variety of different factors need to be considered when developing AA
for human collaboration environments. Sometimes the factors are conflicting
and need to be reconciled intelligently under different circumstances. In
the following we consider some of the most important considerations when
building AA for human collaboration systems.

Cost Friday has the potential to make costly mistakes when acting autono-
mously. For example, if Friday volunteers an unwilling user for a presenta-
tion, the user has to either actively retract the offer or do the presentation
— either option wastes the user’s and the organisation’s time. Similarly, if
Friday incorrectly orders lunch for a user, financial cost is incurred by the
user.

It is not only autonomous actions that are potentially costly. When
R decides that the human should have responsibility for a decision there
are costs incurred by both use of the communication medium and in the
disruption to the user. Furthermore, sometimes inaction can be costly to
the organisation (see below). Hence, not only do we need to consider the
costs of actions Friday or an agent team will make, but we also need to
consider potential costs of R decisions.

Uncertainty Friday faces significant, unavoidable uncertainty when making
decisions. Some uncertainty is due to incomplete physical sensing, e.g., is the
user really at their workstation? Other uncertainty arises because human
behaviour is unpredictable, e.g., does the user intend to attend the upcoming
meeting? Hence, any decision Friday makes has some (often significant)
probability of being different to the one the human would make if asked to
decide.

The same sources of uncertainty are also present for R, i.e., R cannot
be sure that the information it is using is correct, nor can it be sure that its
decisions are going to be without cost. Therefore, R must take into account
the possibility that its information is wrong and that situations do not turn
out as expected, hence it must consider the consequences of its actions if
the environment is not as it believes.

For some decisions Friday, or the agent team, will have options which,
on the basis of information available cannot be differentiated. A common
example is when two or more users submit exactly equal bids to an auction
for some role. Deciding which user to assign could be resolved randomly by

174 6. Adjustable Autonomy for Personal Assistants

the software (and sometimes is) or it could be referred to human users, who
may have more information to bring to bear on the decision.

Teamwork The problems presented by the human collaboration domain
are compounded by the fact that agents and humans work in teams. The
issues raised by involvement in a team can be divided into two groups. The
first group of issues are those that are brought about because the team
members must coordinate their actions. For example, an agent cannot wait
indefinitely for a user to respond because other team members might be
waiting. The second group of issues are related to group decision making.
Because the agent team can make decisions as a group, the AA needs to
deal with potential problems with group decision making. For example, the
agent team decision about who will fill a certain role may be both wrong
and costly in some cases, which implies that the particular decision should
have been left to the human team. Hence, AA must be applied to group
decision making as well individual decision making. We look in more detail
at the two types of decision below.

The first type of team issues are those that arise because the team should
maintain coordination. A challenge for individuals in team settings is to
avoid mis-coordination with teammates when transferring autonomy, while
simultaneously minimizing the risk of costly errors. In particular, Friday
should not wait for user input, thereby inconveniencing other team mem-
bers, if it could make a reasonable decision autonomously. For example,
one approach to R uses uncertainty as the lone rationale for transferring
decision-making control, relinquishing control to humans whenever uncer-
tainty is high (Gunderson & Martin 1999). In a team setting, the agent
cannot transfer control so simply. For example, consider Friday’s responsi-
bility to request the rescheduling of a team meeting if it thinks its user will
be unable to attend on time. Rescheduling is costly, because it disrupts the
schedules of the other team members, so the system can ask the user for
input in an attempt to avoid making an unnecessary rescheduling request.
However, while Friday waits for a response, the other users will wait in the
meeting room — if the user does not arrive, other users will waste their time,
while Friday sits idly by, doing nothing. On the other hand, if, despite the
uncertainty, Friday is allowed to act autonomously and informs the others
that its user cannot attend, then its decision may turn out to be a grave
mistake if the user does attend. Thus, R must weigh possible team mis-
coordination while waiting for a human response against possible erroneous
actions as a result of uninformed decisions.

6.2. AA in Human Collaboration 175

The second type of team issue is related to group decision making. De-
spite appropriate local decisions by individual agents, the overall team of
agents can potentially make global decisions that are unacceptable to their
counterpart human team. Because each agent has only local knowledge,
when making their decisions they cannot know for sure the effect of their
decision on team decisions. The most common example of this in the E-
Elves occurs when individuals are bidding for roles. When the presenter
role for the group’s weekly research meetings comes up for auction, each
user individually considers whether they have time, material, etc., to do the
presentation. During busy times of the year, many users might be unwilling
to present week after week. Maybe the same one (not busy) user will sub-
mit willing bids week after week and, hence, the agent team would select
the same presenter week after week. To have the same presenter week after
week is unacceptable at the team level because it defeats the purpose of
the meetings (which is to keep the group informed of each others research).
However, the agent team has few other options as it would have to be very
bold to assign as presenter a human user who specifically said they were
unwilling. So, while each agent acted benevolently and honestly, because its
decision was based only on local knowledge, the result for the team was poor.
The agent team can not make good decisions under all conditions, hence,
for the smooth running of the organisation, it should not be allowed to. In
such cases, the human team needs to be given responsibility for making the
team decision. Thus, it is clear that AA is not only required for individual
decision making but also for team decision making.

Learning Learning allows agents to adapt themselves to the changing pref-
erences, work habits and environment of the user (Maes 1994b). Learning
plays an important role in improving the ability of both R and Friday to im-
prove the running of the organisation. For Friday, learning helps to improve
core decision making, e.g., whether a delay or a cancellation of a meeting is
most appropriate under particular circumstances. Learning in the AA helps
improve its ability to make effective autonomy decisions. For example, users
have different preferences about when Friday should refer decision making
to them and when Friday can make a decision. In particular, some users
will prefer Friday makes more decisions (and hence takes more risks) while
other users, wanting more control, prefer Friday to ask them whenever there
is any potential for a costly mistake.

However, when AA (and agents in general) are used in real-world envi-
ronments it is important to protect users against temporary learning aber-

176 6. Adjustable Autonomy for Personal Assistants

rations. Noisy data is a common learning issue, in any environment where
agent sensing is not perfect or complete. However, in environments where
mistake are potentially costly it is important that noisy data does not cause
(even) temporary problems. For example, if the user cancels two Monday
morning meetings the agent should (probably) not learn to cancel all Mon-
day morning meetings because it is likely to be a simple coincidence that the
meetings were cancelled rather than a user trait that should be learned. No-
tice, the problem is not that Friday will never learn the right thing, rather
that it may do incorrect things, that negatively impact the user, while it
learns. Because learning problems can cause real harm to users, mecha-
nisms need to be employed to protect against them.

R in Software A fundamental aspect of using agents to streamline activities
in organisations is that the agents will sometimes be acting even when their
users are not available to provide input. This simple property means that
humans cannot be relied on to do R, i.e., because we cannot rely on having
a human around at all times we cannot rely on humans to interact with
the agents when something goes wrong. In fact, the system will not even
know for sure whether the user could respond to a specific request in a
timely manner, in part because its sensing of user location is incomplete
and it will not know for sure where the user is. Hence, software, with all
its inherent limitations, is responsible for deciding which actions Friday can
take autonomously and for which the user should be consulted.

Having R performed by software constrains all other AA design deci-
sions. In Directed AA, the human is often relied on to supplement AA
information collection (Z) with things like “common sense” and an ability
to draw implicit information from a data set. In E-Elves there is no such
luxury because a human is not performing R. For example, once, an earlier
implementation of R in E-Elves delayed a meeting by five minutes — nearly
fifty times in a row. This would not have happened if a user was performing
‘R because clearly a sequence of fifty short delays is nonsensical.

Everything the AA can do must be provided for in code. For exam-
ple, software cannot reason about the impact of someone’s house burning
down on the likelihood of that person getting to a meeting on time unless
it knows about houses, emotional effects of their loss, etc. All the infor-
mation that Friday can reason with must be explicitly provided by Z. The
same constraint applies to realization of autonomy changes (.A) — in Directed
A A systems the user can be relied on to bring common sense to autonomy
changes, in the E-Elves, details and consequences of autonomy changes need

6.3. Conceptual Design of the E-Elves 177

to be properly handled by software. This is an especially difficult problem
— Friday’s decision making was wrong in the first place, why should the
autonomy reasoning, faced with the same limitations, be any better?

Required Agent Services

R decides whether Friday’s (or the team’s) decision is in some way “safe
enough” to take without user input. To make such a determination requires
“meta” information about the action, not just the intended action. In par-
ticular, Friday needs to provide the following information to Z in order for
R to be effective:

e Friday’s plan for dealing with the current situation
e The expected implications of the planned actions

e The potential costs of the chosen actions and the probability of those
costs being incurred

e The potential benefits of chosen actions and the probability of those
benefits being received

e The likelihood predicted outcomes are wrong

Analogous information needs to be passed between the agent team and
human team. For example, the agent team needs to provide the plan for
closing an auction to Z. The information passed constitutes the Z services
that Friday and the agent team provide to Z.

The service that Friday and the team need to provide to A is simple
— hold off execution of an action until it is approved by AA, i.e., this al-
lows removal of authority to act on an action by action basis. Using such
mechanism A shifts autonomy away from Friday or an agent team, to their
human counterparts, when R decides the circumstances and the selected
action warrant such a change in autonomy.

6.3 Conceptual Design of the E-Elves

In this section we present the high level design of the E-Elves and describe
how it meets the requirements presented above. The design, to a greater or
lesser degree, meets the guidelines given in Chapter 4. We first present the
workings of the individual systems, then describe the team infrastructure.

178 6. Adjustable Autonomy for Personal Assistants

In subsequent sections we describe the details of the implementation. Eval-
uation of the usefulness of the system is provided towards the end of the
chapter. The relationships between features of the architecture, particularly
those features resulting from adherence to the guidelines, are summarised
in Table 6.1 and discussed more critically in the next chapter.

Fig. 6.8: Conceptual design of AA for the Friday proxy agent. This figure
shows more detail of one of the agents as shown in Figure 6.1.

Individual Aspects Each user has a separate software system supporting
their activities. The software system has four software components: “core”
Friday, a model of the user, the teamcore proxy and the individual AA
component. The basic arrangement is shown in Figure 6.8. Since, from
the user’s perspective the four components constitute a single system we
sometimes refer to the whole system as Friday.

Both “core” Friday and the individual AA module rely heavily on the
first part of the system, a shared, explicit model of the user and the en-
vironment. The model captures the user’s location and likely movements,
the importance and costs and benefits of different situations, simple spa-

6.3. Conceptual Design of the E-Elves 179

tial information and so on. The model also explicitly contains uncertainty
information about the probabilities particular state changes will occur, prob-
abilities that the locations of users are correct, etc. This model effectively
provides the common language with which Friday and the A A software com-
municate.

The core software module of the individual system is Friday. Friday
reasons and acts on behalf of its user in the organisation’s activities. Fri-
day reasons from the perspective of its user, using only local knowledge,
e.g., it does not know about the meeting schedules or locations of other
users. Where possible, Friday observes basic social conventions, such as at-
tempting to minimize inconvenience to other users. Friday reasons as if it
has complete autonomy to take actions, i.e., it does not consider that the
AA might allocate some decision making responsibility to the user. For ev-
ery type of circumstance where its input might be useful Friday develops
a complete policy which specifies what action it will take in each possible
eventuality. For example, when dealing with a user’s possible late arrival
at a particular meeting, Friday will generate a policy that specifies what it
will do if the user is late, on time, not coming at all, etc. For example, it
might specify that if five minutes before the meeting the user is not at the
department it will request a 15 minute delay. Once the policy is created,
until the episode is over (e.g., the meeting takes place or is abandoned),
Friday simply follows the policy, taking whatever action is dictated by the
policy in the current, perceived situation. The policy is also made available
to the AA module.

Friday uses Markov Decision Processes (MDPs) for its basic reasoning.
(MDPs are also used for R). The MDPs provide a natural representation
of uncertainty and lookahead. The details of the MDP representation are
presented in Section 6.4.2.

The third software component is the AA component. It takes a policy
created by Friday and creates a corresponding autonomy policy. The auton-
omy policy sets out in advance which actions Friday will be allowed to take
autonomously and for which responsibility will be given to the user. No-
tice that the AA never changes Friday’s selected actions, it simply decides
whether they will be permitted to be taken. The shared model provides the
information required to determine for which actions the potential benefits of
asking the user for input outweighs the expected benefits of letting Friday
act autonomously. Notice, that the autonomy policy explicitly represents
cases where the user does not provided timely input when requested and
specifies whether to keep waiting for a response or take autonomous actions,
if the user does not respond.

180 6. Adjustable Autonomy for Personal Assistants

The final component of the individual software system is the STEAM-
based team work module (Tambe 1997). The module provides the teamwork
infrastructure, e.g., communication and team reasoning capabilities, that are
required to allow the agent to work as part of a team.

A design decision was made that R should check individual Friday ac-
tions, rather than, say, deciding whether whole policies, strategies or prin-
ciples were acceptable. So, for example, R decides whether submitting a
particular bid for a particular role at a particular time is acceptable rather
than whether Friday should submit a bid in general. The decision can be
justified by noting that the high level intentions of the system are generally
reasonable but it is the details that cause the problems, hence it is reason-
able to accept all high level intentions and just look at the details. For
example, the principle that Friday should minimize inconvenience to meet-
ing participants from late arrivers is likely to always hold, but whether to
delay, cancel or start the meeting is a difficult decision.

Furthermore, each meeting to be monitored, meal to be ordered, etc. is
handled independently of all the others. So, for example, the impact on
future meetings of one being rescheduled is not considered. The separation
greatly simplifies the complexity of the reasoning required. The complexity
of the reasoning is reduced due to a dramatically simplified state space and
because interactions between episodes are ignored. In practice, we have not
noticed this simplification to be significantly detrimental to the quality of
agent reasoning (although in theory it might be). Because each situation is
dealt with in isolation it is feasible to create a policy, a priori, that specifies
Friday’s actions in all the circumstances the might occur. Without the
partitioning the state space of the resulting policy would be too large for
a complete policy to be produced. The availability of this policy makes R
simpler because the actions for each set of circumstances are known a priori.

Team Aspects Because agents work together there is an ability for team
decision making and action (Tambe, Pynadath, Chauvat, Das & Kaminka
2000). Separate AA is used at the team level, sub-team level and individual
level. The team takes input from individual Fridays and comes to some
decision, using domain specific STEAM rules. As at the team level, the
team produces an action policy and the team A A uses that policy to produce
a team autonomy policy. The team AA looks at the potential costs and
benefits of the action and decides whether to allow the team to act (see
Figure 6.9).

The team members communicate with each other over broadcast nets to

6.3. Conceptual Design of the E-Elves 181

make group decisions (Tambe, Pynadath & Chauvat 2000). A broadcast net
is effectively a multicast network at the application layer. Hence, a message
sent by any agent to a broadcast net is received by all the agents connected
to that broadcast net. Messages are encoded using KQML (Finin et al.
1997), but only the syntax and not the full semantic power of the language
is leveraged.

The team models each meeting as a joint intention (Tambe, Pynadath
& Chauvat 2000). By the rules of STEAM, individuals keep each other
informed of the progress of the joint intention (e.g., a meeting is delayed,
cancelled, etc.). The STEAM rules provide a well known, clear and (rela-
tively) simple framework for team behaviour. Using STEAM allows the team
reasoning to be separated from the individual reasoning, which simplifies the
reasoning required at both levels. Furthermore, STEAM role relationships
model the important relationships among team members. For example, the
presenter role is critical to a meeting since the other attendees depend on
someone giving a presentation, hence the user fulfilling the presenter role is
critical to the meeting’s success. If the presenter cannot attend, the team
recognizes a critical role failure that requires remedial attention. On the
other hand a passive participant role is not critical, so if an agent assigned
to such a role is failing to fulfill that role (i.e., its user is failing to fulfill
their role) the agent team may safely ignore the failure. A common example
of a passive role failure is ISI’s (voluntary) weekly department lunch. Many
users do not attend the lunch, effectively leading to them failing in their
passive participant role. Fortunately, however, the team reasons that non-
attendance by passive participants is not grounds for cancelling or delaying
the lunch.

R Implementation R takes the policy generated by Friday (or the team)
and decides whether to allow the agent (or the team) to take each of the
actions proposed in the policy. The uncertainty and cost information, re-
trieved from the shared model, is used as the basis for deciding whether
or not to allow the agent (or team) to go ahead with the action. R pro-
duces an autonomy policy that includes the actions that Friday can take
autonomously and the states in which the user will be asked for input.
The most obvious thing for R to take into account is whether Friday
is faced with potential high costs and reasonable probabilities of incurring
those costs. However, R must also consider the possibility that the user
does not provide input because they are occupied or out of reach. Trans-
ferring control to the user may actually make the situation worse in some

182 6. Adjustable Autonomy for Personal Assistants

O = % ~
\ P %

=N Q /Q %\%/

Agent Team

T Software “‘,,/"/

Fig. 6.9: Conceptual design of AA for agent team to human team interac-
tion.

cases. Transferring control to a user who fails to respond, only delays the
autonomous decision, potentially exacerbating the problem. For example, if
the system waits for user input until five minutes after the meeting should
have started and receives no response it is faced with the same decision it
had five minutes before the meeting but now with guaranteed higher cost
(because the other users have had to wait needlessly for five minutes). R also
needs to take into account that asking the user for input may be annoying
to the user.

Notice that while Friday and R use a shared model of the user and
environment, they are looking at quite different things. Friday is trying to
work out what actions to take to maximize the probability that desirable
states will result, while R is trying to work out for which of Friday’s actions
the expected value of letting Friday act, outweigh the benefit of asking the
user for input.

Learning Machine learning improves the shared model that provides input
into the reasoning of both Friday and the AA. Improving how well the
model represents the environment improves both Friday’s decision making
and R. Although the rationale for including learning applies both to Friday’s

6.3. Conceptual Design of the E-Elves 183

decision making and to R, here we are primarily interested in the impact
on R. As mentioned earlier, a critical aspect of the learning is to protect
the user from temporary learning aberrations. Noisy data, which will occur
frequently in domains such as the human collaboration one, should not lead
to a system which makes unreasonable decisions, even temporarily. We refer
to this problem as the safe learning challenge. This is a well known challenge
in the field of machine learning and various approaches have been proposed
for solving it (Kendrick 1981, Schneider 1995).

We take a two-pronged approach to safe learning challenge: (i) building
substantial knowledge into the model; and (ii) providing a safety net to
prevent harmful policies being learned. The safety net, in turn, has two
parts. The first is a strict limitation on the structure of the state space.
Regardless of what probabilities are learned, there are certain actions that
will never be taken in certain states. For example, one constraint does not
allow any one Friday to instigate more than three delays to a particular
meeting. The second part of the safety net is to check whether certain
important properties of the policies hold after the learning algorithms have
been run. For example, an agent that does nothing is not particularly useful
so we check that the model is not such that the agent will never do anything
bolder than watch the evolving situation.

Avoiding Mis-coordination

To illustrate how the different elements of Friday and the AA come together,
we consider in detail how the system handles the problem of avoiding team
mate mis-coordination. Figure 6.10 shows a simplified state space for the
situation. The numbers along the top of the figure are the number of minutes
relative to the meeting time. Circles represent states and are labeled with
the location of the user given that state. Arcs between states are labeled with
the probability that arc is followed. For example, the two arrows furthest
to the right show that between the meeting time and five minutes after the
meeting time there is a 1% chance the user will stay in their office and a
95% chance they will go to the meeting location (for clarity, other possible
location changes are not shown).

Maintaining coordination with teammates when AA is involved is a non-
trivial problem, because the risk of incorrect autonomous action needs to be
traded off against the possibility a user cannot provide input. The E-Elves
attacks the problem with a three-step approach: (i) weighing costs of waiting
for user input and subsequent team mis-coordination against cost of possible
erroneous actions; (ii) flexibly transferring control between agent and human

184 6. Adjustable Autonomy for Personal Assistants

-
ONROK

(5.;

Fig. 6.10: Part of the environment state space for an episode where a user
should attend a meeting. Final states are shaded. Arrows be-
tween states show some of the transitions that might occur.

6.3. Conceptual Design of the E-Elves 185

rather than rigidly committing to an initial decision; (iii) electing to change
the coordination rather than taking risky actions in uncertain states. The
first step of this, i.e., the weighing of costs and benefits, is done via the MDP
with input from the user model. The costs and benefits and likelihood of
various situations are represented explicitly in the model and reasoned about
in the basic decision making.

The second step of the approach to avoiding mis-coordination requires
that agents avoid rigidly committing to changes in autonomy. For example,
if autonomy is removed from the agent for a decision, the agent should not
wait indefinitely for a user response, as a slow response could jeopardize the
team activity. Instead, the agent must continuously reassess the developing
situation, possibly changing its previous autonomy decisions. So, for exam-
ple, if decision making control had been passed to the user but no response
had been received, when the situation changes, the agent could be given
back control and allowed to make an autonomous decision. The flexible
approach is captured in the autonomy policy produced by R. Figure 6.11
shows an example of some of the possible state transitions that might occur
if the user is asked for input.

The third step of the approach arises because an agent may need to act
autonomously to avoid mis-coordination, yet it may face significant uncer-
tainty and risk when doing so. In such cases, an agent can carefully plan
a change in coordination (e.g., delaying actions in the meeting scenario) by
looking ahead at the future costs of team mis-coordination and those of er-
roneous actions. Such changes in coordination could, amoung other things,
“buy time” to reduce the uncertainty or cost. An MDP is especially suitable
for producing such a plan because it generates policies after looking ahead
at the potential outcomes. For instance, an MDP supports reasoning that
a short delay “buys time” for a user to respond to a query from an agent,
potentially reducing the uncertainty surrounding a costly decision, albeit at
a small cost. Thus, an agent might choose a 15 minute meeting delay to give
time for an absent user to arrive, or respond, before cancelling a meeting.
Figure 6.12 shows some of the effects a selection of Friday’s actions have on
the situation. For example, a transition near the middle of the figure shows
Friday selecting a 15 minute delay which leads to a transition between a
state where the user is in their office five minutes before the meeting to a
state where the user is at the meeting location 15 minutes before the (new)
meeting time.

