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Abstract

This article describes an approach to solving distributed constraint optimization
problems (DCOP) withn-ary constraints. A key instance of this problem is dis-
tributed resource-constrained task scheduling, in which limited resource capacities
implicitly imply n-ary relations among the start-times of the tasks. We describe
ADOPT-N, an extension ofADOPT [16], a recent successful algorithm for DCOP.
ADOPT-N is an optimal asynchronous distributedn-ary constraint optimization
algorithm in which specific agents are empowered withn-ary constraint evalua-
tion capabilities. We show how the algorithm’s correctness and optimality relies
on (1) the choice of which agents to dedicate to constraint evaluation, and (2) an
admissible (partial) variable ordering. Moreover, we demonstrate empirically how
ADOPT-N’s performance depends on how much knowledge about then-ary viola-
tions that can arise during resolution can be provided to the algorithm.

1 Introduction

Solving constraint optimization problems involves computing an assignment of vari-
ables such that a global objective function is minimized (or maximized). The con-
straints correspond to value functions in the formf : Di × Dj → N, whereDi

andDj are the domains of the two variables involved in the constraint. For instance,
f〈v1,v2〉(0, 1) = 3 asserts that the cost of the assignment〈x, y〉 = 〈0, 1〉 has a cost of
3 (a form of soft constraint.) This broad problem has been the focus of much research,
and in particular poses interesting challenges related to the issue of solving distributed
constraint optimization problems (DCOP) [1, 12, 23, 8, 6, 21, 10]. A DCOP differs
from its non-distributed counterpart in that the computation is distributed among sev-
eral agents, each reasoning upon a local constraint optimization problem.In the past
years, a variety of efficient approaches for distributed constraint optimization have been
studied [15, 11, 13, 19].

This article describes an approach to solving DCOPs withn-ary constraints, i.e.,
constraints withn > 2 variables of the formf : D1 × . . . × Dn → N. In this
article we presentADOPT-N, an extension toADOPT [16], which takes into account
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n-ary constraints. The algorithm is an optimal asynchronous distributed constraint
optimization algorithm which employs specialized agents to enforcen-ary constraints.
The n-ary constraints may be known a-priori, or may become explicit only during
problem resolution.

The ability to take into account constraints which are not known at the time of
problem definition is fundamental in the context of many applications. In general, this
is the case whenn-ary relations among variables are intensional, and computing the
extension is expensive and/or unnecessary. The termconstraint postingrefers to the
capability of deducing and enforcing constraints that are not modeled in the problem
during resolution. A good example of when constraints should be posted rather than
modeled extensionally is distributed resource-constrained task scheduling (D-RCTS):
a set of tasks to be allocated over time is given, as well as a set of (binary) constraints
which define desired temporal relations among the tasks; in addition, all tasks consume
a certain quantity of a given set of resources; the objective is to find an allocation in
time of the tasks such that it never occurs that the resource requirements of the tasks
exceed the capacity of the resources. Limited resource capacities implicitly implyn-
ary relations among the start-times of the tasks.

A key feature ofADOPT-N is the ability to perform constraint posting. This ca-
pability is widely employed in specialized constraint reasoners such as schedulers1.
Conversely,ADOPT-N is conceived to perform constraint posting while retaining the
more general characteristic (along with its pros and cons) of distributed constraint opti-
mization. As a consequence, the algorithm is “parametric” with respect to the particular
domain-specific reasoning which is responsible for deducing then-ary constraints to
be posted.

ADOPT-N is correct and optimal due to (1) the choice of which agents to dedicate
to constraint evaluation, and (2) an admissible (partial) variable ordering. This is true
also for the constraint posting capability of the algorithm. In this article we demonstrate
empirically howADOPT-N’s performance in the constraint posting setting depends on
how much knowledge about then-ary relations that can arise during resolution can be
provided to the algorithm.

2 Resource-Constrained Task Scheduling

A domain in which constraint satisfaction/optimization problems are typically rich in
n-ary constraints is resource-constrained scheduling. In this section we outline the spe-
cific category of scheduling problems which we use to describe and evaluateADOPT-N
throughout the paper.