The three steps, i.e., reasoning about costs and benefits, flexible au-
tonomy changes and using coordination changes, are all required to en-
sure a flexible, robust approach to handling the problem of avoiding mis-

186 6. Adjustable Autonomy for Personal Assistants

Early -15 5

Delay 120

Cancel

No
eetin

Fig. 6.11: Part of the state space for the case where the user is asked for
input. In the shaded state the user was asked for input. State
transitions are labeled with the reply from the user.

6.3. Conceptual Design of the E-Elves 187

wait
******************* = delay 15
ST cancel

Fig. 6.12: Part of the state space with some of the transitions that might
occur if Friday acts. Arcs, the meaning of which is shown in the
legend, show a selection of possible outcomes of different actions
Friday might take.

188 6. Adjustable Autonomy for Personal Assistants

coordination. Later, we present some empirical results showing the use of
the approach. Problems other than mis-coordination are handled in similar
ways.

E-Elves in Terms of the Conceptual Model E-Elves maps to the framework
described in Chapter 2 as follows. (We use the subscript f to denote Friday.)
Friday will have some goal g € G, e.g., the goal might be to have its user
get to a meeting on time. The things Friday can do make up the set Aj.
Friday will be authorized to pursue certain sub-goals, e.g., waiting for a
changing situation, delaying the meeting, telling the other participants to
start without the user, etc. These possible actions make up the set Ay — Cy
for the agent. Friday chooses some sub-goal, from Ay — Cy, that best fits
the situation as it sees it. R takes the suggestion of the agent and decides
whether to let the agent act or to try to defer authority to the user. When
removing autonomy from the agent for a goal, g, g is removed from Friday’s
set Gy and put in the user’s set G, as well as g being put temporarily in C.
The team AA can be mapped to the definitions in an analogous manner.

6.3. Conceptual Design of the E-Elves

‘ Guideline ‘ Agent Feature ‘ AA Facility
Explicit Information | Model of the user and | Model used for R
Guideline organisation

Costs explicitly rep-
resented

Straightforward as-

sessment of risks

Software Engineering
Guideline

Separation of team

and individual rea-

Simplification of R

soning
Design Information | Uncertainty explic- | Information used in R
Guideline itly represented
Deterministic Execu- | Behaviour policy ex- | Allows a priori cre-

tion Guideline

ecution is determinis-
tic

ation of autonomy pol-

icy
Enables lookahead to
reduce risk

Explicit Behaviour | Behaviour policy is | Used to create auton-
Guideline explicit omy policy
Allows risk reduction
strategies
Building Blocks | Separate handling of | Simplified R
Guideline each episode

No Extra Mechanisms
Guideline

None

Design Expecting Fail-
ures Guideline

Team infrastructure

No detailed model/
information of other
team members
quired

re-

189

Tab. 6.1: Summary of the E-Elves features resulting from adherence to
each of the guidelines and the features of the AA that utilized
the features.

190 6. Adjustable Autonomy for Personal Assistants

6.4 Implementation Details

This section describes the some details of the implementation of the E-Elves.
The aim is to provide only enough detail for the implications of the design
decisions and their impact on the AA to be clearly understood. Table 6.1
summarises some of the important features and their impact on AA.

Note In practice, both the “core Friday” decision making and AA are im-
plemented as a single module. Potentially, the two parts could be separate
modules, as per the conceptual design, communicating via some sort of inter-
faces. However, because everything is implemented in software it is simpler
to combine the reasoning of Friday and the AA in a single, tightly integrated
software module — even though we think conceptually about the parts sep-
arately. It is sensible to build them in the way that allows that interface
to be as simple as possible. In the following we separate out the AA and
Friday specific parts of the implementation, where possible.

6.4.1 Model of Organisation

A model of the user and the environment is at the core of the E-Elves. The
model is state based with features representing important aspects of the en-
vironment, including the user’s location, a meeting’s importance and what
the other team members have been told. Judicious selection of model fea-
tures is important to the actual ability of the agents to make good decisions.

Time is represented discretely, i.e., to ensure a finite number of states
only certain time steps are represented (e.g., very early, one hour before, 15
minutes before and so on). Time is measured relative to the relevant event,
e.g., times are measured relative to the time when a meeting should start.

Probability distributions describe the likelihood that the circumstances
will move from one state to the next in the next time step. For example,
a probably distribution captures the likelihood that the user will go from
their current location to some other location by the next time step. The
probabilities are instantiated individually for the specific situation that is
being dealt with. Table 6.2 shows a sample of probabilities the user will
arrive at a meeting at different times, given that they are not there five
minutes early.

The probability distributions capture the likely effects of a particular
action when taken in a particular state. For example, the action of delaying
a meeting by five minutes has a certain likelihood of causing a transition
from a state where a user will be five minutes late for a meeting to a state

6.4. Implementation Details 191

User current location
Expected Delay | not ISI ‘ IST ‘ Own office
On time 0.4 0.8 0.9

5 mins late 0.2 0.1 0.01
15 mins late 0.1 0.025 0.01
30 mins late 0.1 0.025 0.01
1 hour late 0.05 0.005 0.005
2 hours late 0.05 0.005 0.005
Never arrive 0.1 0.04 0.06

Tab. 6.2: Hand-coded probabilities of all possible different lengths of time
user will be late to a meeting, given their location five minutes
before the meeting.

where the user is on time for the meeting. The probability distribution of
the transitions for a wait action (i.e., to have the agent do nothing) is also
represented. Table 6.2 shows a sample of such probabilities.

The model also includes details of the costs and benefits of being in
specific situations. For example, to have a user at a meeting, on time, has
some benefits, but for meeting participants to be sitting around waiting for
the user has some costs. The costs and benefits of being in a state are added
up to determine the value of being in that state. For example, the worth
of being at a meeting on time has the benefit of the meeting and no costs.
Conversely, being in a state where others have been informed that the user
will be 15 minutes late but has not arrived at the revised time has high costs
because the users are having their time wasted and have been informed of a
delay (which has a cost). Table 6.3 shows some examples of different costs
and benefits to give an idea of their relative worth. Other costs and values
are calculated via more complex functions and can not be so easily written
down.

User Input An important part of the system is an explicit representation
of the value of user input and the cost of getting that input. The value of
user input is calculated by looking at how Friday’s assessment of the possible
costs and benefits would change given different possible user inputs. If the
user input could potentially impact very positively on Friday’s assessment
of the situation then it is more likely to be requested. For example, say
Friday’s decision was to cancel a meeting. This is potentially a very costly

192 6. Adjustable Autonomy for Personal Assistants

Ttem ‘ Value ‘ Cost ‘
Role values
Presenter 0.9
Discussion leader 0.8

Active participant 0.5
Passive participant 0.1

Action costs

Delay 15 mins 0.00004
Delay 2 hours 0.0003
Cancel 0.5
Cost of others’ time
1 other 0.33
4 others 0.74
9 others 0.87

Tab. 6.3: Example hand-coded costs and rewards for the meeting scenario.

action — if the user does arrive, the meeting has been cancelled needlessly,
though delaying the meeting for someone who does not turn up is even more
costly. However, if the user will most likely say to “cancel” the expected
impact of their input is fairly low (because it makes little difference to the
expected costs and benefits). If there is some significant chance the user
can make a decision that substantially reduces costs then the value of their
input is higher. For example, if there is a significant chance the user will
decide to just delay the meeting a short time instead of cancelling (which is
Friday’s decision) then the value of the user input is high.

The cost of communicating with the user depends on the device that will
be used in the communication which in turn depends on where Friday thinks
the user is. The cost of using a device has both a financial component, e.g., a
WAP phone message is expensive, and a disturbance component, e.g., an-
swering a Palm Pilot message takes a non-negligible amount of time. The
costs of using the different devices influences how often R decides to pass
over decision making control. For example, if Friday decides to delay a
meeting by five minutes it is probably not worth contacting the user via a
WAP phone (because the cost of the delay is low even if Friday is wrong
and the cost of using the WAP phone is high), however if the user was at
their workstation it may be worth passing autonomy to the user. Further-
more, there is an explicit model of the probability the user will respond to

6.4. Implementation Details 193

a communication via some device. For example, the probability of a user
replying to a WAP phone message may be lower than the probability of
replying to a workstation dialog box — at least when it is thought the user is
at their desk. R takes this probability into account when deciding whether
autonomy should be transferred.

Notice, that the modeling of communication costs is not needed for Fri-
day decision making, it is there specifically for the purposes of R. The cost
of communicating is important to Friday decisions because if a meeting delay
is made, clearly the decision must be communicated to the team. However,
Friday does not reason about this explicitly, rather it is built into the cost
for delaying a meeting (along with many other factors, like inconvenience,
frustration, reputation, etc.) Hence, an explicit communication model is an
interesting example of when adding extra design information to an agent
makes AA easier to implement.

Figure 6.13 shows how the number of states in which R will decide to
ask the user for input decreases as the cost of asking the user increases. As
expected, as the cost of asking increases, the number of states in which Friday
relinquishes autonomy decreases. Figure 6.14 shows that as the likelihood
of the user replying to a message is increased in the model, so does the
number of states where R decides to ask. The figures show that R trades
off intelligently between the wasted time if the user does not respond, the
value of the information the user can provide, the cost of asking the user,
and the likelihood of the user replying.

8
;e
5 e

4 ey

i S

Xy
—

o 008 a1 0z 03
Asking Cost

Fig. 6.13: A graph of the number of states in the autonomy policy where
a human is asked for input versus the cost of asking.

194 6. Adjustable Autonomy for Personal Assistants

6 i

e

urmiber of fsks
FJ

E 3

L

E

r

“.‘._._,..--""'

QuiocH o2 a4 a6 08 Qs 05050
Regporms: Probabilily

Fig. 6.14: A graph of the number of states in the autonomy policy where
a human is asked for input versus the probability of the user
responding to the request.

The cost of communicating with the user should also depend on how
busy the user currently is. For example, a message to WAP phone while the
user is on the train home is less costly than when they are in the middle of a
meeting. Detecting how busy the user is is a difficult problem. Horvitz et al.
(1998, 1999) are working on the problem of inferring how busy a user is from
their workstation activities. Such technology would be a useful addition to
the E-Elves.

6.4.2 Friday Decision Making

Markov decision processes (MDPs) (Puterman 1994) are used as the ba-
sic reasoning mechanism for both Fridays and R. MDPs were a natural
choice for addressing the issues identified for AA in the human collabora-
tion domain, e.g., reasoning about the costs of actions, handling uncertainty,
planning for future outcomes, and encoding domain knowledge.

An MDP takes a model of costs and benefits, a model of potential ac-
tions and a probability model of different environmental state transitions
occurring and returns a “policy” consisting of the action with the highest
expected value in each state. The basic cost and benefit information comes
from the shared model, as does the probability information.

A reward function maps each state to a value representing how desirable
it is to reach that state. The makeup of the reward function depends on
the particular situation being handled. For example, when trying to achieve

6.4. Implementation Details 195

the goal get lunch, desirable states will be those where the user is enjoying
the lunch of their choice at lunchtime while for goals to get to meetings
desirable states are those where the meeting takes place on time. Hence, in
such states the reward would be high.

Most actions involve some sort of cost, e.g., there is an inherent cost
involved in delaying a meeting because it means that the other meeting
attendees are inconvenienced, however there is also a cost in having other
meeting attendees wait for someone who is late. The costs of taking actions
are captured in the reward function for the state. For example, there is a
lower reward in states where the meeting has been delayed.

Given the state space, actions, transition probabilities, and reward func-
tion of the MDP, a standard value iteration technique (Russell & Norvig
1995) is used to compute an optimal policy, policy™(s):

policy™(s) = arg max X; MU (7) (6.1)
a

where U(s), the utility of being in state s, is :

U(s) =r(s)+ max NiMU(j) (6.2)

and M ij(j) is the transition probability between state s and j given
that action «a is taken.

The value iteration results in a policy that specifies the action with
the highest expected utility in each state. It is feasible to generate the
entire policy because of the coarse granularity of the state space (e.g., there
are only a small number of “times” represented) and the separation of the
handling of different situations. The complete decision making policy, as
well as additional information, is made available by Z, to R for the creation
of an autonomy policy.

6.4.3 Partitioning

To overcome computational complexity costs, we rely on partitioning the
MDPs. Thus, a Friday has a separate MDP for each episode that it encoun-
ters, e.g., each meeting, presentation or meal time where it might take some
actions to save user time. The reason for this, that it simplifies reasoning,
was discussed above.

For each type of situation Friday has a different generic MDP. The
generic MDP captures the basic actions, states and costs that are important

196 6. Adjustable Autonomy for Personal Assistants

in that type of situation. The generic MDP is instantiated at runtime with
the details of the situation, e.g., the type of meeting. For example, if the
meeting is important the cost of delaying the meeting (in the reward func-
tion) is higher than for an unimportant meeting and the probability of the
user making the meeting on time might be higher. These values are instan-
tiated in the generic MDP before the value iteration is performed. Using
instantiations of a generic MDP, rather than using the changing factors as
variables in the MDP, helps keep the computational complexity of the MDP
within reasonable bounds.

6.4.4 Example — Delaying Meetings

In this section we present a detailed example of the handling of one particular
situation type, namely meeting delays. We begin by describing Friday’s
decision making then describe the autonomy reasoning.

The delay MDP’s reward function has a maximum in the state where
the user is at the meeting location when the meeting starts. A component of
the reward, denoted 7y, focuses on the user attending the meeting at the
meeting time. The reward is given so Friday has incentive to delay meetings
when its user’s late arrival is possible. However, in isolation, 7., could
drive the agent to choose arbitrarily large delays, virtually ensuring the user
is at the meeting when it starts,? but forcing other attendees to rearrange
their schedules — a very costly activity. The team cost is considered by in-
corporating a negative reward, denoted 7;.¢pqir, with magnitude proportional
to the number of delays so far and the number of attendees, into the delay
reward function. The larger the number of delays the lower the reward. A
pre-learning constraint (see Section 6.4.6) allows no more than 4 delays to
a meeting.

However, explicitly delaying a meeting may benefit the team, since with-
out a delay, the other attendees may waste time waiting for the agent’s user
to arrive. Therefore, the delay MDP’s reward function includes a compo-
nent, 74me, that is negative in states after the start of the meeting if the
user is absent, but positive otherwise. The magnitude of this reward, like
Trepair, 18 proportional to the number of attendees. The reward function also
includes a component r,,., which, like 7,4, is positive in states where the
user is in attendance and zero otherwise. However, the magnitude of r,.y,
also increases with the importance of the user’s role (e.g., presenter vs. pas-
sive participant) to the success of the meeting, thus representing the value

2 We assume that the user always wants to attend a meeting and, given enough time,
will make it there. This assumption does not always hold.

6.4. Implementation Details 197

of the user’s attendance to the team. Finally, the reward function includes
a component, Tmeeting, Which is positive once the meeting starts and zero
everywhere else to deter meeting cancellation.

The overall reward function for a state s is a weighted sum of the com-
ponents:

T(S) :Auser'ruser(s) + Arepair'rrepair(s) + Atimertime(s) +

Arolerrole(s) + Ameetingrmeeting(s)

(6.3)

The precise values of the reward function components can be varied for
different meeting types. For example, the value of r,cpqr Will be bigger
if the meeting involves the head of the department. Changing the value
of different components changes the relative values of different states and,
hence, the policy that results from the value iteration process.

Although taking into account team costs (mainly via the ryepgir and rime
rewards), Friday’s decisions are on behalf of its user only; the team may not
concur (see below).

The delay MDP’s state transitions are associated with the probability
that a given user movement (e.g., from office to meeting location) will occur
in a given time interval. The MDP designer encodes the initial probabilities,
which the learning algorithm (described in Section 6.4.6) then customizes.
In practice, transitions to states where the user arrives on time are highly
likely.

Standard value iteration results in a decision making policy, dictating Fri-
day’s proposed actions, being created. Adding autonomy reasoning amounts
to adding an extra action ask that results in the user being consulted for
input. The ask action, through which the agent gives up autonomy and
queries the user, has two possible outcomes. First, the user may not re-
spond at all, in which case, the agent is performing the equivalent of a wait
action. Second, the user may respond to the request, with one of the ten re-
sponses shown in Figure 6.3. The communication model, part of the shared
model, provides the probability of receiving a user’s response in a given time
step. The cost of the “ask” action is derived from the cost of interrupting
the user. The probabilities and costs vary with the communication medium.
We compute the expected value of user input by summing over the value of
each possible response, weighted by its likelihood (computed using the delay
MDP as a model of the user’s decision-making). We assume that if the user
does respond they will do so accurately. For example, if the user provides
input suggesting a five-minute delay, then the system knows that it will
incur the cost of the five-minute delay but will then receive the maximum

198 6. Adjustable Autonomy for Personal Assistants

reward when the user arrives at the (rescheduled) meeting on time, i.e., in
the resulting state the reward function will have a negative component for
requesting the delay but a (large) positive component because the meeting
will occur.

Furthermore, the lookahead in MDPs enables effective long-term solu-
tions to be found. As already mentioned the cost of rescheduling, repqir,
increases as more and more such repair actions occur. This provides a com-
pact scheme for supporting some history dependency in the cost of future
states. For example, in a given situation the user model might indicate that
the user was most likely to arrive at a meeting five minutes late, with a
much smaller chance they will be 15 minutes late. Without lookahead, the
clear, best option for Friday is to ask for a five minute delay to the meeting.
However, with lookahead it may become clear that a fifteen minute delay is
the best option, for the following reason. If the user did end up being fifteen
minutes late the costs would be very high because either two meeting delays
would need to occur or other users would be firstly told of a delay and still
made to wait. On the other hand, an initial 15 minute delay is only slightly
more costly than a five minute delay and covers both the cases of the user
being five and 15 minutes late. Clearly, more complex situations occur when
more lookahead is required.

Lookahead is used in both the core Friday reasoning and in R. For
example, there are some situations where, although asking for user input
at one point in time might be the best action, if the user fails to respond
Friday ends up in a very bad position. Hence, it is better for Friday to take
a (somewhat) risky action straight away than wait for user input that may
not come.

Table 6.4 shows a portion of a sample policy for handling meeting delays.
The time column gives the time relative to the meeting in minutes, so, -60
is one hour before the meeting. The User Location column shows the user’s
inferred location. IST and not_ISI are abstractions for somewhere at the
department but not their own office or the meeting location and not at the
department respectively. The Told column summarises what request the
individual has so far made to the team, e.g., when the others have been
asked nothing is written as none and when the others have been told of
some delay is written as delay. The Repairs column shows how many times
Friday has asked the other agents to change the time of the meeting. A pre-
learning constraint limits the total number of requests to change a meeting
one individual can make to three, i.e., the number in the Repairs column will
never be higher than 2. The Best Action column shows the action Friday
would take if allowed to act autonomously. The final column, Autonomy,

6.4. Implementation Details 199

has “yes” if Friday will take the action and “no” if the user will be asked
for input.

The policy is specialized to a meeting where the user is an active par-
ticipant in a two person meeting. Generic transition probabilities are used,
i.e., the MDP is straight “out of the box”. Notice that in Table 6.4, states
when Friday does not have autonomy (“no” in the final column) correspond
well with Friday actions that we find intuitively “suspicious”, i.e., with-
out knowing more about the situation it is difficult to say whether Friday’s
action is appropriate. Conversely, when Friday does have autonomy, the
actions it is proposing are fairly intuitively correct (though information not
shown in the table and unbeknown to Friday may mean the actions are not
appropriate). In the full policy, R will allow Friday to act autonomously in
720 of the 736 states. In 564 states it Friday decides the best action is to
wait, in 72 it decides the user is not attending, in 40 it decides the user is
attending and in 60 it decides on a delay of some kind.

6.4.5 Team Decision Making

Not all decision making responsibility is in the hands of an individual Friday,
some decisions are made via a group decision making process. For example,
decisions made by Friday to delay a meeting affect the whole team. So, when
an individual software system decides (whether autonomously or not), e.g.,
that a meeting delay is required, the opinion is submitted to the team for
a group decision. Figure 6.15 shows the basic idea. The decision whether
to actually delay the meeting or not is a group decision made by the agent
team. (The agent team potentially relinquishes responsibility to its human
counterpart team for deciding whether or not to actually delay.) Hence, in
reality, Friday is not making decisions about whether meetings should be
delayed but only about whether it should request that the team delay the
meeting. In the current prototype, the STEAM rules, by which the team
decides, mean that delay requests will be approved if the requesting user
is important enough (according to their role in the meeting) and/or the
meeting is small enough, but rejects them otherwise. Just because the team
will reject an unacceptable request does not mean that an individual agent
can ignore the costs and benefits of particular actions to the team and make
such decisions.

The team mechanism protects the team from incorrect, malicious and /or
poorly informed decisions by individual Fridays. For example, one Friday
cannot know that a small delay in a meeting will cause significant problems
for other Friday users, so it might make a decision that to it seems reasonable

200 6. Adjustable Autonomy for Personal Assistants

‘ Time ‘ User Location ‘ Told ‘ Repairs ‘ Best Action ‘ A ‘

Early Own office none 0 wait yes
-60 not_IST none 0 wait yes
-60 ISI not_attend 1 wait yes
-30 | Meeting location none 0 wait yes
-15 not_ISI delayed 1 wait yes
-5 ISI none 0 delay_5 no
-5 IST delayed 2 wait yes
-5 not_ISI none 0 delay_60 yes
-5 not_IST delayed 2 wait yes
-5 Meeting location none 0 wait yes
-5 Meeting location delayed 2 wait yes
-5 Own office none 0 delay_5 no
-5 Own office delayed 2 wait yes
0 ISI none 0 delay_15 no
0 ISI delayed 1 delay_15 no
0 not_ISI none 0 delay_60 yes
0 not_ISI delayed 1 delay_60 yes
0 Meeting location none 0 user_attending | yes
0 Meeting location delayed 1 user_attending | yes
0 Own office none 0 delay_15 no
0 Own office delayed 1 delay_15 no
5 IST none 0 delay_15 yes
) not_ISI none 0 delay_60 yes
5 Meeting location none 0 user_attending | yes
) Own office none 0 delay_15 yes
15 IST delayed 2 not_attending | yes
15 not_ISI delayed 2 not_attending | yes
15 Meeting location delayed 2 user_attending | yes
15 Own office delayed 2 not_attending | yes

Tab. 6.4: Part of the combined decision making and autonomy policy for
meeting delaying. There are 736 states in the complete policy.

6.4. Implementation Details 201

4. OK - your user is important

3. Can we delay by 15min?
(My user might be late

1. Do you want to delay?] 2. Delay by 15min l 5. Meeting delayed 15min L 5. Meeting delayed 15minl 5. Meeting delayed 15min

5. Meeting delayed
AN
Fig. 6.15: A high level view of the conceptual information flow for team

decisions. The text next to the arrows shows the information
passed. Numbers indicate the ordering of messages.

but is very undesirable for other team members. The team mechanism allows
such requests to be rejected, without having to give all Fridays intimate
knowledge of other users. In the same way the team mechanism protects the
team from uninformed Friday decisions, it protects the team from incorrect,
malicious and/or poorly informed decisions made by individual users.

In a team context, the AA problem is for the team to decide whether to
rely on its own reasoning or to relinquish the control to the user team. An
important consideration for team level AA, like for individual AA, is to try
to maximise the number of decisions the team makes autonomously because
this maximises the amount of the team’s time the system saves. Clearly, the
costs of incorrect team action must be carefully weighed against the time
saved. Thus, analogous to the AA at the individual level, the team-based
A A needs to reason about uncertainty, cost, and potential developments in
the world. Furthermore, most of the issues that are relevant at the individ-
ual level, e.g., reasoning about lack of response, are also relevant at the team
level. Hence, we again chose MDPs for the team R. The team MDPs com-
pare the expected value of consulting the human team against the expected
value of making an autonomous decision.

It is important to note that the decision of the agent feam may be
made autonomously and may reject the decision of the individual user. For
example, when a passive participant in a large meeting tried to cancel the
meeting, the agent team would override the user and allow the meeting to
continue. This is a relatively rare example of software knowingly overriding

202 6. Adjustable Autonomy for Personal Assistants

the desires of a human user but is a consequence of a having system where
users can take actions that detrimentally effect other users. Of course, if
the meeting should really be cancelled, but the reasons for the cancellation
are beyond the comprehension of the agent team, the human team might
assume team decision making responsibility and agree to the cancellation
request. Hence, the users have not really lost control of the system, rather
the system is ensuring the bad decision making by a single user does not
impact the whole team.

Example — Auction Reasoning

During an auction, team members submit bids indicating whether they are
capable and/or willing to perform some role for the team. The capability
part of the bid is usually submitted autonomously by Friday after consul-
tation with the capability matcher. The willingness part of the bid, on the
other hand, is usually submitted by the user. Due to the nature of the
decisions involved (Am I willing to do a presentation next Thursday?) the
times when the willingness parts of the bids are submitted can vary greatly.
Some users will know immediately that they would like the role and submit
an unwilling bid as soon as the auction opens, others will know that other
constraints prevent them from taking on the role and immediately submit a
not willing bid. More often, however, users will put off decisions until their
situation becomes clearer, e.g., until they know how busy they will be the
day before the presentation.

The team-level decision to close an auction and assign a presenter for a
talk has high uncertainty and cost, so the agent team will sometimes need
to consult with the user team. Within reason, the sooner the role is assigned
the better off the assigned person will be. For example, assigning someone
to a presentation one week before the presentation is better than assigning
them one hour before the presentation, because some time is needed to
prepare.

When deciding when to close an auction at least three factors are im-
portant. The first factor is, obviously, finding a suitable, preferably optimal,
candidate for the role. Second, the possibility of better bids coming in needs
to be considered. Finally, the team must try to close the auction at such
a time as the assigned person has enough opportunity to prepare for their
role.

The team can take one of two actions, closing the auction and assigning
the role or waiting. The wait action also allows a human to make an assign-
ment (see Figure 6.6), so it is synonymous with asking the human team for

6.4. Implementation Details 203

input (but less costly than actively asking the team to respond). We assume
that once the auction is closed it cannot be re-opened. The states of the
team-level MDP have abstract team features, e.g., few, half, many, or most
bids have been submitted for a role. The agent team needs to know the
probability distribution for higher quality bids arriving in the subsequent
time steps, i.e., what is the chance that a better bid than the current best
bid will be submitted in the next hour. This distribution is encoded a priori
and adjusted autonomously from observations.
In each state, s, in the auction MDP the team receives the reward:

T(S) = Abidrbid(s) + Aaccept'raccept(s) + Atimertime(s) (64)

The reward function has a maximum when the team assigns a clearly
superior, high-quality bidder to the role at the “optimal” time. The reward
Thid, 1S proportional to the quality of the winning bid and encourages the
team to leave the auction open until a high-quality bid comes in. The reward
Taccept 18 positive if there is a clearly best bid and negative if there is no
clearly best bid, this discourages the agent team from making assignments
when there is uncertainty surrounding which bid is best. The reward 7yme
is based on how appropriate the timing of the assignment is — too early and
the team may miss out on receiving better bids, too late and the assigned
user will not have sufficient time to prepare. The 74, reward captures
any time pressure associated with the role, encouraging the team to make
an assignment earlier (e.g., to give the assigned presenter more time to
prepare). Table 6.5 shows part of auction closing policy.

As with the MDP delay rewards the relative values of the auction MDP
rewards are adjusted depending on the role type being auctioned. For exam-
ple, the optimal time to be assigned clearly depends on whether the role is
to fly across the Atlantic and demonstrate a new product or if it is to collect
the group’s lunch from the local sandwich shop. Similarly, the importance
of getting a “best” bid relative to the importance of assigning someone early
will vary. For example, anyone who is willing could be assigned to go to San
Diego to pick up a parcel, so as soon as the team gets a bid indicating a
willing user, the user can be assigned the role.

6.4.6 Safe Learning

An accurate model of the user is critical to good R. Improvements, via
learning, to the shared model can lead to improved AA decision making,
primarily by personalizing the reasoning to particular users and the organ-
isations they are part of. For example, improved knowledge of the user’s

204 6. Adjustable Autonomy for Personal Assistants

| Time | Bid Quality | % bids in | Difference | Decision

Imonth | Very_Low None Same wait
lmonth | Very_Low All Different wait
lmonth | Very_High Many Different assign
lmonth | Very_High Most Same assign
2weeks Very_Low Few Different wait
2weeks | Very_Low Half Same wait
1week Very_Low Many Different wait
1week Very_Low Most Same wait
1week Medium All Different assign
1week High Few Similar wait
5days Medium All Different assign
5days High All Same assign
3days High Few Same wait
3days High Few Similar wait
3days High Few Distinct assign
3days High Few Different assign
lday Medium Half Similar wait
1day Medium Half Distinct assign
12hours Medium Half Same wait
12hours Medium Half Similar assign
12hours Medium Half Distinct assign
12hours Medium Half Different assign
4hours High None Different wait
4hours High All Different assign
2hours Low Half Same assign
lhour Low Few Same assign

Tab. 6.5: Part of the auction closing policy. The “Difference” column
shows the difference between the quality of the best bid and the
second best bid. The total auction policy has over 1300 states.

6.4. Implementation Details 205

proclivity to make meetings on time or respond to a certain type of mes-
sage can increase the confidence R has in a decision. By improving such
knowledge, R can make more accurate judgments about when the situation
warrants attempting to get user input.

In practice, we have observed that the small amount of data that is pro-
duced (most users have less than five meetings per week) does not provide
enough of a sample to drastically modify the hand coded probability dis-
tributions. In most cases, however, the data has shown users to be more
unpredictable than we estimated, e.g., they are late for more meetings than
we thought (and encoded in the model).

Fridays learn via a simple reinforcement learning algorithm that peri-
odically examines the extensive logs created during system execution and
updates parameters in the MDP user model according to what has happened
previously. For example, the probability that a user is late to a particular
type of meeting is gradually updated based on the number of times the user
is and is not late. Notice, the learning only improves the quality of the
underlying model, not the reasoning done with the model, i.e., the state or
action space does not change only the probabilities that different transitions
will occur changes.

Noisy data is a significant problem for Fridays, e.g., they may be un-
able to correctly observe whether a user is actually attending a meeting
on time, hence do not have a good indication of whether their decision to
delay the meeting was a good one. The feedback the Fridays get is used
to update their models and therefore influences future decision making. In
a deployed system, anything learned has an immediate effect on the users
— a phenomenon we have seen to be sometimes harmful in practice (Scerri
et al. 2000). So, temporarily incorrect models, due to noisy data, cannot be
tolerated (Schneider 1995).

An important first step in ensuring the agents do not cause too many
problems, is to create an initial “generic” user model that encodes designer
domain knowledge into an initial model which in turn allows agents to func-
tion well straight “out of the box”. That is, the designers estimate and
hand-code transition probabilities that are likely to be close to the “real”
values that would be learned via extensive learning. By starting out with a
well-developed model, agents avoid learning all decision-making details from
scratch — one of the problems with the initial attempt to learn using C4.5
(Scerri et al. 2000). In turn this means that each new data point can be
allowed to influence the model only slightly, so occasional noisy data is un-
likely to perturb the model enough to cause very bad decisions. Over time,
however, the (hopefully) large number of accurate data points slowly adapt

6. Adjustable Autonomy for Personal Assistants

206

the model to the peculiarities of the organisation and user. Nonetheless, in

order to gain the trust of the users, it is important to augment the learning
algorithm with a safety net to ensure that that even in the presence of noisy

data, agents are prevented from learning very harmful knowledge.

Allowed policies

Possible Policies

Policies allowed
by post-constraints

S ISR
O e K K SR IRIIIILLI

BTt
K T
R o e KSR LT

R s
S
e e e el
B s '
S
R R Sl e

Policies allowed
by pre-constraints

1

SNttt e ettt \

A Venn diagram showing the relationships between the policies

Fig. 6.16

allowed by pre- and post- learning constraints and the set of

allowable policies.

Safety Net

pre-learning constraints and post

The learning safety net has two parts:

learning constraints. Separating the constraints into two parts allows us to

represent naturally and computationally efficiently the range of constraints

the domain presents.

Figure 6.16 shows how the two types of constraints

limit the allowed policies.

Pre-Learning Constraints Pre-learning constraints put strict limitations on

the actions that can be taken by Friday in certain states by removing those

actions from the model, i.e., the MDP does even consider the possibility of

The actions cannot be taken even if
learned transition probabilities would have led to the conclusion that those

taking some actions in some states.

207

6.4. Implementation Details

model the idea that some actions are simply non-sensical to take in certain

actions had the highest expected utility. Pre-learning constraints naturally
states.

For example, Friday could learn from a limited, noisy data set that its

Given this (misleading)

knowledge, Friday might cancel all Monday morning meetings as soon as
it finds out about them. Introducing a pre-learning constraint that does

not allow cancellations before, say, fifteen minutes prior to the meeting will
constraint is not in force, Friday may still cancel the meeting, however it

allow us to avoid this problem. Closer to the meeting, when the cancellation
might also have other data which leads it to take a different action.

user never attended Monday morning meetings.

Ongoing work at ISI is looking further into the idea of constraints, in-

cluding looking at ways a user can specify their own constraints.

Possible Policies

Allowed policies

Policies allowed

by post-constraints

IR S L R N R

Policies allowed
1 by pre-constraints

1

S
LR

Diagram showing the effect of the post-learning check on the

Fig. 6.17

The dark

circle represents the original policy. The solid line shows the

policies produced by a learned set of parameters.

change due to learning and the dotted line shows the changes

due to the post-learning check.

Post-learning Checking The post-learning constraints ensure that the poli-
cies produced by the MDP have certain desirable properties after the learn-

208 6. Adjustable Autonomy for Personal Assistants

ing algorithm has run. Such constraints naturally represent limitations on
certain “global” properties of the policy. For example, the delay MDP should
not learn that all actions are too costly and thus generate a policy of com-
plete inaction. In other words, there should be at least some states in which
the agent will take some action other than wait.

Rather than exhaustively checking every state of every policy generated
by all the possible MDPs (recall that some values are adjusted depending
on the specific situation so there are many MDPs with potentially different
behaviour), the post-learning checking algorithm uses heuristics to isolate
a small number of states where the (non)existence of the property being
checked should be most clearly seen. The algorithm can check only these
states to determine whether it is likely that a property holds for a given
MDP. For example, the heuristic the user is not at the meeting room 15
minutes after the meeting should have started isolates a small number of
states where we can expect the meeting policy to specify an action (usually
delaying the meeting) if it will take an action in any situation. In other
words, if Friday does not take an action in a state where the need to act
is very high we can be fairly sure that it will not take actions in any state.
If the policy indicates that Friday will act in states that are checked then
the constraint is adhered to. If Friday takes no action in the states that are
checked it is unlikely it will take an action in any state. Hence, the heuristics
give us a way to very efficiently check, with reasonable reliability, whether
the policy has certain global properties.

If the post-learning check finds that a required property of the policy does
not hold, the learning algorithm gradually adjusts the learned transition
probabilities back toward their original values until it finds an acceptable
set of values, i.e., ones that result in MDPs that have the required proper-
ties. Figure 6.17 illustrates this idea. This heuristic-based approach is our
first step toward tackling the open research issue of providing post-learning
guarantees within E-Elves.

6.5 Using the E-Elves

In this section we aim to show that the E-Elves is an effective AA system
by presenting data collected during the system’s day to day use. In the next
chapter we evaluate the design in more detail, in particular examining the
impact of the guidelines on the AA implementation.

6.5. Using the E-Elves 209

6.5.1 General Observations

The E-Elves system has been operating in a research group at the Infor-
mation Sciences Institute at the University of Southern California since the
beginning of June 2000. The system runs around the clock, seven days a
week (occasionally interrupted for bug fixes and enhancements). There are
currently nine agent proxies (belonging to nine users ramanan, ito, jungh,
kulkarni, modi, pynadath, scerri, nair, and tambe), one agent proxy for
a project assistant, one capability matcher (with proxy), and an interest
matcher (with proxy).

The general effectiveness of E-Elves is shown by several observations.
Since the E-Elves deployment, the group members have exchanged very
few email messages to announce meeting delays. Instead, the Fridays au-
tonomously inform users of delays, thus reducing the overhead of waiting
for delayed members. The amount of time saved is difficult to quantify —
especially as we, the system’s developers, would often spend time discussing
whether the system did the right thing.

Second, the overhead of sending emails to recruit and announce a presen-
ter for research meetings is now assumed by agent team run auctions. So, no
user needs to take the time to send out email asking for interested parties,
determine who should do the presentation from the replies and announce
the winner — this is all done automatically.

Third, a web page, where Friday agents post their user’s location, is
commonly used to avoid the overhead of trying to track users down manually.
For example, questions like It is 4pm, is Jay here yet?! can be answered
without going to Jay’s office.

Fourth, mobile devices keep us informed remotely of changes in our
schedules, while also enabling us to remotely delay meetings, volunteer for
presentations and so on.

Using Friday to order meals has also been a popular feature. In fact, Fri-
day is so heavily relied on to order lunch that one local “Subway” restaurant
owner even suggested marketing to agents: “... more and more computers
are getting to order food ... so we might have to think about marketing to
them!!”.

Most importantly, over the entire span of the E-Elves’ operation, the
agents have never repeated the catastrophic mistakes that previous imple-
mentations had been susceptible to (Scerri et al. 2000). Although the current
agents do occasionally make mistakes, these errors are typically as serious
as asking the user for input a few minutes earlier than may be necessary,
etc. Thus, the agents’ decisions have been reasonable, though not always

210 6. Adjustable Autonomy for Personal Assistants

optimal.

6.5.2 Individual AA

Over the course of six months (June 1 to December 31) nearly 700 meetings
were monitored. Figure 6.18 illustrates the number of meetings monitored
for each user. Some users had less than 10 meetings monitored, while oth-
ers had over 250 monitored. Most users had about 20% of their meetings
delayed. Figure 6.19 shows that usually 50% or more of delayed meetings
were autonomously delayed. In this graph, repeated delays of a single meet-
ing are counted only once. The graph shows that the agents are acting
autonomously in a large number of cases. Equally importantly, humans
are also often intervening, indicating the critical importance of AA. Au-
tonomously initiated delays were usually due to Friday detecting that the
user was not at the department around the meeting time. Human initiated
delays were often due to the user knowing in advance, sometimes well in
advance, that they would be late (or absent) for a meeting and choosing to
utilize the E-Elves framework to inform the other meeting participants and
arrange a new meeting time.

Number of Monitored Meetings per User

300

250
[72]
o
=
$ 200
1]
£
s 150
1)
[
E-]
£ 100
5 —
=z

50

0 e |:| I:l [I I

& S & > & & & & ®
> & @ N
{-&‘h A A\ (\ro.b [oX <~ ,@‘Q o
) &
Proxy name

Fig. 6.18: A graph of the number of meetings monitored by Friday for each
user.

6.5. Using the E-Elves 211

Comparison of Autonomous Delays vs Human Delays

80

70
@ 60
o O Human delays
— 4 1 —
-] 50 B Autonomous delays
S 40
1)
[
£ 30
3
Z 20

10 [i l:

O m
& $ & & & & & & ®
& & X & @ S & S
N N S & S &
© & -
Proxy name

Fig. 6.19: A graph of the number of meeting delays that were done au-
tonomously vs. the number of delays initiated by the user.

6.5.3 Team AA Evaluation

Figure 6.20 plots the number of daily messages exchanged by the proxies over
three months (6/1/2000-8/31/2000). The size of the daily counts reflects the
large amount of coordination necessary to manage various activities, while
the high variability illustrates the dynamic nature of the domain.

The presenter role for the research group’s weekly meetings is regularly
decided using agent run auctions. Table 6.6 shows a summary of some of the
auction results. The column headed “Date” shows the dates of the research
presentations. While the auctions are held weekly, several weekly meetings
were cancelled over the summer due to conference travel and vacations. The
column headed “No. of bids” shows the total number of bids received before
a decision to assign a user to the role was made. Notice that in several cases
auction closure decisions were made without all nine users entering bids; in
fact, in one case, only four bids were received before a user was assigned.
This illustrates the tradeoffs being made between waiting for further good
bids and giving the assigned user sufficient preparation time.

The column headed “Best bid” shows the winning bid. A winner typi-
cally bid < 1,1 >, i.e., indicating that the user is both capable and willing to
do the presentation — a high quality bid. When there was only one such bid,

212 6. Adjustable Autonomy for Personal Assistants

I

FFLP LSS

Fig. 6.20: Number of daily coordination messages exchanged by proxies
over three-month period. The y-axis shows the number of mes-
sages exchanged between proxies and the x-axis shows the date.

6.6. Personal Assistants 213

the MDP could confidently choose the winner, otherwise it would wait for
user input. Interestingly, the winner on July 27th made a bid of < 0,1 >,
i.e., not capable but willing. The agent team was able to autonomously
select a user for the role despite the bid not being the highest possible,
illustrating its flexibility.

Finally, the columns headed “Winner” and “Method” show the auction
outcome. The final column indicates whether the auction was closed au-
tonomously or manually by a user. In four of the six auctions shown, a
winner was autonomously selected. The two manual assignments were due
to exceptional circumstances in the group (e.g., a first-time visitor). Such
exceptional circumstances are unlikely to be anticipated by even the most
mature of systems, hence their existence highlights the need for AA at the
team level.

‘ Date ‘ No. of bids ‘ Best bid ‘ Winner ‘ Method ‘

Jul 6 7 1,1 Scerri Human
Jul 20 9 1,1 Scerri | Autonomous
Jul 27 7 0,1 Kulkarni | Autonomous
Aug 3 8 1,1 Nair Autonomous
Aug 31 4 1,1 Tambe | Autonomous
Sept 19 6 N/A Visitor Human

Tab. 6.6: Results of the team auction for the presenter role at the group’s
weekly meetings, during a three month period.

6.6 Personal Assistants

Personal assistant agents have been applied to a variety of tasks, generally
with the core goal of giving a user more powerful, flexible control over their
interactions with their computer. We briefly review a small cross section of
related work to show some of the directions different research is pursuing.

Some personal assistant research has focused on filtering information for
users, e.g., (Collis et al. 2000, Horvitz et al. 1998). Faced with the huge
amount of information the digital age produces, personal assistants filter
information, attempting to find information relevant to their user’s current
tasks and interests. This type of information processing agent has become
particularly interesting given the wealth and (relative) accessibility of the
information on the Internet(Etzioni & Weld 1997).

214 6. Adjustable Autonomy for Personal Assistants

Another type of personal assistant agent represents the user in some
situation (Maes 1994b, Sen et al. 1997). For example, representing the user
in negotiations over services or schedules. This type of agent reduces the
user’s workload by doing parts of their job for them.

Many different approaches have been taken to building useful personal
assistant agents. A group at Microsoft have looked extensively at informa-
tion type filtering agents (Horvitz et al. 1999). The agents used decision
theoretic techniques to weigh the potential costs and benefits of bringing
certain information to the user’s attention.

The COLLAGEN project has looked at building software modules that
encapsulate the functionality required for human-computer discourse (Rich
& Sidner 1998). The hypothesis behind that work is that human-agent inter-
action should be similar to human-human interaction. A discourse between
the agent and user is based on a formal model of the task being performed,
though this formal model is separate from the inner workings of the agent.

Maes (1994b) have approached the problem of building intelligent per-
sonal assistants by creating many simple agents for simple tasks. Each agent
learns when its behaviour is appropriate and activates itself accordingly. To
the user, the emergent complexity of the simple agents and the complex task
gives the impression the personal assistant is a cohesive, goal-directed entity
(rather than the reality, which is simply a set of simple, reactive modules,
not unlike EASE).

An approach closer to existing direct manipulation ideas is to explicitly
delegate tasks to an agent for automation. In some cases, these “personal
assistants” are effectively scripting languages, albeit with an intelligent in-
terface. The approach is analogous to the way a human manager delegates
tasks to human sub-ordinates. Milewski & Lewis (1997) points out that
delegation is not always successful in the human world and appropriate care
needs to be taken when mapping the idea to human-computer systems.