The D-RCTS problem can be stated as follows. A setA of agents is responsible
for carrying out a set of tasksT . Every task involves one or more agents, and the
participation of an agentA in taskT requires the use of one or more given resources
R ∈ R in the amountU(R, A, T ). Each resource has a finite capacityC(R), and a
set of precedence constraintsP among the tasks is given. The precedence constraints
are expressed in the formTi ≺ Tj , meaning that taskTi must occur beforeTj . The

1For instance, non-distributed approaches to resource-constrained scheduling typically rely on binary
constraint posting, i.e., precedence constraints are posted between pairs of tasks such that the excessive
resource usage of the resources is gradually levelled (e.g., see [7].) One of the reasons for not postingn-ary
constraints is that binary constraints can be propagated efficiently.



aim of the agents is to cooperatively devise an allocation of tasks in time which (a) is
such that an agent only performs one task at a time, (b) satisfies the given precedence
constraints, and (c) is such that the combined resource usage of the tasks is below the
resource capacities at all times.

A D-RCTS problem can be visualized in the form of a precedence graph. The
example in figure 1 depicts a problem with four agents and five tasks. The problem
contains only one resource for simplicity (R1) and the notationU(R1, Ai, Tj) = n
denotes that agentAi requiresn units ofR1 to perform taskTj .

T1

U(R1, A2, T2) = 2

T2

U(R1, A3, T2) = 3

U(R1, A1, T5) = 2

U(R1, A4, T5) = 5U(R1, A4, T3) = 3

U(R1, A3, T3) = 4

T3 T5

U(R1, A2, T4) = 6

T4

U(R1, A1, T1) = 3

Figure 1:A simple example consisting of five tasks, four agents and one resource. The edges
represent precedence constraints between tasks.

Figure 2 shows the infinite capacity solution (schedule) to the problem (a), as well
as a solution which maintains the profile of the resource under the capacity 11 ofR1 (b).
As is the case in solution (a), if the combined resource usage of the tasks in a schedule
exceeds the capacity of a resource at timet we say that there is a resource peak at time
t. Both solutions represent an allocation of tasks to time-points (t = 0, t = 1, . . .) in

Time / Agent t = 0 t = 1 t = 2

A1 T1 T5

A2 T2 T4

A3 T3 T2

A4 T3 T5

Profile ofR1 10 12 6

t = 0 t = 1 t = 2 t = 3

T1 T5

T4 T2

T3 T2

T3 T5

10 6 7 5

(a) (b)

Figure 2: Two admissible allocations of tasks to time (schedules) for the example above: ca-
pacityC(R1) = ∞ (a), andC(R1) = 11 (b).

which mutex, agreement and precedence constraints are satisfied. These constraints
state, respectively, that no agent can perform more than one task at a time, all agents
involved in a given task have agreed to perform the task at the same time, and that the
tasks are allocated on the time-line according to the given precedence constraints.

A D-RCTS problem can be formulated as a DCOP for resolution withADOPT.
Notice that the above problem is very similar to meeting scheduling [17], and as shown
in [14], a number of different DCOP encodings can be employed. For the purposes of
this paper, we employ the EAV (Events as Variables) formulation.

Research in scheduling with limited resource capacities [2, 5] has led to a number
of (centralized) CSP-based scheduling techniques. Given the nature of these problems,
which are characterized by the temporal constraints which define the precedence net-
work on one hand, and the resource contention introduced by capacity limitations on



the other, perhaps the most effective solution strategy has proved to be profile-based
scheduling. In very few words, this resolution strategy is based on the observation
that, in the example above for instance, it is sufficient to add the precedence constraint
T2 ≺ T5 in order to avoid the resource peak, a widely used technique known as prece-
dence constraint posting [22, 9, 18, 7]. Notice, though, that this constraint does not
necessarily avoid other resource peaks, such as the situation in whichT5 andT4 occur
concurrently, for which yet another precedence constraint (T4 ≺ T5) should be posted.
Overall, limited resource capacities entailn-ary relations among the start-times of the
tasks. Moreover, thesen-ary relations cannot be modeled explicitly in the problem def-
inition, since deducing them requires to solve the (single-agent) scheduling problem in
advance.

For this reason, we use D-RCTS as a running example and evaluation benchmark
for ADOPT-N. The idea we pursue is thus to cast the D-RCTS problem as a DCOP
(according to the EAV formulation) and to employ the constraint posting capabilities
of ADOPT-N to minimize resource conflicts.

3 Overview of ADOPT

In DCOP each agent controls one or more variables. Constraints exist across agents,
thus requiring coordination to find optimal solutions.ADOPT is optimal and asyn-
chronous, but can be sped up while retaining quality guarantees [16].

The main idea behindADOPT consists in allowing each agent to backtrack on a
decision whenever it recognizes that another solution may be better. This behavior
implements an “opportunistic” best-first search strategy: whenever an agent receives
information indicating that a different assignment choice for its variables would lead
to a lower cost, it backtracks on its decision. In other words, during the resolution
process each agent continuously chooses the value assignment which improves the
currently knownlower bound. Notice that lower bounds can be computed without
accumulating global cost information. This lower bound is iteratively refined as other
agents communicate their own cost information.

For simplicity and without loss of generality, in the following description we as-
sume that each agentAk has only one variable (thus the terms agent and variable
are equivalent). Each variable can be assigned values belonging to its domainDk =
{d0, . . . , dn}.

The scheme of message passing inADOPT is grounded on the definition of a partial
order of priorities. Before the algorithm starts, the agents are organized in a Depth-First
Search (DFS) tree. Each agent is assumed to know the tree before execution. Given
the constraint graph which defines the DCOP, the tree is constructed in such a way
that siblings are not bound by constraints, while constraints can be present between
ancestors and descendants. More specifically, the priority tree is constructed iteratively
from root to leaves according to an ordering heuristic, such as most-constrained-first
(MCF) [4].

The ADOPT algorithm proceeds as follows. After an initialization step in which
all agents select the value for their variablevk which has the lowest cost, the agents
enter a loop in which they send messages to and listen for messages from other agents.
Specifically, parents send VALUE messages to their descendants. The descendants of
a variablevk are those variables with whichvk is involved in a constraint, and which



are lower in the priority tree. The aim of VALUE messages issued by an agentvk is to
inform its descendants of the current choice of variable assignmentval. Upon reception
of a VALUE message, each agent computes the cost of its ancestor’s choice and returns
it to its parent by means of a COST message. Each agent maintains the lower bound
cost of variable assignmentslb(vk, di) by summing their costs to the costs reported by
their children. In addition, a context field is attached to COST messages, containing
the sender’s view of higher agents’ assignments at the time of cost calculation. Since
calculated costs are dependent on the values of higher variables, this field is necessary
because it allows an agent to reinitialize its costs when it receives a COST message
containing a context which is incompatible with its current view.

Since the best-first search scheme allows agents to abandon potentially optimal
solutions,ADOPT also implements an efficient mechanism for reconstructing these so-
lutions when others appear to be sub-optimal. To this end, each agent maintains a
backtrack threshold. The details of how this parameter is maintained are not described
in the algorithm sketched above. For our purposes, it is sufficient to mention an agent’s
threshold represents an “allowance” on backtracking, thus an agent does not back-
track on its decision unless the computed lower bound of its current decision increases
beyond the threshold. The modifications implemented inADOPT-N do not affect ter-
mination, thus we do not dwell on further details ofADOPT, the details of which can
be found in [16].

4 Dealing with n-ary Constraints

The näıve way to handlen-ary constraints is to “inject” messages that inform the agents
controlling the variables involved of the additional cost of assignments which conflict
with then-ary constraint. Intuitively, agents would treat these messages like any other
COST message and adjust values appropriately.