6.7 Summary

Living and working with the E-Elves has convinced us that AA is a critical
part of any human collaboration software. In such systems, R, implemented
in software, transfers decision making responsibility between the humans and
agents to best avoid the potential mistakes of agents without overburdening
users. The transfer of autonomy occurs both at the individual and team
level.

A key to the straightforward implementation of AA is the decision pol-
icy produced by the autonomous software (Friday or a team). R uses the

6.7. Summary 215

policy, which provides a complete description of the way a situation will be
handled autonomously, to produce a corresponding autonomy policy, which
specifies when the user will be asked for input. An explicit model of the user
and environment, on which both the core Friday decision making and AA
decision making rely, provides an efficient mechanism for sharing informa-
tion. High level teamwork functionality eases the task of building the AA by
allowing R to focus on a reduced subset of issues and letting the teamwork
framework look after the team details.

In the next chapter we evaluate aspects of the design that are specifically
related to the guidelines and assess their impact on the AA.

216 6. Adjustable Autonomy for Personal Assistants

7. EVALUATION

In the two previous chapters we have presented two fully implemented Ad-
justable Autonomy (AA) systems. To a large degree both systems were
implemented according to the guidelines in Chapter 4. The fact that the
AA in both systems performs the task required of it and was fairly straight-
forward to build serves as a broad endorsement of the guidelines — especially
since the systems are so different. That is, if the AA was straightforward to
build when the agents were designed as per the guidelines then at worst the
guidelines are not completely wrong.

Recall that in Chapter 4 we argued that guidelines were the appropriate
way of extracting the experience we had gained building AA systems. The
question remains, however, as to whether the particular guidelines presented
actually capture the important aspects of the design, i.e., have we correctly
identified the aspects of the designs that made the AA simple to implement?
In this chapter we attempt to strengthen the case for the guidelines by look-
ing at each guideline individually, determining the features that following
the guideline brought to the agents and assessing the impact of those fea-
tures on the amount of effort required to build the AA. By showing the
generally positive effects of features resulting from the guidelines we show
the utility of those guidelines.

Notice that we are not trying to claim that these systems have any spe-
cial, unique or exciting features that made implementation of AA straight-
forward. In fact, many of the system features discussed below are quite
normal and common, though not ubiquitous. The idea is to point out which
of these features are useful when implementing AA and, conversely, which
features hinder the development of AA and show that those desirable fea-
tures are led to by the guidelines.

7.1 Method

This chapter aims to evaluate the guidelines in the following way. First, we
identify a selection of agent features of the agents in the two systems that
come about from following each of the guidelines. The guidelines and some

218 7. Evaluation

of the features they led to in each of the implementations are summarised
in Table 7.1. Then we evaluate the impact of each of those features on the
implementation of AA. By showing that the agent features encouraged by
the guidelines made the AA easy to implement we show the utility of the
guidelines.

We present the evaluation guideline by guideline. For each guideline,
we show an EASE agent feature and an E-Elves agent feature that result
from following the guideline under consideration. For each feature we show
the AA facility that was built leveraging that feature. Finally, for each
guideline, we present a counterexample which shows some feature, in one of
the systems, that violates the guideline and discuss the implications of that
feature on the AA.

| Guideline | EASE E-Elves
Explicit Informa- | Agents, negotiation User organisation
tion Guideline model
Design Informa- | Agent hierarchy Potential costs and
tion Guideline benefits represented

in MDP, uncertainty
explicitly represented

Software Engineer- | Parameterization of | Separation between

ing Guideline agents team and individual
reasoning

Deterministic Exe- | Agent organisation Action policy

cution Guideline
Explicit Behaviour | Agents and named con- | Action policy
Guideline stants

Building Blocks | Agents Separate handling of
Guideline each episode
No Extra Mecha- | None required None required

nisms Guideline

Design Expecting | Success and failure | STEAM “protects”
Failures Guideline | messages others from individual
decisions

Tab. 7.1: Summary of the features in the two implementations led to by
each of the guidelines.

In some cases, due to other design constraints (e.g., efficiency), we have

7.1. Method 219

violated the AA guidelines when designing the agents. In such cases, we
can look directly at the implications of the violation on the implementation
of AA, ie., we can see whether the violation of the guideline did indeed
hinder the AA development. In general, we found that when we violated
the guidelines, AA facilities were more difficult to build on the resulting
features.

This is not an exhaustive list of the AA facilities of the systems nor of
the agent features underlying them. Rather, it is an illustrative selection of
features that specifically highlight the ideas underlying the guidelines.

7.1.1 Scope of Evaluation

An ideal evaluation of the guidelines would be to have a number of separate
teams of developers build agents for the same type of AA systems. Different
teams could follow and violate different combinations of the guidelines in
the design of the agents. We could then compare the effects of the different
design decisions on the implementation of AA. Unfortunately, this sort of
evaluation is beyond the scope of this work.

An examination of the literature provides some anecdotal evidence of the
types of agent features that make AA easier or harder to build. (Some of
these anecdotes are presented in Chapter 3 and others are presented where
most relevant, either in the system descriptions or in this chapter.) Hence,
one way to evaluate the guidelines would be to examine reported AA imple-
mentations to identify whether adherence to the guidelines was genuinely
useful. However, the limited number of AA implementations reported, the
diversity of their application domains and the lack of detailed design and
evaluation information makes such an approach infeasible.

One weakness with our chosen evaluation method is that we ask that
the reader take on faith that the AA facilities that we present are easy to
build and are genuinely useful. In Chapters 5 and 6 we have highlighted
some features of the systems which we believe would make them genuinely
useful in real environments. Anecdotal evidence was presented in Chapter 5
which showed that EASE AA facilities were at least useful for the debugging
and rapid-prototyping of some types of actors. In the E-Elves case, we have
used the AA in a real environment and consider it an essential part of the
human collaboration system. Furthermore, we have tried to show that the
AA facilities of the systems were easily implemented given the features of
the systems.

However, going further and proving that the AA facilities the systems
provide are actually useful would require going from research prototypes

220 7. Evaluation

to complete implementations of AA (including complete Human-Computer
interfaces and autonomy reasoning (R)) then conducting extensive testing
in real-world, unstructured environments. Without such use we cannot say,
definitively, that the AA facilities are genuinely useful. Such testing is be-
yond the scope of this work. Equally infeasible is proving that the facilities
were genuinely straightforward to build.

Any environment we “create” to perform structured experiments in will
be “rigged” to invoke the AA facilities we provide. That is, it would be
impossible to design an “artificial” scenario that we did not (consciously or
sub-consciously) design with the AA facilities of the systems in mind. But
A A is supposed to be useful for handling cases the designer did not consider,
so the fact that we designed the experiment with our AA facilities in mind
defeats the purpose of the experiment.

The problem of designing useful experiments to show the utility of an
AA system is not limited to this work but is a general problem for all AA
developers. AA is fundamentally used for doing things not anticipated by
the software (i.e., the software designer). How can we (as designers) do
useful, repeatable, controlled experiments on the ability of software to do
things we did not expect. The only really effective tests of AA capabilities
will come from real-world use of the system. The best we can do here is
point out that the literature offers much motivation for AA with the sorts of
AA facilities we have developed, hence we believe the AA we have developed
would be genuinely useful in the real world.

Even if the systems were fully implemented and tested under real world
conditions a problem would still remain for evaluation of this particular
work. The problem is that it would be difficult to ascertain which aspects of
the results were due to the agent design (and in turn to the guidelines) and
which were due to the human-computer interface design or the skill of the
user or the particular events that occurred, etc. For example, say we created
a system that was found to work “perfectly”. How can we properly ascribe
credit to the agent design, the implementation of R, the human computer
interfaces, the simplicity of the domain, etc. for the (amazing) success? In
fact, we would probably be back where we started, relying on qualitative
evaluation to assess the utility of the guidelines. Given the lack of viable
alternatives, we ask the reader to take our assessment of what facilities are
useful for AA at face value.

This evaluation in no way shows that these guidelines are the only ones
that will lead to good agent designs for AA. Other guidelines, following quite
distinct principles might lead just as well (or better) to good agent designs.
This is OK, as our contention is simply that these guidelines lead to good

7.2. Explicit Information Guideline 221

designs for making AA simple to implement, not that this is the only (or
even best) way.

One might argue that some of the points made below are contrived,
i.e., that special cases have been chosen to show the strengths of the guide-
lines and cover their weaknesses. By showing selected examples we illustrate
that the guidelines are useful in at least some cases and, at least, are not
guaranteed to lead to agents that are hard to use in AA systems. We have
tried to show the underlying reasons why the features, resulting from the
guidelines, have made the AA easy to implement. The underlying reasons
show, to some degree, why it is reasonable to expect that the guidelines will
be more generally applicable.

7.2 Explicit Information Guideline

The Explicit Information Guideline advocates making as much of the agent’s
decision making processes as explicit as possible in that agent. Because it is
important for R to understand what an agent is doing and why it is doing
it, it is important for as much of an agent’s decision making as possible to
be made available via the AA information collection component (Z). The
basic idea behind this guideline is that explicitly represented information is
easier to extract and use in R than is implicitly represented or obfuscated
information.

7.2.1 EASE and the Explicit Information Guideline

In EASE, agents explicitly capture the goals of the actor. Contracts be-
tween agents explicitly capture the relationships between goals. Hence, the
goals and intentions of the actor can easily be presented to the user by a
straightforward extraction of the explicit agent hierarchy from an actor. The
Boss, as shown in Figure 5.19, displays the extracted hierarchy without any
post-processing. Furthermore, the displayed agent organisation actually pro-
vides a useful, understandable metaphor which users can easily understand
(Travers 1996). This means that translating or interpreting the organisation
in a different way is not necessary. Thus a “good” AA facility has been built
straightforwardly on the EASE architecture.

The negotiation mechanism explicitly represents the conflict resolution
process of the actor. The details of the explicit negotiation can be easily
extracted and visualised. A simple interface shows the status and history
of the negotiation to the user (see Figure 5.32). From the interface the user

222 7. Evaluation

can identify conflicts between goals and see how the agents resolve those
conflicts (see Section 5.5.2 for details).

Together the agent organisation and the explicit negotiation capture
much of the agent’s reasoning in an explicit manner. The visualisations
of the goal-hierarchies of the actor and the goal conflict resolution process
give a user a solid understanding of the actor’s overall behaviour. If we as-
sume that understanding the actor’s behaviour is important to AA (Brann
et al. 1996, Kortenkamp et al. 2000) then these visualisations are useful.

Moreover, building these tools is trivial because the goals and conflict
resolution are explicitly represented. Consider an architecture where goals
were not explicitly represented, e.g., a single layered behaviour based archi-
tecture. In such an architecture the “goal-directedness” of the agent is an
emergent property of the interactions between simple behaviours and the
environment. Hence, 7 needs to perform a far from trivial computation to
get useful goal information to the user. This would be clearly more difficult
than extracting and presenting the explicitly represented goals.

Therefore the explicit representation of the actor’s behaviour, in the
form of an explicit agent organisation and explicit agent negotiation, has
led to easily giving the user an accurate, understandable picture of the
current state of the actor’s reasoning. Hence, we can argue that because in
EASE useful visualisations were straightforward to build on actor features
that resulted from following the Explicit Information Guideline, then that
guideline is useful.

7.2.2 E-Elves and the Explicit Information Guideline

The E-Elves has an explicit model of the user and the environment upon
which all reasoning is based. The model contains information about the
user’s current location, probability distributions of likely developments in
different situations, the costs and benefits of being in different situations,
the likely impact of different actions and so on (see Section 6.4.1). Much AA
reasoning in the E-Elves is based on this model via straightforward MDP
value iteration techniques.

R uses the explicit, shared model in its own reasoning. Being able to use
this model includes being easily able to leverage the sensor data accumu-
lated by Friday. Friday and R use basically the same information to reach
decisions, though the types of decisions they reach are different. Thus, the
information contained in the model is critical to R. Because the model is
shared, R does not need to create, maintain or update its own model of the
user and environment. The use of an explicit model is clearly advocated by

7.2. Explicit Information Guideline 223

the Explicit Information Guideline. If the model were not easily available
R would need to have its own world model. Hence, the feature advocated
by the guideline makes the task of building AA simpler.

Notice, that the use of an explicit model that could be shared between
Friday and R was not an inevitable feature of a human collaboration sys-
tem. In fact, an earlier implementation of the E-Elves used C4.5 (Quinlan
1993) which does not have an explicit representation model of the user or
environment, hence the rules for autonomy decisions shared very little in-
formation with the rules for making decisions about actions. Hence, the use
of an explicit model, as advocated by the Explicit Information Guideline, is
a useful but not an inevitable system feature.

7.2.3 Violation of the Explicit Information Guideline

Not all aspects of the E-Elves design follow the Explicit Information Guide-
line guideline. In particular, the MDP does not explicitly capture the high
level strategy that following a particular sequence of actions in the MDP cor-
responds to. That is, Friday’s high level strategy is not explicitly represented
as advocated by the Explicit Information Guideline. For example, Friday
has an implicit high level strategy to stall for time when the location of the
user is unknown shortly before a meeting. The aim of the strategy is to try
to wait as long as possible before taking decisive actions, like cancelling the
meeting, in the hope the user will turn up. This might be implemented by
requesting a short delay, to give the user time to arrive, before requesting a
cancel if they still fail to arrive.

Ideally, we might like to have R decide whether stalling for time is
an acceptable strategy and potentially decide whether to ask the user to
approve use of the strategy. However, because the high level strategy is not
represented explicitly by Friday, R is forced to deal with the low level details
rather than the high level strategy, i.e., R must decide whether the user
should be asked about each individual action rather than be asked whether
the high level policy is acceptable. Clearly, under some circumstances this
is a less desirable approach.

It may be possible for Z to infer the high level strategy that Friday is
following from the low level actions Friday has planned. Clearly, however,
this requires more development effort for Z than if the strategies were ex-
plicitly represented, i.e., some development work would need to be done to
“reconstruct” the policies. Hence, a potentially useful AA facility is more
difficult to build due to a system feature resulting from a violation of the
Explicit Information Guideline. In at least some cases, then, violating the

224 7. Evaluation

Explicit Information Guideline makes implementing AA more complex.

7.3 Design Information Guideline

The Design Information Guideline advocates representing design informa-
tion in an agent regardless of whether it is (believed to be) necessary for
agent reasoning. The design information gives R insight into the workings
of the agent further than simply what the agent is doing and why it is doing
it. Such insights are important for reasoning about autonomy changes.

7.3.1 EASE and the Design Information Guideline

Intelligent actors created with EASE have a hierarchical agent organisation,
corresponding to their goal hierarchy, explicitly represented at run-time.
The explicit representation of the hierarchies has no effect on the behaviour
of the actor at run-time. Explicit representation of the hierarchy is a design
decision — one which extracts a high computational price. It is possible to
“compile” out the hierarchy into a “flat” system (which would be far more
efficient), however by doing so important design information would be lost,
although the observable actor behaviour would be the same.

The hierarchies capture the designer’s abstractions and decompositions
— essentially the design knowledge of the actor’s behaviour. Compiling
those hierarchies out would be similar to compiling object oriented pro-
grams into procedural code. Many of the design decisions which made the
object-oriented code easier to understand would be lost.

At run-time, the explicit hierarchical representation leads to the abil-
ity to easily show goal hierarchies to the user. The hierarchies provide a
built-in abstraction mechanism which mirrors the abstractions and decom-
positions the designer made at design time. Since abstractions are used to
manage complexity and the abstractions are available at run-time, the user
can leverage the same mechanisms for managing complexity as the designer
did. That is, the same abstractions that helped the designer manage the
actor’s complexity at design time can allow the user to manage the actor’s
complexity at run-time.

The Boss, i.e., the tool that shows the hierarchy to the user, easily allows
the expansion or hiding of whole goal hierarchies. This allows the user to
view the goals of the actor at various abstraction levels, depending on the
information they require for their decision making. Figures 5.30 and 5.31
show The Boss with the hierarchies expanded and collapsed, respectively.

7.3. Design Information Guideline 225

Notice, that it is not possible for Z to “reconstruct” the abstractions at run-

time if the information is not embedded in the run-time actor, i.e., it is not
possible for Z to take a flat system and produce useful abstractions. Hence,
without the explicit representation of hierarchies at run-time the user would
either have no opportunity to use the more abstract design information or
they would need to infer the abstract information themselves. Hence, the
explicit representation of the abstractions at runtime, as advocated by the
Design Information Guideline, leads to useful features for the straightfor-
ward creation of AA.

As a second example, notice that the names used by the designer at de-
sign time are, for the most part, retained at run-time. The designer’s naming
conventions provide invaluable information about the intended functionality
of some aspect of the actor specification. Representing the names at run-
time means they can easily be extracted for use by the user. Obviously, the
“shape” of the goal-hierarchy is of little use without knowing what the goals
are. For example, knowing goal A has sub-goals B and C is less useful than
knowing the goal be happy, has sub-goals drink beer and watch football. How
useful the names are to the user relies on how well the designer named the
goals in the first place.

7.3.2 E-Elves and the Design Information Guideline

Friday is primarily responsible for making autonomous decisions that are
expected to save the user time. It has a set of actions (including “wait”)
and chooses one of those actions to take. R needs to understand how safe,
reliable and likely to cause harm an action is to decide whether Friday should
take the selected action autonomously or not. Such decisions are not only
based on the expected cost of an action, i.e., because some costs are or might
be incurred does not necessarily mean that R should withdraw autonomy
because some costs are unavoidable.

A variety of mechanisms could have been used to implement Friday’s
decision making but an MDP was chosen. One important reason the MDP
mechanism was used is that it intrinsically provides explicit information
about the potential costs and benefits of an action and the likelihoods of
those costs or benefits coming about. This is essentially design information
that is explicitly represented.

At the AA level the cost/benefit information and especially the associ-
ated uncertainty information allows R to make good autonomy decisions.
The autonomy decisions are fundamentally based on the explicitly rep-
resented cost/benefit and uncertainty information provided by the MDP

226 7. Evaluation

mechanism. If Friday, via the MDP mechanism, could not supply the AA
with this detailed information Z would have to essentially repeat Friday’s
calculations, albeit in a manner which produced the required uncertainty
information. Hence, if Friday used an architecture where costs/benefits and
uncertainties were not explicitly represented, the task of building AA would
be strictly more difficult.

Since the explicit representation of the design information is advocated
by the Design Information Guideline and results in features helpful to the
implementation of AA we can say that at least in some cases following the
Design Information Guideline is advantageous.

7.3.3 Violation of the Design Information Guideline

An example of a violation of the Design Information Guideline can be seen in
the EASE architecture. There may be some situations an actor can get itself
into where the designer knew at design time that the actor behaviour was
going to be unsatisfactory. This information is not represented at run-time,
in violation of the Design Information Guideline. For example, the designer
may know that when the enemy aircraft is directly above a simulated pilot,
the pilot will get “confused”. In cases where behaviour is weak or incorrect,
the user, using AA facilities should step in and help with decision making.
However, because the designer knowledge is not represented at run-time,
Z cannot inform the user at run-time of potential problems the designer
knew would occur. Clearly, this handicaps the user’s ability to make good
decisions.

If 7 could “warn” the user that the actor was getting into a situation in
which the actor designer knew the actor’s behaviour would be unacceptable,
the user could react more quickly (perhaps pre-emptively) and take over de-
cision making. Adequate warning could only be given if the limitations of
the actor were readily available to Z. Such information cannot be “recon-
structed” by Z at run-time, hence not representing limitation information
puts a fundamental limitation on the capabilities of the AA.

Thus, we can conclude that there are at least some cases where the
failure to represent design information in an agent hampers effective AA. In
turn, this shows that in at least some cases, violating the Design Information
Guideline is detrimental to AA.

7.4. Software Engineering Guideline 227

7.4 Software Engineering Guideline

The Software Engineering Guideline advocates following good software engi-
neering practices when building agents because those practices tend to lead
to easier to understand and easier to change agents. Being easy to under-
stand and easy to change are useful properties of an agent in an AA system
as a large part of AA is understanding and changing agent behaviour online.

7.4.1 EASE and the Software Engineering Guideline

A variety of aspects of EASE are specifically designed to encourage good
engineering practice. For example, the use of agents encourages modularity,
the end-user system for specifying information processing encourages re-use
of calculations and the use of managers encourages abstraction and hierar-
chical decomposition. For the purposes of this discussion we focus on two
features which exemplify the difference good software engineering can make
to AA: good naming conventions and agent re-use via parameterization.

7 can use good designer names to give useful extra information about the
actor to the user — provided those names are used (and available) at run-time.
For example, if a particular satisfaction function was named Awvoid aircraft by
flying underneath it, the user, seeing an agent using the satisfaction function
would know what the agent was trying to do (or at least what the designer
intended it to do). On the other hand if the function was called, say, “S3”
then either the user (or Z) would need to infer the aim of the agent from its
actions — clearly a more difficult task (Carmel & Markovitch 1998). Hence,
the software engineering principle of good naming conventions makes AA
easier. Notice, that it is also important that those good naming conventions
are preserved at run-time so the user has access to them (as per the Design
Information Guideline).

Parameterization of a “computation” allows the “core” elements of the
computation to be re-used in different parts of some software, with the
specific required behaviour obtained by instantiating the parameters appro-
priately. Parameterization is possible with most parts of an EASE actor
including satisfaction and activation functions, state-machines, agents and
whole hierarchies of agents.

The task of implementing changes in autonomy and behaviour (i.e., A)
is, in general, difficult because changing software is intrinsically difficult.
However, the task is made very much easier if there are parameterized com-
ponents that can be instantiated to implement new behaviour or parameters
that can be changed to modify existing components. For example, say the

228 7. Evaluation

user wishes a simulated pilot to attack a particular target. To explain from
“first principles” how to attack a target would be very complex and pro-
hibitively time consuming at run-time, but if a parameterizable agent with
the right capability is available, the situation is far more manageable. This is
similar to Bindiganavale et al. (2000) usage of UPAR’s for instantiating nat-
ural language commands. It would not be feasible for A to “reconstruct” the
parameterization at run-time, hence the limitation would be unavoidable.