However, this näıve approach must deal with several issues. One issue which must
be dealt with first of all is to identify which agents should be responsible for evaluating
then-ary constraints and generating these cost messages. Let us suppose that the prob-
lem contains ann-ary constraint on the values of variables in the setV ′ ⊆ V . Only
an agent which has knowledge about the assignments of all variables inV ′ can be a
candidate constraint evaluator. However,ADOPT specifically minimizes knowledge of
other variable values, hence in general, no agent will be able to compute the cost of
ann-ary constraint. For this reason, some ofADOPT-N’s agents are augmented with
the capability to perform the evaluation ofn-ary constraints. We henceforth refer to
these agents asn-agents. Their role is to assess the choices made by the other agents
on the variables inV ′ in the light of then-ary constraint. Given thatn-agents must be
provided with knowledge which in general no other agent in the problem possesses, we
start by assuming thatn-agents are additional, dedicated agents who do not participate
in the decision making directly, rather whose role is solely to monitor the choices made
by the other agents controlling relevant variables and injecting the cost ofn-ary con-
straint infringing assignments into the message passing schema. As shown at the end
of this section, this assumption can be relaxed, andn-agents will be designated among
the original agents in the problem.

We augment the set of agents as it is defined in the initial problem formulation as
follows. For eachn-ary constraint on variablesV ′ ⊆ V , ann-agentA′ is included



is placed in the hierarchy so as to be a descendant of all variables inV ′. This is a
necessary condition since then-agent must receive VALUE messages from all relevant
agents in order to gather a complete context. In addition, since then-agents do not
decide assignments, they will never have to send a VALUE message, rather they are
solely responsible for sending COST messages. Overall, then-agents send COST
messages reporting the local cost of the assignment determined by their ancestors, and
if the context indicates that then-ary constraint they are responsible for is not violated,
then a local cost of zero is reported to the parent variable(s). Conversely, if then-ary
constraint is violated, then the reported cost amounts to the cost of then-ary constraint.

The natural place forn-agents in the priority tree is as children of the subtrees
containing the variables inV ′. As we show in the next paragraphs, the placement of
then-agents in the priority tree must be subject to further restrictions in order to ensure
both correctness and optimality.

4.1 Optimal Strategies forn-ary Constraints

Since the variables inV ′ are placed in the DFS tree according toADOPT’s ordering
heuristic, the näıve way to includen-agents (henceforth denoted byv′, v′′, . . .) in the
ordering is to append them to the tree as children of those paths from root to leaf which
contain one or more variables inV ′ (see figure 3.) However, the naı̈ve approach leads
to two problems, namely double counting of costs and assignment masking.

=⇒=⇒

v1

v2

v3

v6
v7

v5v4

v′
fv2,v3,v4 (0, 1, 0) = c

v1

v2

v3

v6
v7

v5v4

v1

v2

v3

v6
v7

v5v4

Figure 3:Variable ordering where ann-agent (v′) has multiple parents: the binary constraints
can be taken into account to generate the priority tree, and thenv′ it accommodated so as to
terminate one path from root to leaf for every variable involved in then-ary constraint (v2, v3

andv4). However, this variable ordering is not admissible because it entails double counting of
costs and assignment masking.

The first problem occurs because an agent which emanates a cost messages amount-
ing toc towards two distinct branches will entail that the agent at the root of the subtree
where the two branches originate perceives a cost of2c associated to its choice (and
the choices of its ancestors.) This is in contrast with the assumptions underlying the
correctness ofADOPT (see [16].) One simple way to avoid this problem would be for
then-agent to only send the cost to one parent. Nonetheless, this would still incur in
the following assignment masking problem.

Assignment masking occurs because variables pertaining to distinct subtrees are
independent, i.e., it is never necessary for one to change its value assignment as a
result of the value assignment chosen by the other variable. This property clearly does
not hold in the case ofn-ary constraints, the nature of which makes value assignments



of variables in distinct subtrees dependant. Thus, multiple parents would entail a non-
admissible pruning of the search space.