Hence, using software engineering practices in an agent design helps both
in the extraction of useful information and in the mapping of user requested
changes to actual changes in an actor.

7.4.2 E-Elves and the Software Engineering Guideline

The E-Elves is a fairly well engineered piece of software, but one engineering
feature stands out as very clearly leading to a simplified AA implementation.
A basic design decision of the E-Elves was to separate team and individual
decision making. Such modularity is in accordance with accepted good soft-
ware engineering practice. Individual Fridays make local decisions based on
local information, if those decisions affect the whole of the team then the
decision is submitted to the team which decides as a group whether or not
to implement the individual decision. The separation makes the implemen-
tation of decision making at both individual and team levels simpler because
factors at the other level can be ignored. For example, when deciding on
a meeting delay an individual can ignore the specific situations other users
might find themselves in.

A separation into team and individual R components mirrors the sepa-
ration in the decision making. The separation of R substantially simplifies
the reasoning that needs to be done. For example, we described above how
part of the autonomy decision at the individual level is based on the ex-
pected wvalue of the user’s input. The calculation of this value is relatively
simple because it only takes into account local factors, i.e., how different Fri-
day’s and the user’s decisions are likely to be, rather than team factors, e.g.,
what the effect on the team will be given possible differences in Friday and
the user’s decisions. Similarly, at the team level a decision about whether
an auction should be closed autonomously is simple because it is based on
abstract information such as the probability that the team would like to
close the auction manually rather than whether each individual would like
to close the auction manually. Notice that this separation is only feasible
because there is a separation in actual decision making into individual and
team components.

7.5. Deterministic Execution Guideline 229

Moreover, the teamwork of the team is controlled by a general, relatively
simple set of team rules which all agents understand and follow. This is
a well engineered design because it encapsulates pieces of reasoning and
keeps the connections between those pieces of reasoning at a high level.
The high level teamwork means that R can reasonably ignore factors from
other components because the team work model handles the low level issues
automatically.

Hence, as with EASE, the good software engineering practices used in
the design of the E-Elves made AA simpler to implement.

7.4.3 Violation of the Software Engineering Guideline

Above, in the descriptions of the EASE actor software engineering features
that make AA straightforward to implement, we mentioned that EASE en-
courages rather than enforces such practices. As an counterexample of the
Software Engineering Guideline we consider the implications of the designer
not following software engineering practices as they should. In particular,
take the case where, for efficiency (and perhaps simplicity), a designer may
not parameterize an agent definition. For example, rather than building a
generic attack target agent with the target as a parameter, a more specific
attack fighter aircraft agent is created. At run-time, when the user requires
that the simulated pilot attack, say, a ground installation, it may be very
difficult to achieve the correct pilot behaviour because of the detailed de-
scription of the behaviour the user must rapidly provide. Hence, this is a
clear example of a case where violating software engineering principles makes
the realization of effective AA more difficult.

7.5 Deterministic Execution Guideline

The Deterministic Execution Guideline advocates using deterministic al-
gorithms because such algorithms make an agent’s behaviour predictable.
Being predictable makes it easier for R to reason about the impact of au-
tonomy changes as well as allowing it to work out what the agent will do
next if allowed to act autonomously.

7.5.1 EASE and the Deterministic Execution Guideline

The workings of the EASE agent organisation are strictly deterministic. The
action(s) that a manager will take when receiving messages from contractees

230 7. Evaluation

are clearly known in advance and work deterministically. The way an engi-
neer will negotiate in a negotiation is also clearly known in advance (although
the outcome of a negotiation is non-deterministic — see below). The impact
of different environmental events can be calculated in advance. Because all
the changes that will occur in the agent organisation are known in advance,
it is straightforward to simulate the dynamics of the organisation.

The determinism means that at the AA level it was trivial to build a
simple tool, called the Implications Viewer (see Figure 5.20) that mimics
the behaviour of the organisation. The tool allows the user to investigate
the impact of different events, including changes they might make, on the
structure of the organisation. The structure of the organisation is very
important because it captures the goal hierarchy of the actor. Thus, the
Implications Viewer, allows the user to see the impact of potential changes on
the goal hierarchy of an actor and therefore see the effects of their proposed
changes on the behaviour of the actor.

Without the determinism of the underlying agent organisation, as ad-
vocated by the Deterministic Execution Guideline, it would not be possible
to be sure what was going to happen when a change was made. Hence,
any change to the organisation would carry with it an element of luck. In
turn, this implies that the Implications Viewer could not have been con-
structed in a way that would give the user a consistently accurate picture
of the changes that will occur in the organisation. The determinism of the
organisation leads to an easy to build facility that provides valuable AA
functionality. Thus, we can conclude that at least in some case it is ad-
vantageous when building AA to have agents with features resulting from
following the Deterministic Execution Guideline.

7.5.2 E-Elves and the Deterministic Execution Guideline

When Friday first detects a situation where it might take some actions,
e.g., a meeting that may have to be delayed, it develops a policy that dictates
what actions it will taken in each possible state it finds itself in. This policy
completely dictates Friday’s behaviour for the rest of the episode. Hence,
Friday’s behaviour is deterministic and predictable and thus R knows well
in advance what Friday will do in all situations.

R uses Friday’s predetermined policy to create its own autonomy policy.
Friday’s policy takes some of the “guess work” out of creating an autonomy
policy because R knows what Friday will do (within the bounds of the
unpredictability of the user and environment).

Sometimes autonomy decisions will not only be based on the action Fri-

7.5. Deterministic Execution Guideline 231

day intends to take immediately, but also on the action it intends to take
next. For example, consider the case when some time before a meeting the
user is not at the department. If R knows only that for now Friday intends
to wait, it may conclude that there is significant likelihood that the user will
want to ask for some delay (because doing nothing is the wrong decision)
and decide to withdraw Friday’s autonomy. However, if R also knows that
Friday will request some delay to the meeting if the user has still not arrived
closer to the meeting time, R’s decision might be different. In particular,
it might decide that Friday’s policy had sufficiently low risk so as to justify
allowing it to continue autonomously. Hence, the availability of Friday’s
entire policy to R improves its ability to make good autonomy decisions.

Without the predictability of Friday’s actions, R could not know in ad-
vance what Friday will do and, hence, autonomy reasoning would be weaker
(as more uncertainty is inherent). It is the predictability due to the deter-
minism that allows the high quality R, hence the Deterministic Execution
Guideline is a useful guideline.

7.5.3 Violation of the Deterministic Execution Guideline

An examination of EASE provides an example of how violating the De-
terministic Execution Guideline leads to difficulties implementing AA in a
straightforward manner. The negotiation mechanism used by the engineers
to come to a decision on what action an actor should take is stochastic, i.e.,
there is some degree of non-determinism. A factory, the entity administer-
ing the negotiation, picks some action from the action space, checks each
engineer’s satisfaction with that action, keeping the action if it is the best
action so far and discarding it otherwise and then begins the cycle again.
Actions are chosen according to an intelligent algorithm with a significant
stochastic element. The eventual action taken by the actor is the “best” of
those sampled during the negotiation cycle. For large action spaces only a
small percentage of actions may be sampled in each cycle.

In some cases the basic options are indistinguishable to the actor and
one is picked randomly. For example, when a simulated pilot avoids an
obstacle by flying around it, it will often have two options — to go left or
to go right around the obstacle. However, there may be factors outside the
pilot’s knowledge (like other obstacles) that make it interesting or important
for the user to know whether the pilot will go to the left or right. However,
because the decision will be made by the negotiation algorithm which is
non-deterministic, the user cannot know what the actor will do.

In practice, actions taken by the actor are “fairly” predictable, but this

232 7. Evaluation

is primarily due to the fact that “global maximums” in the search space of
actions for our particular domains are usually fairly large and fairly reliably
found by the negotiation algorithms. However, basing interfaces on “rules
of thumb” like this is likely to be a dangerous practice because unexpected
and problematic situations, i.e., those where AA is most likely required, will
be more likely to break the “rules of thumb”. That is, almost by defini-
tion, unexpected and problematic situations do not follow the same “rules”
as more “normal” situations, hence anything that relies on standard rules
holding will break when unexpected situations occur. Hence, AA tools based
on rules of thumb are an inherently bad idea, because the situations where
they are most likely to be useful are those where they are most likely to
fail. The key point is that non-determinism hinders the development of ef-
fective, reliable tools for AA because the future actions of an actor cannot
be presented.

Thus, we can see that violating the Deterministic Execution Guideline
can lead to significant problems when implementing AA.

7.6 Explicit Behaviour Guideline

The Explicit Behaviour Guideline advocates using architectures where be-
haviour is represented explicitly and in a language close to that of R so
that autonomy changes can be easily implemented. The underlying idea is
that the closer the behaviour representation “language” used by R is to that
used by an agent the easier the translation between the “languages” of the
two. Since a translation between the languages needs to be done in order to
allow A to realize behaviour changes, making the translation simple makes
the implementation of that aspect of AA straightforward.

7.6.1 FEASE and the Explicit Behaviour Guideline

EASE represents goals explicitly in an actor via the use of agents and rep-
resents more abstract properties of actor behaviour with named constants.
In a well designed actor the goal hierarchy and the named constants might
explicitly represent most aspects of the actor’s behaviour. The agents and
the named constants constitute the “language” of the EASE actor. For ex-
ample, a designer might have a named constant desperation which is used in
various satisfaction calculations, activation functions and transition condi-
tions of some RoboCup actor. Changing the value of the constant changes
the behaviour of each of those functions. For example, the named constant

7.6. Explicit Behaviour Guideline 233

desperation might change the distance to the ball at which a RoboCup player
will transition between states for watching and chasing.

The fact that the behaviour is explicitly represented is, in itself, useful
because mapping changes in behaviour to an explicit representation is sim-
pler than mapping to some mechanism where the behaviour is only implicitly
represented (like a neural network). However, the key to the practical ef-
fectiveness of this guideline is whether or not the things that are explicitly
represented in an actor are the things that the user wants to manipulate.
For example, dribbling is more difficult to manipulate if represented as small
kick and run to ball than if represented directly as dribbling. Similar issues
are likely to arise in the JACK system where natural language input is to be
mapped to internal constructs (Bindiganavale et al. 2000) — if appropriate
internal constructs exist corresponding to the natural language statement
the behaviour change is easily made, if not, achieving the correct result is
difficult.

Effectively, the problem boils down to how difficult the “translation”
between what the user wants and what the actor “knows” is. In our use of
EASE we have usually found that most of the things we want to change are
explicitly represented and are therefore easily changed. For example, it was
straightforward to force our test RoboCup players to chase, pass and shoot
because such behaviour had an explicit representation in the actor. There
are times, however, when the mapping from the change we required of the
actor, to the things that were explicitly represented was not straightforward.
For example, a particular RoboCup actor would periodically turn to check
the location of the ball while running back to position. This periodic check
was not explicitly represented in the actor, rather it was an “emergent”
interaction between the know where the ball is and get to position agents.
Changing the periodicity of the periodic check involved the (relatively) diffi-
cult task of altering the environmental priority functions of the two simpler
agents.

Thus, it can be seen that an explicit representation of behaviour, in at
least one case, makes the implementation of AA simpler.

7.6.2 E-Elves and the Explicit Behaviour Guideline

The feature of the E-Elves that most clearly exemplifies the Explicit Be-
haviour Guideline is Friday’s creation of a policy which R uses to create an
autonomy policy. The value of this feature to the AA has been discussed
above and will not be repeated here. In summary, the explicit representa-
tion of the policy substantially simplifies the design of the AA. Since such

234 7. Evaluation

a feature results from adhering to the Explicit Behaviour Guideline we can
conclude that the guideline is at least sometimes useful.

7.6.3 Violation of the Explicit Behaviour Guideline

It has been noted above that the MDP mechanism does not have an explicit
representation of high level strategies, e.g., it does not represent the strategy
stall for time. Because Friday does not represent high level strategies, there
is no point in R reasoning about them either because A could not make
appropriate changes to a policy in any case. For example, say the user
decides that stalling for time is an inappropriate strategy. A needs to decide
whether a particular action in Friday’s policy is part of the stalling for time
strategy in order to know whether to allow it or not. Such a decision is not
simple. A five minute delay in the policy may be an action taken when it is
known the user will be arriving five minutes late or it could be part of the
stall for time strategy (or a bit of both).

Hence, because it is not feasible to reason about high level strategies, R is
forced to work at the level of individual actions — a clear limitation. Because
this limitation comes about due to a violation of the Explicit Behaviour
Guideline we can see the utility of the Explicit Behaviour Guideline.

Other architectures where the reasoning of the agent is far more sophis-
ticated, e.g., Soar (Rosenbloom et al. 1991) or a first principles planner, e.g.,
(Pollack 1996, Veloso et al. 1995), will have a related difficulty. Planners
use simple blocks to build up complex solutions to problems but will not,
generally, “understand” the high level strategy of the overall plan. Like-
wise for Soar. For example, when faced with the problem of getting bread a
planner might come up with a sequence of steps, e.g., go to car, turn on en-
gine, ... , take bread off shelf, pay cashier, etc., that, if followed, will achieve
the intended goal. We know that such a plan can be roughly described as
shopping. If, instead, we want the agent to get bread via baking, it might
not be straightforward to have A make appropriate changes because neither
baking nor shopping is understood by the system. Thus, such architectures
may not be good candidates for agents in AA systems, since they violate
the Explicit Behaviour Guideline.

7.7 Building Blocks Guideline

The Building Blocks Guideline advocates building behaviour up from small
units that are connected together in a well understood manner. It is our con-
tention that such designs maximize the ease with which autonomy changes

7.7. Building Blocks Guideline 235

can be made and the flexibility the system has to configure itself. The
more flexibility A4 has the better R can configure the system for optimal
performance.

7.7.1 EASE and the Building Blocks Guideline

The Building Blocks Guideline is clearly followed in EASE by having an
actor broken up into many simple agents. Having many small blocks makes
A’s job of making some changes simpler. The smaller the “blocks” the more
likely it is one or more “blocks” can be found corresponding to the aspects of
the actor’s behaviour that need to be changed. Conversely, larger blocks are
more likely to cause problems as it will be less likely that a combination of
blocks can be found corresponding exactly to the piece of behaviour a user
is concerned with. For example, if complex behaviour is well decomposed
into agents, then to stop pursuing some sub-goal might require stopping
just one agent. Likewise, authority to pursue specific things can be given
(or taken) more easily if the actor has a “block” corresponding to what the
authority should be given for. Thus, a feature of the architecture advocated
by the Building Blocks Guideline leads to greater flexibility and simplicity
at run-time.

Having “small” building blocks is not an answer on its own. Goldman,
Guerlain, Miller & Musliner (1997) noted that first principle planners were
not appropriate as an agent architecture for mixed initiative systems pre-
cisely because the “building blocks”, in this case planning operators, were
too detailed and lacked the abstraction that users needed. The important
difference between the building blocks of a first principle planner and those
of EASE is that the building blocks in EASE are aggregated by the designer
into more abstract blocks. These more abstract blocks allow the user to deal
with more abstract “chunks” of behaviour when required but to also delve
into the details. With the planner the user can only work with details.

7.7.2 E-Elves and the Building Blocks Guideline

In the E-Elves, each situation that Friday (or a team) is involved in is
handled by a separate MDP. This means that each MDP needs to only
consider a single situation at a time (the benefits of this have been discussed
above). This breakup of decision making into “blocks” is in accordance with
the Building Blocks Guideline. For the purposes of this discussion we are
interested in how the modularity of the underlying decision making allows
modularity in autonomy decision making. Without the underlying decision

236 7. Evaluation

making modularity, the AA would either have to separate out the situations
itself or deal with several of them simultaneously.

At the AA level each decision making MDP in Friday is handled sep-
arately by the AA. So, for each policy Friday produces, R constructs a
separate autonomy policy. As with the basic Friday decision making the
computational complexity of AA for individual situations is substantially
reduced by the separation. This makes R feasible because interactions be-
tween many different episodes do not need to be taken into account.

Notice that the breakdown into separate situations is similar to the phi-
losophy of the breakdown for EASE. The underlying system has a modular-
ity that allows the AA to deal with the system in a modular way. We show in
the counterexample below, that if EASE actors are made up of big complex
agents (instead of small simple ones) the AA task is more complex. Likewise
for E-Elves, if the underlying system was handling everything at once then
the task of making good autonomy decisions would be more difficult.

7.7.3 Violation of the Building Blocks Guideline

With EASE, it is possible to design actors where many aspects of the actor’s
behaviour are merged into a single engineer. For example, an obstacle avoid-
ance engineer might be responsible for avoiding all other aircraft as well as
the ground. In fact, all the behaviour of the actor could be summarised in a
single engineer. The satisfaction function for that one engineer would need
to be very complex, taking into account all the different objectives of the
actor when calculating satisfaction values (something like a neural network
might function in a similar manner). Although it is possible to create actors
in this way, such designs, which clearly do not adhere to the Building Blocks
Guideline are much more difficult to work with at runtime. It is far more
difficult to manipulate a complex satisfaction function (or neural network)
controlling a complex simulated pilot to make it, say, not avoid one specific
obstacle than it is to remove a single agent from an agent organisation. This
is because it is more difficult in a satisfaction function or neural network to
isolate the data that need to be changed to elicit the appropriate behaviour
change. Thus, in at least some cases violating the Building Blocks Guideline
makes AA more difficult to implement.

7.8 No Extra Mechanisms Guideline

The No Extra Mechanisms Guideline was followed by both agent architec-
tures. No extra mechanisms are used to implement any of the autonomy or

7.9. Design Expecting Failures Guideline 237

behaviour changes decided on by R. In all cases, autonomy and behaviour
changes are achieved via the same mechanisms that are used by the agents
in their “normal” reasoning.

Both agent architectures were specifically designed with AA in mind so,
no doubt, some aspects of the systems’ designs were influenced by the needs
of the AA. Some might argue this means the No Extra Mechanisms Guideline
was followed only because we made the “extra mechanisms” part of the agent
in the first place. However, this is still different to having mechanisms for
doing “normal” agent reasoning and other mechanisms for implementing
agent behaviour specified by R (and in fact thinking about AA from the
earliest stages is precisely what we advocate). In the case of both EASE
and the E-Elves the same mechanisms that do the “normal” reasoning of
the agent implement the autonomy changes. Thus, the evaluation of this
guideline is partly proof by existence — we have done it, therefore it is possible
to do.

It is fairly clear that if we are free to choose between two systems that
have the same functionality and one is more complex than the other, we
would choose the simpler system. Since this will be the case if similarly
functioning systems are built adhering and violating the No Extra Mech-
anisms Guideline, it seems clear that systems adhering to the No Extra
Mechanisms Guideline are preferable. By implementing two effective AA
systems without extra mechanisms we have shown it is possible, provided
things are designed properly, to implement good AA without needing extra
mechanisms. Thus, we can claim that the No Extra Mechanisms Guideline
is a feasible and worthwhile guideline.

7.9 Design Expecting Failures Guideline

The Design Expecting Failures Guideline advocates building agents for AA
systems with the expectation that any part of the agent could fail at any
time. The guideline comes from the observation that often the effect of A4 on
an agent is the same as if its components fail. The effect of AA is especially
similar to a “normal” failure when A reduces authority or responsibility.

7.9.1 EASE Features

Behaviour based architectures are intrinsically robust to failure (Goldberg
& Mataric 2000, Parker 1998). Since EASE is strongly based on behaviour
based ideas its underlying principles ensure it handles failure robustly. Thus,
EASE adheres to the Design Expecting Failures Guideline. Although the

238 7. Evaluation

basic nature of EASE provides a large degree of failure handling, for the
sake of the evaluation of this guideline we concentrate on another feature of
EASE which further increases its ability to handle failure gracefully.

When a contractee agent succeeds or fails in its assigned task, it reports
that information to its contractor which can use the information in what-
ever way it likes. In particular, the contractor can use the information to
handle the failure intelligently and gracefully. Recall, that when an agent
is removed from the organisation by the user (i.e., by A) it sends a mes-
sage indicating either success or failure, just as if would have if it had really
failed or succeeded. Thus, the mechanisms that allow the designer to easily
implement graceful failure handling also, for free, provide graceful handling
of autonomy changes.

An example of the usefulness of graceful failure handling for AA came
up during the development of RoboCup agents for the 2000 World Cup. A
bug in the low level information processing routines meant that sometimes a
player did not realize it could no longer see the ball, which would mean the
player would keep acting as if the ball was in the same relative position to
itself as it was the last time the ball was seen. Strange effects, like the player
chasing a “phantom” ball off the pitch or kicking a “phantom” ball over and
over occasionally occurred. To get around the bug (during testing) we would
often manually end the contracts of chase ball agents with failure messages.
That is, we would assume decision making responsibility and specify that
the player should assume its chase ball agent had failed. The contractor of
the chase ball agent, perhaps a striker manager agent, would take actions to
recover, perhaps by contracting another agent to (properly) locate the ball.

A nice feature of this example is that we were giving commands to the
player at a fairly abstract level, i.e., “your behaviour of getting to the ball
is failing”. The player was dealing with the details of recovering from the
problem in a context specific way, i.e., whichever contractor had contracted
the chase ball agent would deal with the chase ball failure in an appropriate
manner. The point is that the built-in failure handling effectively handles the
“common sense” aspects of dealing with the requested change in behaviour.
Once the actor knows that its behaviour is failing, it deals with it in an
appropriate manner (provided the designer’s specification is appropriate.)
This is critical because it means the actor’s behaviour is “sensible” when an
AA change is made.

Thus, we conclude that adherence to the Design Expecting Failures
Guideline, such as by the use of success and failure messages, is useful for a
straightforward implementation of AA.

7.9. Design Expecting Failures Guideline 239

7.9.2 E-Elves and the Design Expecting Failures Guideline

The separation of the team and individual decision making has the desirable
side effect of “protecting” the rest of the team from poor decisions by one
Friday or its user (if the decision is not autonomous). That is, if a local
decision is made that is not for the good of the team (whether for malicious
reasons or because some information was not known) the STEAM rules
protect the team by rejecting the decision. In effect, this is a failure recovery
mechanism. If the team could safely assume that all the decisions that
individual Fridays and their users were going to make were correct then the
team could just accept all the decisions blindly.