An example of assignment masking can be seen in the problem shown in figure 3.
Let the current assignment be〈v1, v2, v3, v4, v5, v6, v7〉 = 〈0, 0, 1, 0, 0, 0, 0〉. Since
this conflicts with then-ary constraintfv2,v3,v4(0, 1, 0) = c, then-agent will emanate
a COST message tov3 andv4. At this point, both these agents will associate the costc
to the assignment described in their context. Since,v3’s context does not contemplate
the value assignment ofv4 and vice-versa, this lower bound will remain valid for every
value assignment which differs from the above only for the value ofv3 (from v4’s
perspective) and vice-versa. Supposing that the optimal solution to the DCOP is just
one such assignment, e.g.,〈v1, v2, v3, v4, v5, v6, v7〉 = 〈0, 0, 1, 1, 0, 0, 0〉 (which does
not violate then-ary constraint), then this solution will be “masked” byv3’s lower
bound, sincev3 may not, given this context, switch its value back to1. On the contrary,
if an optimal solution were〈v1, v2, v3, v4, v5, v6, v7〉 = 〈1, 0, 1, 1, 0, 0, 0〉, then this
solution would not be masked since the different value ofv1 (an ancestor ofv3) would
changev3’s context and thus allow the re-initialization of its lower bound.

The considerations made above suggest that the key to maintaining optimality while
allowing ADOPT-N to correctly reason upon valuedn-ary constraints is to modify the
ordering heuristic so as to ensure the local serialization of the variables involved in
an n-ary constraint. More specifically,ADOPT-N implements the following locally-
serializing meta-heuristic (see figure 4, top):

1. Recursively choose as next successor (root at first iteration) the variable returned
by the chosen heuristic.

1a. If the chosen variable is involved in ann-ary constraint, choose as next
successor another variable involved in the same constraint and repeat point
(1a) until all variables in the constraint have been placed.

1b. Otherwise, if the chosen variable is not linked to its predecessor, branch off
the lowest-priority already chosen variable that is, and repeat point (1).

3. For eachn-ary constraint, append then-agent as the successor of the lowest
priority variable involved in then-ary constraint.

The above locally-serializing procedure achieves the goal of avoiding double counting
of costs and solution masking, thus ensuring correctness and optimality. Moreover, the
locally-serializing procedure capitalizes on the problem partitioning by affecting the
depth of the tree only as much as then-ary constraint require. As shown in [16], the
strategy of prioritizing variables according to trees that are as shallow as possible pays
off in terms of computational overhead, since the assignments of variables in distinct
subtrees do not affect each other. Nonetheless, notice that point (1a), which ensures the
local serialization of variables involved inn-ary constraints, inevitably alters the order
of the variables as it is determined by the ordering heuristic.

An alternative strategy is to forefit partial ordering in favor of maintaining the ben-
efits of the ordering heuristic. A globally-serializing procedure works as follows: first,
produce a DFS tree according to the heuristic of choice (e.g., MCF), and then serialize
the tree to obtain a priority chain (i.e., all variables in the problem are on one path
from root to leaf.) Then-agents can then be added to the chain as above (see figure 4,
bottom.)



Overall, the locally-serializing strategy adopts a conservative approach to serializa-
tion, but it compromises the quality of the relative ordering between variables; con-
versely, the globally-serializing procedure completely forfeits the capability to mini-
mize the interaction between agents during the solving process, but it maintains the
ordering heuristic intact. The advantage of using one strategy rather than the other
depends largely on the structural characteristics of the constraint graph. Specifically,
a problem in which many variables are involved inn-ary constraints will more likely
benefit from the globally-serializing procedure, while one in which few and low-arity
n-ary constraints are present will lead to small amounts of local serialization, thus al-
lowing ADOPT-N to take full advantage of the partial DFS tree ordering.
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Figure 4: Priority tree ordering inADOPT-N for a problem containing twon-ary constraints
involving, respectively,{v2, v3, v4} and{v1, v5}. The locally-serialized strategy (top) serializes
the DFS tree only as much as then-ary constraints require, while global serialization yields a
priority chain (bottom). Both strategies need not model a dedicatedn-agent.