From an AA perspective the protection afforded by the layering of the
decision making makes R easier because problems with user input are easily
and reliably handled. This makes R easier to implement because there is no
need to question the user’s requests, i.e., R need not be applied to the user.
R’s job at the individual level is just to decide whether or not a user should
be consulted rather than also ensuring the user is not making dangerous
decisions (which might require autonomy being taken from them).

Another example of failure handling in the E-Elves is the way that an
autonomy policy specifically accounts for the possibility that the user will
not provide input in a timely manner. Autonomy can be more confidently
transferred to the user because it can be taken back later if the change does
not produce the expected results. This makes autonomy reasoning simpler.

7.9.3 Violation of the Design Expecting Failures Guideline

As an example of a violation of the Design Expecting Failures Guideline we
look at a very simple design decision in the EASE negotiation algorithm.
The negotiation is designed to take advantage of a property of the domains
we have so far used EASE in. In particular, the algorithm takes advantage
of the property that whatever action is best at one cycle is often a good
action at the next cycle. For example, if a RoboCup player is running
in one cycle, the best option in the next cycle will often also be to run.
Likewise, the heading of an aircraft in one cycle is likely to be similar to
the best heading in the next cycle. To take advantage of this property, the
negotiation algorithm is “seeded” at the start of each cycle with the action
taken in the previous cycle. Recall that the algorithm keeps track of the
favored action of the engineers and “executes” the best action at the end of
the cycle. The action from the previous cycle is used as the starting value of
the “best action” in the current cycle. An unintended consequence of this

240 7. Evaluation

is that if there are no engineers no better actions are found (the actor is
equally ambivalent to all actions) and the previous action will keep on being
selected and subsequently executed by the actor.

When a user takes over all decision making the first thing they do is re-
move all agents. Since the negotiation mechanism is seeded with the previ-
ous action, the actor will keep repeating the last action the engineers favored
before they were removed. The resulting behaviour is often non-intuitive or
even outright problematic, e.g., a RoboCup player with no agent organisa-
tion might repeatedly run (wasting stamina) or kick (regardless of the ball
location) and a simulated pilot continues to dive (until it hits the ground)
or turn (wasting fuel), etc. Such behaviour can be seen as a violation of the
Design Expecting Failures Guideline because the “failure” of the agents, i.e.,
their removal, is not handled gracefully by the system. Further, it is clear
that, in at least some cases, the resultant behaviour makes the AA harder
to use because more care needs to be taken to avoid bad actor behaviour.

7.10 Evaluation Summary

In the above we have shown system features resulting from adherence to
each of guidelines and the utility of those features to implementations of
AA. Tables 7.2 and 7.3 summarises the EASE and ELVES system features
respectively and the AA facilities those features support. We have also
shown how violations of the guidelines can lead to system features that
hinder the development of effective AA. Table 7.4 gives a summary of the
example violations for each of the guidelines. While the evaluation cannot
show definitively that the guidelines are worth following every time when
developing agents for AA systems, the evaluation does show that in at least
some cases, following the guidelines helps and violating the guidelines hin-
ders, the development of effective AA.

7.10. Evaluation Summary 241
‘ Guideline ‘ Agent feature ‘ AA Facility ‘
Explicit Informa- | Agents, negotiation Goals, goal conflict
tion Guideline resolution

Design Informa-
tion Guideline

Agent hierarchy

Designer abstractions

Software Engineer-
ing Guideline

Parameterization of
agents

Simple mapping of A
changes

Deterministic Exe-
cution Guideline

Agent organisation

Implications Viewer

Explicit Behaviour

Agents and named con-

Goals and abstract as-

Guideline stants pects of behaviour
Building Blocks | Agents Ability to identify
Guideline blocks for a specific

change

No Extra Mecha-
nisms Guideline

None required

Design Expecting
Failures Guideline

Success and failure mes-
sages

“Common sense” han-

dling of AA changes

and the AA facilities they support.

Tab. 7.2: Summary of the EASE actor features led to by each guideline

242

7. Evaluation

Guideline

‘ Agent feature

AA Facility

Explicit Informa-
tion Guideline

User organisation model

Cost benefit analysis,
sensing, common “lan-
guage”

Design Informa-

tion Guideline

Potential costs and bene-
fits represented in MDP,
uncertainty explicitly
represented

Risk analysis

Software Engineer-
ing Guideline

Separation between team
and individual reasoning

Simplified R, low com-
plexity

Deterministic Exe- | Action policy Autonomy policy,
cution Guideline lookahead

Explicit Behaviour | Action policy (as above)

Guideline

Building Blocks | Separate handling of | Simplified R
Guideline each episode

No Extra Mecha- | None required

nisms Guideline

Design Expecting | STEAM “protects” oth- | Simplified R

Failures Guideline

ers from individual deci-
sions

Tab. 7.3: Summary of the ELVES actor features led to by each guideline
and the AA facilities they support.

7.10. Evaluation Summary 243

‘ Guideline ‘ System ‘ Violation ‘
Explicit Informa- | E-Elves No high level strategies represented
tion Guideline so R must reason with details
Design Informa- | EASE Limitations on agent behaviour not
tion Guideline represented so user cannot know

when agent is likely to perform
poorly
Software Engineer- | EASE Does not enforce good practices
ing Guideline
Deterministic Exe- | EASE Negotiation in non-deterministic
cution Guideline
Explicit Behaviour | E-Elves No high level strategies represented
Guideline
Building Blocks | EASE Allows single agent designs
Guideline
No Extra Mecha- | None
nisms Guideline
Design Expecting | EASE Negotiation uses previous action
Failures Guideline

Tab. 7.4: Summary of the examples of violations of the guidelines and the
problems the violations cause.

244 7. Evaluation

7.11 Miscellaneous Agent Design Issues

We conclude this chapter with a brief discussion of some issues related to the
design of agents for AA systems that are not covered by the guidelines. In
general, these points are things that have come up during the development
of one of the systems and may be of interest or value to other AA system
developers.

7.11.1 The Guidelines are Flexible

The agent designs for the two implemented AA systems presented in this
thesis are distinctly different. EASE agents have a reactive, behaviour based
style architecture while E-Elves agents use a distributed, decision theoretic
approach. The fact that there is a distinct difference between the archi-
tectures is important because it shows that the guidelines are not overly
restrictive, i.e., they permit a variety of different designs. The guidelines re-
quire certain abstract features of an agent design but do not overly constrain
how those features are achieved.

The range of domains where AA systems will be deployed is very diverse,
hence, the types of agent architecture that are going to be required for the
different domains are going to be very diverse. Thus, it is critically important
that the guidelines do not overly restrict the designer’s options. Consider
an analogy with a guideline for making comfortable shoes which advises
using a hard material on the bottom (to protect the foot) and a soft one
on the top (to give flexibility). This guideline is met by a huge variety
of different shoe designs that also meet other requirements, e.g., football
boots, dress shoes, running shoes, hiking boots, etc. However, in some
cases other requirements on the shoes’ “performance” may mean that the
guideline is violated, e.g., astronaut space walking boots are hard all over.
When the guideline is followed comfortable shoes result and when violated
uncomfortable shoes result. We believe that the AA guidelines we present
have a similar property in that they permit a variety of designs all with the
property that AA is subsequently more straightforward to implement.

The fact that we have implemented two very distinct architectures that
basically meet the guidelines should not be interpreted as showing that any
reasonable architecture will meet the guidelines. As the counterexamples in
the previous chapter demonstrated it is very easy to violate the guidelines
and make AA very difficult to implement.

7.11. Miscellaneous Agent Design Issues 245

7.11.2 Choosing between Directed and Reasoned AA

The difference between Directed AA and Reasoned AA is whether a human
or software is responsible for R. There appear to be two major properties of
an application that will determine which type of AA is appropriate. The first
property is whether a human can reasonably be expected to be available to
make AA decisions when they need to be made and the second is the purpose
of the AA.

Autonomy changes may be appropriate at any point in the operation
of the system, i.e., there are not pre-determined times when AA might be
useful. If a human is to do R, i.e., Directed AA is used, then it is necessary
for the user to be available the whole time the system is running (because
the need for that reasoning might occur at any time). For some applications,
like the ones EASE is used for and, for example, computer games, this is a
reasonable expectation because the system is not intended to run without
direct, continuous human involvement (for reasons other than AA). For ap-
plications where the system runs around the clock it may not be feasible to
always have a human available to do R, unless the criticality of the system
is very high. For example, it is unreasonable to require humans to wait
around to make autonomy decision in the E-Elves because the system is
running around the clock (and requiring constant supervision would defeat
the purpose), hence Reasoned AA needs to be employed.

The second important property that needs to be considered when decid-
ing between Directed and Reasoned AA, is the purpose of the AA. Reasoned
AA can only be used when software can identify the need for autonomy
changes. The most obvious case of this is for optimizing system perfor-
mance given known limitations and errors in constituent agents, e.g., as is
the case with DAA (Barber, Martin & Mckay 2000) (see Section 3.3.1). If
the purpose of the AA is to allow experimentation or entertainment then,
clearly, it will be difficult or impossible for software to know when autonomy
changes are required hence Directed AA must be used. The purpose of the
AA is important to deciding whether Directed or Reasoned AA should be
used.

7.11.3 Good Software Engineering is Essential — Unfortunately

Several of the guidelines from Chapter 4 advise practices which are well
established in the software engineering field. Following software engineer-
ing principles leads to software that is straightforward to understand and
change. In general, a very well engineered program might meet many of the

246 7. Evaluation

guidelines — regardless of whether or not the designer attempted to meet our
guidelines.

The close correlation between good software engineering practice and
good AA practice is perhaps not surprising. In some respects, AA can be
seen as pushing an iterative development cycle to its extreme, i.e., the pro-
gram is not even stopped in between development iterations. Each autonomy
change can be seen as a single cycle in an iterative development process, go-
ing from one specification to another in response to the deficiencies of the
previous program or changing requirements. By definition following good
software engineering practices is critical to an effective software development
process. So, if AA is viewed as simply a very tight iterative development
process, we can reasonably expect that the same things that make “normal”
software engineering easy to do will be critical for AA.

However, the reliance on good software engineering principles is a cause
for some concern. Much software that is produced does not even come
close to meeting the exacting principles advocated in software engineering.
This makes the software hard to extend, understand, etc. For effective AA it
seems necessary to observe software engineering principles very well because
the whole development process is being taken to an extreme. If normal
software engineering standards are difficult to maintain then it might be
expected that high standards will be virtually impossible to maintain. But
for systems that are not engineered well, AA will be hard to implement —
which is disturbing because such systems are most likely to benefit from AA.

7.11.4 Ironically, Behaviour-based Systems are Very Appropriate

Behaviour based ideas were first presented in two seminal papers: Intelli-
gence without Representation (Brooks 1991b); and Intelligence without Rea-
son (Brooks 1991a). The idea given by the papers’ titles, i.e., no represen-
tation and no reason, seem to imply an architecture going directly against
most, if not all, the guidelines in Chapter 4. Yet, EASE and a variety of other
projects (e.g., Blumberg & Galyean (1995), Perlin & Goldberg (1996)) have
successfully implemented AA using behaviour-based agents. The reason for
this apparent dichotomy is worth looking at.

Behaviour based agents do not do away with reason and representation,
rather the reasoning and representation used is arranged in a radically dif-
ferent way. A critical characteristic of behaviour based agents is that the
software is divided “vertically” instead of “horizontally” (Agre & Chapman
1987, Steels 1994). Brooks (1991a) explains the difference between conven-
tional Al software and behaviour based software as follows. Traditional AT

7.11. Miscellaneous Agent Design Issues 247

software is broken into information processing or functional modules and
intelligent behaviour is an emergent property of the interactions between
the functional modules. In behaviour based systems, software modules are
“behaviour producing” and intelligent functionality is an emergent property
of the interactions between the behaviour producing modules. The idea is
similar to that of aspect oriented programming (Kiczales et al. 1997) which
aims to make development of all software easier, by separating out different
functionalities and using automated combination techniques.

The decentralization into specialist behaviours actually makes the break-
down of the agent’s behaviour easier to understand by an observer, provided
not too much of the observed behaviour is due to interactions between be-
haviours. It also makes things easier to change because the breakdown
makes it easier to identify and change specific aspects of behaviour. The
key reason for this is that behaviour based architectures break down overall
behaviour in a way similar to what a human observer would. Hence, when
a user looks at the specification of a behaviour based agent they find the
pieces they expect to see. For example, when a non-programmer observed
the code for, say, a RoboCup player they might expect to see modules for
dribbling and shooting. If the player is coded in a behaviour based style
they will find such modules, if coded in a more traditional way they will
find modules for planning and world modeling, etc. Hence, the behaviour
based system’s representation is closer to the expectations of the user, which
results in them being easy to use.

So, behaviour based architectures turn out to be very appropriate for
AA systems, despite not appearing so on first inspection.

7.11.5 Teamwork is a Key

There are few common features of the agent architectures developed for
EASE and E-Elves. One feature, however, is common — the use of teamwork.
In EASE, a very simple form of teamwork is used between the agents within
an actor to co-ordinate the agent’s activities. In E-Elves teamwork is used
between Fridays and for group decision making.

Teamwork is useful in an AA system because it creates flexible, abstract
connections between the parts of a system (Scerri & Reed 2000d). The task
of changing the system at runtime is easier because of the flexible, abstract
connections. The flexibility aspect means that single components can be
changed and the general teamwork structures will look after the details of
ensuring that the rest of the system’s behaviour moves into line. The ab-
stract relationships between team members enforced by the teamwork model

248 7. Evaluation

reduces the occurrence of complex inter-relationships between components.
This eases the task of understanding and changing an agent because the
parts of the software that need changing are more localized and better in-
sulated from the rest of the system.

It is not necessarily the teamwork per se, that is good for AA it is
that the features teamwork has are very useful for AA. The basic features
of teamwork meet, at least, the Design Expecting Failures Guideline, the
Building Blocks Guideline and the Explicit Behaviour Guideline. Other
mechanisms with the same features, thus meeting the same guidelines, we
would expect to be just as useful as teamwork.

7.11.6 Using AA During Development

Rapid prototyping (Connell & Shafer 1994), iterative development (Booch
1994), extreme programming (Beck 1999) and other software development
methods where systems with reduced functionality are developed then im-
proved have recently become increasingly popular. In such development
processes, where working software is produced early on, AA has the possi-
bility to be a very powerful tool for reducing development time.

During the development process for the Headless Chickens IV RoboCup
football team (Scerri, Reed, Wiren, Lénneberg & Nilsson 2001), AA was
extensively used. The information required for doing R is similar to that re-
quired for debugging, hence the same interfaces used to present information
for R provided useful information for debugging. That is, Z is very useful
to understand the agent’s behaviour for debugging.

However, the ability to see inside the agent for debugging was a small
bonus compared to the ability to change the player’s behaviour while it ran.
The functionality provided by A was very useful for experimenting with
the behaviour of the agent. The task of setting up specific test scenarios
was made significantly simpler because the agent could be manipulated at
runtime, instead of the more standard process of stopping the game and
changing the player specifications. Furthermore, players with considerable
gaps in their functionality, e.g., not stopping when a goal was scored or
not listening to referee calls, could still be effectively tested because the
developer could come in and “help out” via AA, when the player encountered
a situation it did not yet have the functionality to handle.

Based on this experience we believe that AA functionality should be
developed in parallel with the rest of the software, as the functionality it
can provide can help the overall development process. The usefulness of AA
capabilities will be greatest in development processes where functioning but

7.12. Summary 249

incomplete systems are produced early in the process.

7.12 Summary

In this Chapter we have evaluated two implementations of very different AA
systems to identify features that resulted from adhering to each of the guide-
lines from Chapter 4. We then identified the facilities that have been easy to
develop at the AA level utilizing those features of the agents. We have also
examined aspects of the agent designs that have violated the guidelines and
shown how this has made implementing AA more difficult. We can conclude
that, (in at least some cases) adhering to the guidelines leads to agents that
make AA easy to implement and that breaking the guidelines can make AA
more difficult to implement.

This chapter also discussed various observations we made while imple-
menting the two AA systems, e.g., we observed the good software engineering
was critical. The observations might be helpful to other developers designing
agents for AA systems.

250 7. Evaluation

8. CONCLUSIONS AND FUTURE WORK

In this chapter we summarise the contents of this thesis, emphasizing its
contributions. Finally, we discuss some promising lines of future work that
would build on the work presented here.

8.1 Summary

This thesis has examined the problem of how to develop intelligent agents for
Adjustable Autonomy (AA) systems. We presented a conceptual model of
an A A system which we used to clarify the requirements for each component.
Chapter 4 presented guidelines for designing agents which will lead to agent
features that make AA straightforward to implement. The guidelines are
adhered to in the implementation of agents for the two AA systems which
were presented in Chapters 5 and 6. The previous chapter analysed the
systems with respect to the guidelines to show the utility of following the
guidelines.

8.1.1 Conceptual Model of AA

In Section 2.1.2 we defined the autonomy of an entity, A, by the entities
decision making responsibilities, authority to pursue goals and intrinsic abil-
ities. We defined an AA system as one where the distribution of autonomy
among the intelligent entities in the system could be dynamically changed
at run-time. A conceptual model of such an AA system abstractly captures
the basic components of most AA systems. The conceptual model has three
parts. Z is the component whose responsibility it is to extract relevant infor-
mation from the intelligent system and transform that information so that
it can be used for deciding on autonomy changes. R takes the information
provided by Z and makes decisions about how the autonomy of the system
should be configured to achieve the best performance. R could be performed
either by a human or by software. An AA system where R is performed by
software is called a Reasoned AA system and one where R is performed by
a human is called a Directed AA system. The required autonomy changes

252 8. Conclusions and Future Work

are realized by the final component of our conceptual AA system, A. A’s
task is to take the decisions about changes in responsibility and authority
decided on by R and affect those changes in the intelligent system.

A core contention of the thesis is that the design of the intelligent agents
in an AA system has a significant impact on how straightforwardly Z and A
can be implemented. We argue that if it is difficult to extract information
from an agent it is also difficult to implement Z. Similarly, we claim that if it
is difficult to change authority or responsibility of an agent, implementation
of A is more difficult. It is clear that the limitations on the information
provided by Z and the limitations on the ability for A to implement changes
limit the effective reasoning that can be done by R. Hence, we conclude
that it is important to design agents for AA systems carefully, so that the
AA is not limited or difficult to implement.

8.1.2 Guidelines

Chapter 4 presented the central contribution of this thesis. Eight guidelines
provide advice on how agents should be designed so that AA can be straight-
forwardly implemented for systems including those agents. The guidelines
are intended to encourage agent features which make A A as simple to imple-
ment as possible. The guidelines should be followed from the earliest stages
of agent development so that subsequent implementations of AA proceed
more easily.

8.1.3 Implementations

Chapter 5 describes EASE, a Directed AA system for actors in interactive
simulation environments. An EASE actor is made up of a hierarchy of
simple agents which work together to make the decisions of the actor. The
agent organisation represents a large amount of reasoning state information
explicitly. That information is easy for Z to extract and present to the user in
an informative and usable manner. Other actor services provide mechanisms
which allow the actor’s behaviour to be changed flexibly at runtime, e.g.,
changing the goals of the actor by changing the agent organisation. Simple
interfaces utilizing these services were shown to give the user a wide range
of control over the actor at run-time.

Chapter 6 describes the E-Elves. The E-Elves is a multi-agent system for
streamlining daily activities in a human organisation. Behaviour in the E-
Elves is separated into individual and team behaviour. Individual agents use
an explicit model of the environment which is shared with R. Individual

8.2. Summary of Contributions 253

agents create a complete policy for handling a situation. The policy is
available to R which can use it to make informed autonomy decisions. R is
implemented in software and reasons about the potential costs and benefits
of allowing agents and agent teams to make specific decisions autonomously,
removing authority from the autonomous system when the potential costs
outweigh the potential rewards.

8.1.4 Evaluation

Chapter 7 looked at the impact of following each of the guidelines on the
two implemented systems. The evaluation consisted of analysing the effects
of each guideline on the two architectures, in particular looking at the agent
features that resulted from following the guidelines. By analysing the AA fa-
cilities that utilized those features we found that following the guidelines had
a positive impact on our ability to implement AA and the ease with which
the implementation was done. Furthermore, in some cases the guidelines
were violated because of other conflicting design objectives, e.g., efficiency.
An examination of the negative impact of violations of the guidelines on the
implementations strengthened the case for the utility of the guidelines. We
concluded that, at least in the two systems analysed, following the guide-
lines often led to agent features that were useful for implementing AA, while
violating the guidelines often hindered the development of effective AA.

8.2 Summary of Contributions

This work contributes to the AA field in three ways. The central contribu-
tion is a set of guidelines which lead agent designers to design agents which
allow a straightforward implementation of useful AA (see Chapter 4). Sec-
ondly, this work provides an examination of the relationships between the
features of an agent and the AA that can be implemented using those fea-
tures (see mainly Chapter 7). Finally, this thesis contributes two prototype
implementations of AA systems, one for actors in simulation environments
and one for agents in a human collaboration environment (see Chapters 5
and 6).

8.3 Future Work

In this section we describe some interesting future lines of work. The ideas
for future work described below are generally things that we would find
interesting to pursue but are beyond the scope of this work.

254 8. Conclusions and Future Work

8.3.1 Tradeofls

It is not expected that all the guidelines can or will be followed to the letter in
the implementation of any particular system. Even the systems presented
in this thesis violate the guidelines in some cases. The guidelines will be
violated (as they were in the presented implementations) when there are
conflicting requirements with higher priority. A good example of a guideline
that might be often violated is the Deterministic Execution Guideline. In
some systems, e.g., computer games, unpredictability, i.e., non-determinism,
is actually a very desirable property of the agents, hence many agents will
be non-deterministic and, because this is a violation of the Deterministic
Execution Guideline, problematic for AA developers. An interesting future
line of work would be to make a more detailed examination of the impact
of various violations on the ease with which AA can be implemented in
order to help designers make more informed tradeoffs. For example, we
might be able to conclude that violating the Software Engineering Guideline
was “fatal” for an AA implementation, but violating the Design Expecting
Failures Guideline was only a mild inconvenience. Alternatively, or as well,
we could look at different methods of overcoming difficult agent features,
such as non-determinism, in AA implementations. That is, we could look
for effective techniques for dealing with undesirable agent features when
implementing AA.