Since the constraint evaluating variables (v′ andv′′ in the example) are by defini-
tion always on a single path from root to leaf containing all the variables involved in
the n-ary constraint, it is not necessary to model these variables as distinct from all
other variables in the problem definition. Indeed, then-ary constraint evaluating func-
tionality implemented in a dedicatedn-agent can be carried out by the agent involved
in then-ary constraint which has lowest priority (in the example, the functionality of
v′ andv′′ is incorporated inv4 andv5.) Since the complexity ofADOPT is exponential
in the number of variables, this is advantageous in terms of performance as it reduces
the overhead for dealing withn-ary constraints to the computation of an additional
component for the cost.

To conclude, we note thatn-ary constraints have been used in [3] to enforce addi-
tional criteria in multi-criteria DCOP. The proposed mechanism is grounded on similar



intuitions in that it too guarantees correctness and optimality by placing variables in-
volved inn-ary relations on single paths from root to leaf. The principal differences
with the present work are that the above cited work does not focus onn-ary constraints
other than no-goods, and thatADOPT-N is conceived with the goal ofn-ary constraint
posting in mind.

5 Constraint Posting

The above variable ordering procedures rely on knowing alln-ary constraints a-priori.
However, as motivated by the D-RCTS problem described in section 2, we wish to
handle cases where such constraints arise dynamically during problem resolution. The
one-path requirement must be upheld also in the event that then-ary constraints are
not known before hand but are deduced during problem resolution. To handle this, we
must arrange the DFS tree to ensure that the constraints that are posted always involve
variables which are on the same path from root to leaf. To this end, we employ the
notion of critical sets, which represent groups of variables which together constitute
the possiblen-ary constraints that are to be posted.

In this section, we address the issue of understanding the impact of not knowing
the n-ary constraints at the time of problem specification. Clearly, if we assume ab-
solutely no knowledge on then-ary relations which can arise, then the critical set will
encompass all variables in the problem. Notice that this nullifies the advantage of us-
ing a locally-serializing strategy. Nonetheless, many domains do offer some insight
as to wheren-ary relations may arise. In the D-RCTS problem, wheren-ary relations
arise because of resource contention, it is possible to group a-priori a super-set of the
variables involved in the peak.
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Figure 5: Situations (a), (b), (c) and (d) represent an increasing amount of knowledge on the
n-ary relations that are to be posted.

In general, we can envisage more or less precise domain-specific strategies for de-
termining the critical sets (see figure 5.) This reflects in how then-agents are placed in
the priority ordering, both in case of locally and globally-serializing orderings. Specif-
ically, the more the critical sets single out precisely then-ary relations that can occur,



the more the locally-serializing ordering strategy can produce shallow DFS trees. Thus,
the amount of knowledge given on then-ary relations (i.e., the precision of the critical
sets) affects the performance of the algorithm in that less knowledge tends to curtail
the branching factor of the DFS tree, while more precise knowledge imposes less local
serializations. Moreover, both in the case of local and global serialization, smaller criti-
cal sets will allow to designate asn-agents variables which are potentially higher in the
hierarchy. The placement ofn-agents higher in the priority tree entails that the costs
incurred byn-ary constraint evaluation are propagated to fewer agents, thus resulting
in better performance. The overall positive effect of critical sets which are as close as
possible to being minimal is confirmed by the experimental evaluation in the following
section, in which we compare two alternative strategies for building the critical sets,
one in which domain knowledge is used more proficiently in order to minimize the size
of the critical sets, and one in which the critical sets are built more “coarsely”.

5.1 Constraint Posting in D-RCTS: Experiments

The D-RCTS problem benchmark on which the following experiments were carried
out is drawn from the RCPSP/max problem set [20] (Resource Constrained Project
Scheduling Problems, single mode project duration.) The J10 problem set, which was
employed to obtain the instances of the RCTS benchmark, consist of project scheduling
problems with ten activities, each with integer duration, a set of minimum time lags, a
set of maximum time lags, and a set of capacity-bound resources. Each activity requires
one or more resources for execution. A minimum time lag oft between two activities
expresses the fact that one activity must begin at leastt time units after the other, while
a maximum time lag represents the fact that an activity must begin at mostt time units
after the beginning of the other.

The J10 RCPSP/max instances thus model a more general category of scheduling
problems than simple (non-distributed) RCTS. In fact, the D-RCTS problems were
obtained in two steps. First, an RCTS benchmark was obtained by ignoring the dura-
tion and maximum time lag information in the RCPSP/max instances. Second, agent-
specific attributes were added to obtain D-RCTS problems. A random number of agents
was assigned randomly to the tasks such that each task was executed by at least one
agent.

Since our aim is to postn-ary constraints which avert resource contention, the
critical sets represent a collection of variables whose concurrent assignment to the same
value (i.e., tasks that occur at the same time) can potentially entail a resource peak.
Notice that the size of a critical set is an upper bound on the arity of then-ary relation,
since it groups those variables which togethermay entail produce a resource peak.
As a consequence, the evaluating agents (one for every critical setVi) will post n-ary
constraints whose arity isat most|Vi|.

The critical sets in general model a collection of constraints represented intension-
ally, and their evaluation occurs by means of a collateral, domain-specific analysis
of the current assignment. The domain-specific behavior ofADOPT-N’s evaluating
agents is adapted to perform the evaluation of variable assignments on the basis of
the resource-related information in the problem definition (i.e.,R, C andU .) More
specifically, at each iteration, the evaluating agents (one for each critical set) calculate
the resource usage profile of the (partial) assignment they see in their context. If the
combined usage of a resource on behalf of variables which are assigned to the same



value (tasks which occur in the same time slot) exceeds its capacity, then the cost re-
ported by the evaluating agent to its parent amounts to the amount of excess usage of
the resource; otherwise, the normal cost of the assignment is reported (i.e., non-ary
constraint is violated, and the cost is computed normally.) This mechanism ensures
that an optimal solution will be one in which the amount of excess resource usage (if
any) is minimized. In the benchmark employed for the experiments, there exists for all
problems at least one resource-feasible solution (i.e., no excess resource usage), thus
the cost of the optimal solution is always zero.

The critical sets were defined through the following two alternative strategies. Specif-
ically, the two strategies differ in how close the critical sets are to being minimal:

Same Resource (SR).The SR strategy consists in creating one critical set for every
resource containing all variables which use that resource. Notice that the critical
sets can overlap since tasks can use more than one resource. This strategy yields
a very coarse characterization of then-ary relations, since it characterizes as crit-
ical all groups of variables which use the same resource, disregarding completely
the presence of the precedence constraints.

Resource Peak Analysis (RPA).RPA allows to evaluate the resource usage parame-
ters in the light of the precedence graph. In practice, the transitive closure of the
precedence graph is computed, from which all sets of tasks which can potentially
occur together are extracted. Specifically, the tasks belonging to each critical set
satisfy the following conditions: (a) the tasks are not connected in the transitive
closure of the precedence graph, and (b) all tasks use the same resource.

The RPA strategy for determining the critical sets is clearly more precise than the SR
strategy, since it curtails the size of the critical sets by taking into consideration also
the precedence constraints in the D-RCTS problem. This is confirmed by the average
number and arity of then-ary relations (i.e., the number of critical sets and their size)
determined by employing the two strategies on the 270 D-RCTS problems in the bench-
mark. Specifically, for SR the average number of constraints is 4.92 and the average
arity is 9.79, versus 3.64 and 8.3 for RPA.