8.3.2 Other Domains

The two systems we have looked at in this thesis are used in quite different
domains but still clearly cover only a small sliver of the spectrum of domains
where AA systems might be deployed. Building AA for other domains may
well unearth a range of other interesting issues. Two specific issues that are
clearly going to be relevant to some AA systems are safety criticality and
real-time response.

Although mistakes by agents in both simulation and human collabora-
tion domains are annoying and financially costly in terms of wasted time,
the affected users are not in danger of being hurt or property of being dam-
aged. Because people cannot be seriously hurt by our systems, we had some
flexibility in the implementations because no guarantees needed to be given
that mistakes would not be made. When building AA for safety critical sys-
tems guarantees need to be given that mistakes will never be made, hence
such systems will be constructed in a different way (hopefully). Much of
the difference in the development process of safety critical systems will be

8.3. Future Work 255

in the rigor with which the agent and AA behaviour is developed. As such
we believe the guidelines will still be generally applicable because the ease
of development is just as important (if not more so) in a safety critical de-
velopment process as it is in a non-safety critical one. However, issues not
considered when building our systems are sure to arise, e.g., what agent
features make it straightforward to verify that human-agent interactions are
safe (Schreckenhost 1999). Hence, the guidelines might need to be modified
to be useful for such applications.

The potential need for guideline changes for safety critical systems may
also occur for real-time systems. Although both EASE and E-Elves involved
environments where time was a factor, neither presented extremely tight or
critical time constraints. In some types of domain, e.g., industrial process
control (Musliner & Krebsbach 1999), hundredths of a second can be critical
and guaranteeing timeliness is important. It is not clear whether such real-
time constraints would mean that agents needed to be designed in a different
manner. We did notice that the fast reactions of the RoboCup players were
harder to control than the slower behaviour of the simulated pilots, hinting
that further increases in speed may cause our tools further problems.

8.3.3 Underlying Properties

This work focuses on the external features of an agent that makes AA harder
or easier to implement. However, we have not tried to abstract further to find
underlying principles that lead to the types of external properties we have
shown to be useful. Tantalizing hints have emerged that there might be more
fundamental properties that are important. The two primary candidates
for underlying principles that may warrant further investigation are team
work and software engineering. Both concepts appear in many of the agent
features we have described.

8.3.4 AA Implementations

This thesis focusses on agent design issues for AA systems and does not
deeply examine the design of AA mechanisms, i.e., we have looked at only
one piece of the overall AA problem. A logical next step would be to apply
the same type of analysis we have applied to agent design to AA design. The
first stage of such an analysis would be to do a more careful implementation
of the prototype AA functionality and perform extensive testing of that
functionality. However, as noted above an effective, objective evaluation of
the AA functionality is difficult, at best. Once complete AA interfaces have

256 8. Conclusions and Future Work

been implemented and tested we could try to find the important principles
underlying their design and capture those principles in a way that allowed
others to leverage the knowledge.

8.3.5 EASE and E-Elves Extensions

Both EASE and the E-Elves have served to demonstrate some ideas but
would clearly benefit from further development. The obvious area for future
work would be to develop the systems’ functionality and ability to achieve
their tasks effectively. More capable systems are likely to open up more
interesting AA challenges.

E-Elves is continually having its functionality extended. Primarily, Fri-
day and the agent team are being applied to new tasks with the aim of
further streamlining the human organisation’s activities. The autonomy
reasoning, R, is also being continually refined and extended. Quantitative
experiments which measure user satisfaction with different levels of auton-
omy might help guide this process. Currently, work is focusing around the
idea of trying to provide stronger guarantees that the system will not take
costly actions, thereby allowing the user to have more trust in the system.

EASE also shows a variety of promising paths for future development.
EASE was originally developed to allow end user programming but no se-
rious evaluation of this functionality has yet been carried out. The simple
social structure between agents has been sufficient for the domains to which
EASE has so far been applied, but more complex environments which de-
mand more intelligence from actors might benefit from a more sophisticated
team structure. Another area where more sophistication might be beneficial
is in the negotiation. So far actions that are presented to engineers have
been chosen at random. More intelligent algorithms that traverse the action
space in a more principled manner may lead to the actor finding better ac-
tions faster. Finally, it would be of interest to investigate the development
process of EASE actors further, especially the role that AA can play in that
process.

8.4 Concluding Remarks

This thesis looks at the relatively new area of Adjustable Autonomy. Ad-
justable Autonomy is a technology that can ensure that humans retain re-
sponsibility for important actions in their environment while leveraging the
power of autonomous systems. As we begin to rely more and more on intel-
ligent software such technology is likely to become more and more critical.

8.4. Concluding Remarks 257

With due diligence and some hard work we believe that we can leverage
some of the fantastic potential intelligent agents offer without losing control
of our environment.

258 8. Conclusions and Future Work

BIBLIOGRAPHY

Agre, P. & Chapman, D. (1987), Pengi: An implementation of a theory of
activity, in ‘Proceedings of AAAI-87’, pp. 268-272.

Alloyer, O., Bonakdarian, E., Cremer, J., Kearney, J. & Willemsen, P.
(1997), Embedding scenarios in ambient traffic, in ‘Proceedings of DSC’97
(Driving simulation conference)’, Lyon, France, pp. 75-84.

Andersson, J. (1995), Plan oriented and rule-based system for generation
of robust tactics in long range air combat with multiple targets, Master’s
thesis, Linkoping University.

André, E., Rist, T. & Miiller, J. (1998), Integrating reactive and scripted
behaviors in a life-like presentation agent, in ‘Proceedings of the Second
International conference on Autonomous Agents’, pp. 261-268.

Asimov, 1. (1950), I, Robot, Bantam Books.

Badler, N. (1997), Real-time virtual humans, in ‘Pacific Conference on Com-
puter Graphics and Applications’, pp. 4-13.

Banks, S. & Stytz, M. (1999), Considerations for the next gen-
eration of air force computer generated actors, in ‘Proceedings
of SimTecT99 - Advancing Simulation Technology and Training’.
http://www.cse.rmit.edu.au/simtect /1999 /papers/003.doc.

Barber, K., Goel, A. & Martin, C. (2000), ‘Dynamic adaptive autonomy in
multi-agent systems’, Journal of Experimental and Theoretical Artificial
Intelligence 12(2), 129-148.

Barber, K. S. & Martin, C. E. (1999a), Agent autonomy: Specification,
measurement, and dynamic adjustment, in ‘Autonomy Control Software
Workshop, Autonomous Agents 99’, pp. 8-15.

Barber, K. S. & Martin, C. E. (1999b), Applying dynamic planning frame-
works to agent goals, in D. Musliner & B. Pell, eds, ‘Proceedings of AAAI

260 BIBLIOGRAPHY

Spring Symposium Agents with Adjustable Autonomy’, Stanford, Cali-
fornia, pp. 1-8.

Barber, K. S., Martin, C. & Mckay, R. (2000), A communication protocol
supporting dynamic autonomy agreements, in ‘Proceedings of PRICAI
2000 Workshop on Teams with Adjustable Autonomy’, Melbourne, Aus-
tralia, pp. 1-10.

Bates, J. (1993), The nature of character in interactive worlds and the OZ
project, in C. LoefHler, ed., ‘Virtual Realities: Anthology of industry and
Culture’, Gijitsu Hyoron Sha.

Beck, K. (1999), Eaxtreme Programming FExzplained: Embrace Change,
Addison-Wesley.

Beizer, B. (1990), Software testing and techniques, Van Nostrand Reinhold.

Bernard, D., Dorais, G., Gamble, E., Kanefsky, B., Kurien, J., Man, G.,
Millar, W., Muscettola, N., Nayak, P., Rajan, K., Rouquette, N., Smith,
B., Taylor, W. & Tung, Y. (1999), Spacecraft autonomy flight experience:
The DS1 remote agent experiment, in ‘Proceedings of the ATAA Space
Technology Conference’, Albuquerque, New Mexico, pp. 259-281.

Bindiganavale, R., Schuler, W., Allbeck, J., Badler, N., Joshi, A. & Palmer,
M. (2000), Dynamically altering agent behaviors using natural language
instructions, in ‘Proceedings of the Fourth International Conference on
Autonomous Agents’, Barcelona, Spain, pp. 293—-300.

Blumberg, B. (19974), Go with the flow: Synthetic vision for autonomous
animated creatures, in ‘Proceedings of the First International Conference
on Autonomous Agents (Agents’97)’, Marina Del Ray, pp. 538-539.

Blumberg, B. (1997b), Old tricks, new dogs: Ethology and Interactive Crea-
tures, PhD thesis, Massachusetts Institute of Technology.

Blumberg, B. & Galyean, T. (1995), Multi-level control of autonomous ani-
mated creatures for real-time virtual environments, in ‘Siggraph '95 Pro-
ceedings’, ACM Press, New York, pp. 295-304.

Bonasso, P. (1999), Issues in providing adjustable autonomy in the 3T ar-
chitceture, in ‘Proceedings of AAAI Spring Symposium on Adjustable
Autonomy’, pp. 11-16.

BIBLIOGRAPHY 261

Bonasso, R., Firby, R., Gat, E., Kortenkamp, D., Miller, D. & Slack, M.
(1997), ‘Experiences with an architecture for intelligent reactive agents’,
Journal of Experimental and Theorectical Artificial Intelligence 9(1), 237—
256.

Booch, G. (1994), Object-Oriented Analysis and Design, Addison-Wesley.

Boutilier, C., Goldszmidt, M. & Sabata, B. (1999), Sequential auctions for
the allocation of resources with complementarities, in ‘Proceedings of the
sixteenth international joint conference on AD’, pp. 527-534.

Bradshaw, J. (1997), An introduction to software agents, in ‘Software
Agents’, MIT Press, pp. 3-49.

Brainov, S. & Hexmoor, H. (2001), Quantifying relative autonomy in mul-
tiagent interaction, in ‘IJCAI Workshop on Autonomy Delegation and
Control: Interacting with Intelligent Agents’, pp. 26-35.

Brann, D., Thurman, D. & Mitchell, C. (1996), Human interaction with
lights-out automation: A field study, in ‘Proceedings of the 1996 sympo-

sium on human interaction and complex systems’, Dayton, USA, pp. 276—
283.

Brooks, R. (1991a), Intelligence without reason, in ‘Proceedings 12th Inter-
national Joint Conference on AI’, Sydney, Australia, pp. 569-595.

Brooks, R. (1991b), ‘Intelligence without representation’, Artificial intelli-
gence journal 47, 139-159.

Bryson, J. (1999q), Creativity by design: A character based approach to
creating creative play, in ‘AISB Symposium on Al and Creativity in En-
tertainment’, pp. 9-16.

Bryson, J. (1999b), Hierarchy and sequence vs. full parallelism in action
selection, in ‘Intelligent Virtual Agents 2’, pp. 113-125.

Bryson, J. & McGongile, B. (1998), Agent architectures as object oriented
design, in M. Singh, ed., ‘The fourth international workshop on agent
theories, architectures and languages (ATAL97)’, Springer Verlag, pp. 15—
30.

Burgard, W., Cremers, A., Fox, D., Hahnel, D., Lakemeyer, G., Schulz,
D., Steiner, W. & Thrun, S. (1998), The interactive museum tour-guide
robot, in ‘Proceedings of AAAT’98’, pp. 11-18.

262 BIBLIOGRAPHY

Burt, A. (1998), Modelling motivational behavior in intelligent agents in
virtual worlds, in ‘Proceedings of the 1998 Conference on virtual worlds
and simulation’, Vol. Simulation Series, Volume 2.

Bye, A., Hollnagel, E. & Brendeford, T. S. (1999), ‘Human-machine function
allocation: a functional modelling approach’, Reliability engineering and
system safety 64, 291-300.

Carmel, D. & Markovitch, S. (1998), How to explore your opponents strat-
egy (almost) optimally, in ‘Proceedings of the International conference on
multi-agent systems’, Paris, pp. 64-71.

Castelfranchi, C. & Falcone, R. (1998), Principles of trust for mas: Cognitive
autonomy, social importance and quantification, in ‘Proceedings of the
International conference on multi-agent systems’, Paris, pp. 64-71.

Cesta, A., D’Aloisi, D. & Collia, M. (1999), Adjusting autonomy of agent
systems, in ‘Proceedings of the AAAI Spring Symposium on Agents with
Adjustable Autonomy’, pp. 17-24.

Chaib-draa, B. (1997), Readings in Agents, Morgan Kaufmann, chapter In-
dustrial Applications of distributed AI, pp. 31-35.

Chalupsky, H., Gil, Y., Knoblock, C., Lerman, K., Oh, J., Pynadath, D.,
Russ, T. & Tambe, M. (2001), Electric elves: Applying agent technology
to support human organizations, in ‘International Conference on Innova-
tive Applications of AT’, pp. 51-58.

Chang, J. & Chen, Y. (1998), ‘Force control of a single-link flexible arm
using sliding-mode theory’, Journal of Vibration and Control 4, 187-200.

Chapanis, A. (1965), ‘On the allocation of functions between man and ma-
chine’, Occupational Psychology 39(1).

Cohen, P., Greenberg, M., Hart, D. & Howe, A. (1989), ‘Trial by fire: Un-
derstanding the design requirements for agents in complex environments’,
Al Magazine 10(3), 32-48.

Collis, J., Soltysiak, S., Ndumu, D. & Azarmi, N. (2000), ‘Living with
agents’, BT Technology Journal 18(1), 66—67.

Connell, J. & Shafer, L. (1994), Object-oriented rapid prototyping, Yourdon
Press.

BIBLIOGRAPHY 263

Coradeschi, S. (1997), ‘A decision-mechanism for reactive and coordinated
agents’, Licentiate Thesis. LiU-Tek-Lic 1997:16.

Craft, M. & Karr, C. (1996), Testing future weapons systems using cgf
systems, in ‘Proceedings of the sixth conference on computer generated
forces and behavioral representation’, Orlando, Florida, pp. 141-150.

Cremer, J., Kearney, J. & Papelis, Y. (19954), ‘HCSM: A framework for
behavior and scenario control in virtual environments’, ACM Transactions
on Modeling and Computer Simulation pp. 242-267.

Cremer, J., Kearney, J. & Papelis, Y. (1995b), ‘HCSM: A framework for
behaviour and scenarion control in virtual environments’, ACM Transac-
tions of modeling and computer simulation 5(3), 242-267.

Davidson, C. (1998), ‘Agents from Albia’, New Scientist 158(2133).

de Carvalho Gomes, F., Lima, A., Olivera, C. & de Meneses, C. (1998),
Asynchronous organizations for solving the point to point problem, in
‘Third International Conference on Multi-agent systems’, Paris, pp. 144—
149.

Doherty, P., Granlund, G., Kuchcinski, K., Sandewall, E., Nordberg, K.,
Skarman, E. & Wiklund, J. (2000), The WITAS unmanned aerial vehicle
project, in ‘Proceedings of the 14th European Conference on Artificial
Intelligence’, Berlin, pp. 747-755.

Donaldson, T. & Cohen, R. (1997), A constraint satisfaction framework
for managing mixed-initiative discourse, in ‘Proceedings of AAAT Spring
symposium on Computational models for mixed initiative interaction’.

Dorais, G., Bonasso, R., Kortenkamp, D., Pell, B. & Schreckenghost, D.
(1998), Adjustable autonomy for human-centered autonomous systems
on mars, in ‘Proceedings of the first international conference of the Mars
society’, pp. 397-420.

Dorais, G. & Kortenkamp, D. (2001), PRICAI Workshop Reader, Vol. 2112,
Springer Verlag, chapter Designing Human-Centered Autonomous Agents.

Dérner, R., Grimm, P. & Seiler, C. (2000), Agents and virtual environments
for communication and decision training emergencies, in ‘Proceedings of
the fourth international conference on Autonomous Agents, Agents 2000,
pp. 50-51.

264 BIBLIOGRAPHY

Doyle, P. & Hayes-Roth, B. (1998), Agents in annotated worlds, in ‘Pro-
ceedings of the Second international conference on Autonomous Agents’,
pp- 173-180.

EASports (2000), ‘NHL2000’, http://nhl2000.ea.com/.

Eaton, P., Freuder, E. & Wallace, R. (1998), ‘Constraints and agents: Con-
fronting ignorance’, AI Magazine 19(2), 51-67.

Eder, J., Kappel, G. & Schrefl, M. (1992), Coupling and cohesion in
object-oriented systems, in ‘Proceedings of Conference on Information
and Knowledge Management’, Baltimore.

Etzioni, O. & Weld, D. (1997), Readings in Agents, Morgan Kaufmann,
chapter A Softbot-based interface to the internet.

Falcone, R. & Castelfranchi, C. (1999), Levels of delegation and levels of
help for agents with adjustable autonomy, in ‘Proceedings of AAAT Spring
symposium on agents with adjustable autonomy’, pp. 25-32.

Ferguson, G. & Allen, J. (1998), TRIPS : An intelligent integrated problem-
solving assistant, in ‘Proceedings of Fifteenth National Conference on
Artificial Intelligence(AAAI-98)’, Madison, WI, USA, pp. 567-573.

Ferguson, G., Allen, J. & Miller, B. (1996), TRAINS-95 : towards a mixed-
initiative planning assistant, in ‘Proceedings of the third conference on
artificial intelligence planning systems’, pp. 70-77.

Finin, T., Labrou, Y. & Mayfield, J. (1997), Software agents, The MIT press,
chapter KQML as an agent communication language, pp. 291-316.

Fischer, K., Miiller, J. & Pischel, M. (1994), Unifying control in a layered
agent archiecture, Technical report, German Research Center for Artificial
Intelligence, http://www.dfki.uni-sb.de/mas/interrap/TM9405.ps.

Fitts, P. (1962), ‘Functions of men on complex systems’, Aerospace Engi-
neering 21(1).

Flanagan, J. & Huang, T., eds (1997), NSF Workshop on human-centered
systems: information, interactivity and intelligence.

Fleming, M. & Cohen, R. (1999), Towards a methodology for designing and
evaluating mixed-initiative Al systems, in ‘Proceedings of AAAT Work-
shop on mixed initiative intelligence’, pp. 130-134.

BIBLIOGRAPHY 265

Fong, T., Thorpe, C. & Baur, C. (1999), Collaborative control: A robot-
centric model for vehicle teleoperation, in ‘Proceedings of AAATI Spring
Symposium on Agents with Adjustable Autonomy’, pp. 33—40.

Fox, J. & Das, S. (2000), Safe and Sound: Artificial Intelligence in Haz-
ardous Applications, The AAAI Press.

Galitsky, B. (1999), Agents with adjustable autonomy for scheduling in the
competitive environment, in ‘Proceedings of AAAT Spring Symposium on
agents with adjustable autonomy’, pp. 41-49.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995), Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley.

Georgeff, M. & Lansky, A. (1987), Reactive reasoning and planning, in ‘Pro-
ceedings of the sixth national conference on artificial intelligence (AAAI-
87)’, Seattle, WA, pp. 677-682.

Gerber, C., Siekmann, J. & Vierke, G. (1999), Holonic multi-agent systems,
Research Report RR-99-03, Deutsches Forschungszentrum fiir Kinstliche
Intelligenz GmbH.

Ghedira, K. (1994), A distributed approach to partial constraint satisfac-
tion problems, in ‘Distributed Software Agents and their Applications.
6th European Workshop on Modelling Autonomous Agents in a Multia-
gent World, MAAMAW’94’, Springer Verlag Lecture Notes in Artificial
Intelligence, pp. 106-122.

Gilbreath, G., Ciccimaro, D. & Everett, H. (2000), An advanced tele-
reflexive tactical response robot, in T. Fong & C. Thorpe, eds, ‘Proceed-
ings of Vehicle Teleoperation Interfaces Workshop, IEEE International
Conference on Robotics and Automation’, San Fransisco, CA.

Goel, A., de Silva Garza, A. G., Grue, N., Murdock, J. & Recker, M. (1996),
Explanatory interface in interactive design environments, in ‘Fourth in-
ternational conference on artificial intelligence in design’.

Goldberg, D. & Mataric, M. (2000), Robust behavior-based control for dis-
tributed multi-robot collection tasks, Technical Report IRIS-00-387, In-
stitute for Robotics and Intelligent Systems, University of Southern Cal-
ifornia.

266 BIBLIOGRAPHY

Goldman, R., Guerlain, S., Miller, C. & Musliner, D. (1997), Integrated task
representation for indirect interaction, in ‘Working Notes of the AAAI
Spring Symposium on computational models for mixed initiative interac-
tion’.

Grand, S. (2000), ‘Creatures: an exercise in creation’, http://www.creat-
ures.co.uk/Library/Science/sci_lexercise.htm.

Grand, S. & CIiff, D. (1998), ‘Creatures: Entertainment software agents
with artificial life’, Autonomous agents and multiagent systems pp. 39-57.

Granlund, R. (1997), C3Fire: A microworld supporting emergency manage-
ment training, Master’s thesis, Department of Computer and information
science, Linkoping university.

Greenwald, A. & Kephart, J. (1999), Shopbots and pricebots, in ‘Proceed-
ings of the Sixteenth international joint conference on artificial intelli-
gence’, Vol. 1, pp. 506-511.

Grote, G., Weik, S., Wifler, T. & Zolch, M. (1995), Symbiosis of human
and artifact, Elsevier, chapter Complementary allocation of functions in
automated work systems.

Gunderson, J. & Martin, W. (1999), Effects of uncertainty on variable auton-
omy in maintainance robots, in ‘Agents’99 workshop on autonomy control
software’, pp. 26-34.

Haller, S., ed. (1997), AAAT Spring Symposium on Computational models
for mized initiative interaction.

Hayes-Roth, B. (1995), ‘An architecture for adaptive intelligent systems’,
Artificial Intelligence 72(1), 329-365.

Hayes-Roth, B., Brownston, L. & van Gent, R. (1997), Readings in Agents,
Morgan Kaufmann, chapter Multiagent collaboration in directed im-
provization, pp. 141-147.

Heritage (1996), The American Heritage Dictionary of the English Lan-
guage, Houghton Mifflin Company.

Hexmoor, H. (1999a), Adjusting autonomy by introspection, in ‘Proceed-
ings of AAAT Spring Symposium on Agents with Adjustable Autonomy’,
pp. 61-64.

BIBLIOGRAPHY 267

Hexmoor, H. (2000a), Case studies of autonomy, in ‘Proceedings of FLAIRS
2000°, pp. 246-249.

Hexmoor, H. (2000b), A cognitive model of situated autonomy, in ‘Proceed-
ings of PRICAI-2000, Workshop on Teams with Adjustable Autonomy’,
Melbourne, Australia, pp. 11-20.

Hexmoor, H., ed. (1999b), Workshop on Autonomy Control Software, Au-
tonomous Agents 1999.

Hexmoor, H. & Kortenkamp, D. (2000), ‘Introduction to autonomy control
software’, Journal of FExperiemental and Theoretical Artificial Intelligence
12(2), 123-128.

Horvitz, E. (1999q), Principles of mixed-initiative user interfaces, in ‘Pro-
ceedings of CHI’99, ACM SIGCHI Conference on Human Factors in Com-
puting Systems’, Pittsburgh, PA, pp. 159-166.

Horvitz, E. (1999b), ‘Uncertainty, action and interaction: In pursuit of
mixed-initiative computing’, Intelligent Systems pp. 17-20.

Horvitz, E., Breese, J., Heckerman, D., Hovel, D. & Rommelse, K. (1998),
The Lumiere project: bayesian user modeling for inferring the goals and
needs of software users, in ‘Proceedings of the fourteenth conference on
uncertainty in artificial intelligence’, pp. 256—-265.

Horvitz, E., Jacobs, A. & Hovel, D. (1999), Attention-sensitive alerting, in
‘Proceedings of UAT’99, Conference on Uncertainty and Artificial Intelli-
gence’, Stockholm, Sweden, pp. 305-313.

Huhns, M. & Singh, M. (1997), Readings in Agents, Morgan Kaufmann,
chapter Agents and Multiagent systems: themes approaches and chal-
lenges, pp. 1-24.

IEEE (1998), ‘IEEE standard for application and management of the sys-
tems engineering process’, [IEEE Standard 1220-1998.

Ingrand, F., Georgeff, M. & Rao, A. (1992), ‘An architecture for real-time
reasoning and system control’, IEEE Expert 7(6), 34-44.

Jennings, N. (1999), Agent-based computing: Promise and perils, in ‘Pro-
ceedings of the 16th International Conference on Artificial Intelligence’,
pp. 1429-1436.

268 BIBLIOGRAPHY

Jennings, N. & Wooldridge, M. (1998), Agent Technology Foundations, Ap-
plications and Markets, Springer-Verlag, chapter Applications of Intelli-
gent Agents.

Joseph, R. (1986), Visual analysis: An empirical evaluation of design guide-
lines for downhill ski trails and mountain support facilities, Masters thesis,
Kansas State University.

Joy, B. (2000), ‘Why the future doesn’t need us’, Wired 8.04.

Kelso, S. (1995), Dynamic Patterns: the self-organization of brain and be-
havior, The MIT Press.

Kendrick, D. (1981), Stochastic control for economic models, McGraw-Hill.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier,
J.-M. & Trwin, J. (1997), Aspect oriented programming, in ‘Proceedings of
the european conference on Object-Oriented Programming’, LNCS 1241,
Finland, pp. 220-242.

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., & Matsubara, H.
(1997), ‘RoboCup: A challenge problem for AT, AT Magazine 18(1), 73~
85.

Kortenkamp, D., Burridge, R., Bonasso, P., Schrenkenghoist, D. & Hudson,
M. B. (1999), An intelligent software architecture for semi-autonomous
robot control, in ‘Autonomy Control Software Workshop, Autonomous
Agents 99°, pp. 36-43.

Kortenkamp, D., Keirn-Schreckenghost, D. & Bonasso, R. P. (2000), Ad-
justable control autonomy for manned space flight, in ‘TEEE Aerospace
Conference’.

Lanier, J. (2001), ‘One half a manifesto’, http://www.edge.org/-
3rd_culture/lanier/lanier_index.html.

Lashkari, Y., Metral, M. & Maes, P. (1998), Readings in Agents, Morgan
Kaufman, chapter Coolaborative Interface agents, pp. 111-116.

Lee, S. (1995), ‘Intelligent sensing and control for advanced teleoperation’,
IEEE Control Systems Magazine 13(3), 19-28.

Lesser, V., Atighetchi, M., Benyo, B., Horling, B., Raja, A., Vincent, R.,
Wagner, T., Xuan, P. & Zhang, S. (1999), The UMASS intelligent home

BIBLIOGRAPHY 269

project, in ‘Proceedings of the Third Annual Conference on Autonomous
Agents’, Seattle, USA, pp. 291-298.

Luck, M. & d’Inverno, M. (1995), A formal framework for agent and auton-
omy, in ‘Proceedings of ICMAS’95’, pp. 254-260.

Luna, F. & Stefannson, B. (2000), Economic Simulations in Swarm: agent-
based modelling and object oriented programming, Kluwer Academic Pub-
lishers.

MacKenzie, D. (1996), A design methodology for the configuration of
behavior-based mobile robots, PhD thesis, Georgia Institute of Technol-

ogy.

Maes, P. (1994a), ‘Agents that reduce work and information overload’, Com-
munications of the ACM 37(7), 31-40.

Maes, P. (1994b), ‘Modeling adaptive autonomous agents’, Artificial Life
Journal 1(1 & 2), 135-162.

Maes, P. (1995), ‘Artificial life meets entertainment: Interacting with lifelike
autonomous agents’, Special Issue on New Horizons of Commercial and
Industrial AI, Communications of the ACM 38(11), 108-114.

Malin, J. & Fleming, L. (1999), Validation of adjustable autonomous control
systems for production plants, in ‘AAAI Spring Symposium on Agents
with Adjustable Autonomy’, Stanford, California, pp. 73-78.

Mataric, M. (1992), Behavior-based systems: Main properties and implica-
tions, in ‘IEEE International Conference on Robotics and Automation,
Workshop on Architectures for’, Nice, France, pp. 46-54.

Mataric, M. (1994), Interaction and Intelligent Behavior, PhD thesis, Mas-
sachusetts Institute of Technology.

Milewski, A. & Lewis, S. (1997), ‘Delegating to software agents’, Interna-
tional journal of human-computer studies 46, 485-500.

Miller, D. (1998), Assistive Technology and AI Vol. LNAT 1458, Spring-
Verlag, chapter Assistive Robotics: an overview, pp. 126-136.

Miller, D. (1999), Semi-autonomous mobility verses semi-mobile autonomy,
in ‘Proceedings of the 1999 AAAT Spring Symposium on Adjustable Au-
tonomy’, pp. 77-78.

270 BIBLIOGRAPHY

Minsky, M. (1988), The Society of Mind, Simon and Schuster.

Musliner, D. & Krebsbach, K. (1999), Adjustable autonomy in procedural
control for refineries, in ‘AAAI Spring Symposium on Agents with Ad-
justable Autonomy’, Stanford, California, pp. 81-87.

Nakashima, H. & Noda, I. (1998), Dynamic subsumption architecture for
programming intelligent agents, in ‘Third International Conference on
Multi-agent systems’, Paris, pp. 190-197.

Ndumu, D., Nwana, H., Lee, L. & Haynes, H. (1998), ‘Visualization and de-
bugging of distributed multiagent systems’, Applied Artificial Intelligence
13(1-2), 187-208.

Neves, M. & Oliveira, E. (1997), A control architecture for an autonomous
mobile robot, in ‘proceedings of the first international conference on au-
tonomous agents’, pp. 193—-200.

Noda, I. (1995), Soccer server: A simulator of RoboCup, in ‘Proceedings of
AT Symposium’95’, Japanese Society for Artificial Intelligence.

Ogasawara, G. (1993), RALPH-MEA: A real-time, decision theoretic agent
architecture, PhD thesis, University of California, Berkeley.

Ossowski, S. & Garcia-Serrano, A. (1999), Intelligent Agents V : Agent The-
ories Architectures and Languages, Springer, chapter Social Structure in

Artificial Agent Societies: Implications for Autonomous Problem Solving
Agents, pp. 133-148.

Parker, L. E. (1998), ‘Alliance: An architecture for fault tolerant multi-robot
cooperation’, IEEE Transactions on Robotics and Automation 14(2), 220—
240.

Passino, K. & Yurkovich, S. (1998), Fuzzy Control, Addison Wesley.

Pell, B., Gamble, E., Gat, E., Keesing, R., Kurien, J., Millar, W., Nayak, P.,
Plaunt, C. & Williams, B. (1998), A hybird procedural/deductive execu-
tive for autonomous spacecraft, in ‘Proceedings of the second international
conference on autonomous agents’, pp. 369-376.

Perlin, K. & Goldberg, A. (1996), ‘Improv: A system for scripting interactive
actors in virtual worlds’, Computer Graphics 30, 205-216.

BIBLIOGRAPHY 271

Perzanowski, D., Schultz, A., Marsh, E. & Adams, W. (1999), Goal tracking
and goal attainment: a natural language means of achieving adjustable
autonomy, in ‘Proceedings of AAAI Spring symposium on adjustable au-
tonomy’, pp. 93-100.

Pew, R. & Mavor, A., eds (1998), Modeling Human and Organizational
Behavior, National Academy Press, Washington, D.C. National Research
Council.

Pirjanian, P. (1998), Multiple objective action selection and behavior fu-
sion voting, PhD thesis, Department of Medical Informatics and Image
Analysis, Aalborg university.

Pollack, M. E. (1996), ‘Planning in dynamic environments: The dipart sys-
tem’, Advanced Planning Technology pp. 218-225.

Puterman, M. (1994), Markov Decision processes, Wiley, New York.

Pynadath, D., Scerri, P. & Tambe, M. (2001), MDPs for adjustable auton-
omy in a real-world multi-agent environment, in ‘AAAI Spring Sympo-
sium on decision theoretic and game theoretic agents’, pp. 107-116.

Quinlan, J. (1993), C4.5: Programs for machine learning, Morgan Kauf-
mann.

Rajan, K., Shirley, M., Taylor, W. & Kanefsky, B. (2000), Ground tools for
the 21st century, in ‘Proceedings of the IEEE aerospace conference’.

Reed, N., ed. (2000), Proceedings of PRICAI Workshop on Teams with Ad-
justable Autonomy, Melbourne, Australia.

Repenning, A. (n.d.), AgentSheets and Visual AgentTalk: Getting Started,
1.3.0a2 edn, Department of Computer Science and Center for LifeLong
Learning.

Reynolds, C. (1995), ‘Authoring autonomous characters’, Invited Talk, Dis-
tinguished Lecture Series, Georgia Institute of Technology.

Rich, C. & Sidner, C. (1998), COLLAGEN: when agents collaborate with
people, in ‘Readings in agents’, Morgan Kaufmann, pp. 117-124.

Riekki, J. (1998), Reactive task execution of a mobile robot, PhD thesis,
Infotech Oulu and Department of Electrical Engineering, University of
Oulu, Oulu, Finland.

272 BIBLIOGRAPHY

Rock, D. (1999), agent autonomy adjustment for midair collision avoidance,
in ‘Proceedings of autonomy control workshop at Autonomous agents’99’,
pp- 91-97.

Rosenblatt, J. & Thorpe, C. (1995), Combining multiple goals in a behavior
based architecture, in ‘Proceedings of 1995 International Conference on
Intelligent Robots and Systems (IROS)’, Pittsburg, PA, pp. 136-141.

Rosenbloom, P., Laird, J., Newell, A. & McCarl, R. (1991), ‘A prelimi-
nary analysis of the Soar architecture as a basis for general intelligence’,
Artificial Intelligence 47, 289-325.

Russell, S. & Norvig, P. (1995), Artificial Intelligence: A Modern Approach,
Prentice-Hall, Inc.

Rybski, P., Stoeter, S., Erickson, M., Gini, M., Hougen, D. & Pa-
panikolopoulos, N. (2000), A team of robotic agents for surveillance,
in ‘Proceedings of the fourth international conference on autonomous
agents’, pp. 9-16.

Saab (1998), TACSI - User Guide, 5.2 edn, Gripen, Operational Analysis,
Modeling and Simulation. in Swedish.

Saffiotti, A. (1997), ‘The uses of fuzzy logic in autonomous robot navigation:
a catalogue raisonne’, Soft Computing 1(4), 180-197.

Sawaragi, T. & Horiguchi, Y. (2000), ‘Ecological interface enaling human-
embodied cognition in mobile robot teleoperation’, Intelligence: New Vi-
sions of AI in practice 11(3), 17-19.

Scerri, P., Pynadath, D. & Tambe, M. (2000), Don’t cancel my barcelona
trip: adjusting the autonomy of agent proxies in human organizations, in
‘Proceedings of the AAAT Fall Symposium on Socially Intelligent Agents
— the human in the loop’, pp. 169-173.

Scerri, P., Pynadath, D. & Tambe, M. (2001), Adjustable autonomy in real-
world multi-agent environments, in ‘Proceedings of the Fifth international
conference on autonomous agents (Agents’01)’, pp. 300-307.

Scerri, P. & Reed, N. (2000a), Creating complex actors with EASE, in ‘Pro-
ceedings of the Fourth International Conference on Autonomous Agents’,
pp. 142-143.

BIBLIOGRAPHY 273

Scerri, P. & Reed, N. (2000b), The EASE actor development environment,
in ‘Proceedings of the Workshop of the Swedish AT Society, SAIS’2000’.

Scerri, P. & Reed, N. (2000c), ‘Engineering characteristics of autonomous
agent architectures’, Journal of Fxperimental and Theoretical artificial
intelligence 12(2), 191-212.

Scerri, P. & Reed, N. (2000d), Making adjustable autonomy easier with
teamwork, in ‘Proceedings of PRICAI’2000 workshop on teams with ad-
justable autonomy’, pp. 25-34.

Scerri, P. & Reed, N. (2001), Designing agents for systems with adjustable
autonomy, in ‘Proceedings of the IJCAI-01 Workshop on Autonomy, Del-
egation and Control: Interacting with Autonomous Agents’. to appear.

Scerri, P. & Reed, N. E. (1999), Adapting an agent to a similar environment,
in ‘Third International Conference on Autonomous Agents (Agents 99)’,
Association for Computing Machinery, pp. 420-421.

Scerri, P., Reed, N., Wiren, T., Lonneberg, M. & Nilsson, P. (2001),
RoboCup-2000: Robot Soccer World Cup IV, Springer Verlag, chapter
Headless Chickens IV, pp. 493-496.

Schneider, J. (1995), Exploiting model uncertainty estimates for safe dy-
namic control learning, in ‘Neural Information Processing Systems’,

Vol. 9.

Schooley, L., Zeigler, B., Cellier, F. & Wang, F. (1993), ‘High-autonomy con-
trol of space resource processing plants’, IEEE Control Systems Magazine
13(3), 29-39.

Schreckenhost, D. (1999), Human interaction with control software support-
ing adjustable autonomy, in D. Musliner & B. Pell, eds, ‘Agents with
adjustable autonomy’, AAAT 1999 spring symposium series, pp. 116-119.

Sen, S., Haynes, T. & Arora, N. (1997), ‘Satisfying user preferences while
negotiating meetings’, International journal of humna-computer studies

47, 407-427.

Sengers, P. (1998), Do the right thing: An architecture for action-expression,
in ‘Proceedings of the second international conference on Autonomous
Agents (Agents98)’, pp. 24-31.

274 BIBLIOGRAPHY

Sheridan, T. (1992), Telerobotics, automation and Human Supervisory Con-
trol, MIT Press, Cambridge, Massachusetts.

Shneiderman, B. (1998), Designing the User Interface, Addison Wesley.

Shoham, Y. (1998), Readings in Agents, Morgan Kaufman, chapter Agent-
oreinted programming, pp. 329-349.

Simmons, R., Krotkov, E., Hebert, M. & Katragadda, L. (1994), Experi-
ence with rover navigation for lunar-like terrains, in ‘International Lunar
Exploration Conference’, San Deigo, CA.

Simpson, R., Levine, S., Bell, D., Jaros, L., Koren, Y. & Borenstein, J.
(1998), Assistive Technology and AI Vol. LNAI 1458, Spring-Verlag,
chapter NavChair:An Assistive Wheelchair Navigation system with au-
tomatic adaption, pp. 235-255.

Smith, B. (2000), ‘The Sims’, The Computer Gamers’ Gazette. http://-
ourworld-top.cs.com/comgamesig/simssplash.htm.

Sommerville, I. (1996), Software Engineering, 5 edn, Addison Wesley.

Song, H., Franklin, S. & Negatu, A. (1996), Sumpy: A fuzzy software agent,
in ‘Proceedings of the ISCA Conference on Intelligent Systems’, Reno,
Nevada, pp. 124-129.

Sony (2001), ‘www.aibo.com’.

Steels, L. (1994), The artificial life route to artificial intelligence: Build-
ing situated embodied agents, Lawrence Erlbaum Associates, New Haven,
chapter Building Agents with Autonomous Behavior Systems.

Stone, P., Riley, P. & Veloso, M. (2000), Layered disclosure: Why is the
agent doing what it’s doing?, in ‘Proceedings of Fourth International Con-
ference on Autonomous Agents’, Barcelona.

T. Fong, C. T. & Baur, C. (2000), Advanced interfaces for vehicle tele-
operation: collaborative control, sensor fusion displays, and web-based
tools, in ‘Vehicle Teleoperation Interfaces Workshop, IEEE International
Conference on Robotics and Automation’, San Fransisco, CA.

Tadokoro, S., Kitano, H., Takahashi, T. & et al (2000), The RoboCup rescue
project: A robotic approach to the disaster mitigation problem, in ‘Pro-
ceedings of IEEE International conference on robotics and automation’,
pp- 4089-4094.

BIBLIOGRAPHY 275

Takahashi, T. (2000), RoboCup-99: Robot Soccer World Cup III, Springer,
chapter Kasugabito III, pp. 592-595.

Tambe, M. (1997), ‘Towards flexible teamwork’, Journal of Artificial Intel-
ligence Research 7, 83—124.

Tambe, M., Johnson, W. L., Jones, R., Koss, F., Laird, J., Rosenbloom,
P. & Schwamb, K. (1995), ‘Intelligent agents for interactive simulation
environments’, AI Magazine 16(1), 15-39.

Tambe, M., Pynadath, D., Chauvat, C., Das, A. & Kaminka, G. (2000),
Adaptive agent architectures for heterogeneous team members, in ‘Pro-
ceedings of ICMAS’2000’, pp. 301-308.

Tambe, M., Pynadath, D. & Chauvat, N. (2000), ‘Building dynamic agent
organizations in cyberspace’, IEEE Internet Computing 4(2), 65-73.

Tate, A. (1997), Mixed-initiative interaction in O-Plan, in ‘Proceedings of
AAAT Spring symposium on Computational models for mixed initiative
interaction’.

Thorstensson, M. (1997), Situation analysis in air combat simulation using
fuzzy logic, Master’s thesis, Link6ping University.

Travers, M. (1996), Programming With Agents: New mataphors for thinking
about computation, PhD thesis, Massachusetts Institue of Technology.

Tunstel, E. (1996), mobile robot autonomy via hierarchical fuzzy behavior
control, in ‘Proceedings of 6th international symposium on robotics and
manufacturing’, Montipellier, France, pp. 837-842.

Tyrell, T. (1993), Computational Mechanisms for Action Selection, PhD
thesis, University of Edinburgh.

Veloso, M., Carbonell, J., Pérez, M. A., Borrajo, D., Fink, E. & Blythe,
J. (1995), ‘Integrating planning and learning: The Prodigy architecture’,
Journal of Experimental and Theoretical Artificial Intelligence 7(1), 81—
120.

Veloso, M., Mulvehill, A. & Cox, M. (1997), Rationale-supported mixed-
initiative case-based planning, in ‘Proceedings of the fourteenth national
conference on artificial intelligence and ninth innovative applications of
artificial intelligence conference’, pp. 1072-1077.

276 BIBLIOGRAPHY

Wavish, P. & Connah, D. (1997), Virtual actors that can perform scripts and
improvise roles, in ‘First International conference on intelligent agents’,

pp- 317-322.

Webber, B. & Badler, N. (1993), Virtual interactive collaborators for sim-
ulation and training, in ‘Third conference on computer generated forces
and behavioral representation’, Florida, pp. 199-208.

Wessberg, J., Stambaugh, C., Kralik, J., Beck, P., Laubach, M., Chapin,
J., Kim, J., Biggs, S. J., Srinivasan, M. & Nicolelis, M. (2000), ‘Real-
time prediction of hand trajectory by ensembles of cortical neurons in
primates’, Nature 408(6810), 361-377.

Wooldridge, M. (2000), ‘On the sources of complexity in agent design’, ap-
plied artificial intelligence 14, 623-644.

Wooldridge, M. & Jennings, N. (1994), Agent theories, architectures and
languages: A survey, in ‘Intelligent Agents’, Springer-Verlag, pp. 1-32.

Wooldridge, M. & Jennings, N. (1995), ‘Intelligent agents: Theory and prac-
tice’, Knowledge engineering review 10(2), 115-152.

Yen, J. & Pfluger, N. (1995), ‘A fuzzy logic based extension to Payton and
Rosenblatt’s command fusion method for mobile robot navigation’, IEEE
Transactions on Systems, Man and Cybernetics 25(6), 971-978.

Zhang, W. (1999), Adjustable autonomy for manufacturing cell control sys-
tems, in ‘Proceedings of AAAI Spring Symposium on Agents with Ad-
justable Autonomy’, p. 136.