The 270 D-RCTS problem instances were solved in the following three settings.
First, a relaxed version of the D-RCTS problems was solved. These problems consist
in the DCOP formulations of the J10 problems ignoring the resource-related infor-
mation (R, C andU), and thus are characterized by only agreement, precedence and
mutex constraints2. We henceforth refer to these problems asbase problems. Second,
the complete D-RCTS problems were solved usingADOPT-N and the critical set gener-
ating strategy SR. Third, the complete D-RCTS problems were solved usingADOPT-N
and the critical set generating strategy RPA.

Figure 6 shows the percentage of solved problems and the average solving time of
the three solver settings. As demonstrated by the lower number of solved problems
and the higher solving times, the resource constrained variants of the base problems
constitute more difficult instances. Clearly, this is due to the fact that resource capacity
limitations invalidate the assignments which would constitute an optimal solution in
the base problem. Indeed, the optimal solutions for the resource constrained problems
often correspond to sub-optimal assignments for the base problem, which are though

2Notice that usingADOPT-N with a locally-serialized ordering and non-ary constraints or critical sets is
equivalent to the originalADOPT algorithm.
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Figure 6: Fltr: average number of solved problems, average solving time [sec], average DFS
tree depth, and average DFS tree branching factor.

optimal in the resource constrained setting because the capacity limitations invalidate
all solutions which would otherwise be optimal.

While the higher complexity of resource constrained problems does not come as a
surprise, it is interesting to analyze the performance ofADOPT-N given the two differ-
ent critical set generating procedures. As shown in figure 6, the discrepancy between
RPA and SR does not follow the intuition that a more profitable procedure for collect-
ing the critical sets pays off in terms of performance. Indeed, the less sophisticated SR
strategy seems to have a slight advantage. Nevertheless, the reason for this behavior
can be found in the observation made earlier, namely that a gain in tree depth at the
cost of subverting the ordering heuristic can be counter-productive. In fact, if the gain
in branching factor of the problems obtained with the RPA strategy is not particularly
strong (6, right). This points to the fact that the predominant factor which affects per-
formance is not the degree to which the critical set generating procedure can maintain
the DFS tree shallow, rather the specific ordering heuristic which is employed.

In order to compare the RPA and SR critical set generating strategies on the same
variable ordering, we also ran the following experiments with the globally-serializing
ordering strategy. These experiments were run on 405 D-RCTS problems, divided into
three groups:P200, P100, andP0. Every group consisted in 135 problems, and each
problempi ∈ P200(∈ P100) was obtained from problempi ∈ P0 by increasing the
capacity of all resources by 200% (100%). Each problem was solved byADOPT-N
using the globally-serializing strategy with the MCF ordering heuristic. The aim of
these three groups was to ensure that the results (i.e., the relative advantage of RPA or
SR) would depend solely on the placement of then-agents in the priority chain, and
not on the level of resource constrainedness of the problem.

The results (see figure 7) show that the more informed RPA strategy, which makes a
more profitable use of domain information, performs 15.9%, 16%, and 9.2% better than
the less informed SR strategy in the three cases. These results show that RPA scales
better than SR. This is because RPA identifies more precisely the structure of then-ary
relations, in that it approximates their size and arity better by taking into account also
the precedence constraints. In fact, the average number and size of the critical sets (i.e.,
the envelope of the implicitn-ary relations) determined by the two strategies is 4.92
and 9.79 for SR, versus 3.64 and 8.3 for RPA. The experiments thus substantiate the
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observation made earlier, namely that the placement ofn-agents at higher levels within
the priority ordering can strongly affect the performance of the algorithm.

The specific placement of then-agents within the priority chain can be analyzed
through the the parameterπ =

∑
i

ρ(i)
l , wherel is the length of the chain andρ(i) = i

if the agent at leveli of the chain is ann-agent,0 if it is not. This parameter measures
how sparse then-agents are within the chain, thus high values indicate that then-agents
are concentrated at the bottom of the chain. In the present benchmark, for 75% of the
instances in which RPA performed better than SR,π was higher for SR than RPA, thus
corroborating the fact that agent placement strongly affects performance.

Notice, finally, that the increasingly tight resource constraints do not worsen per-
formance in the general case. In fact, tight capacity constraints often have the effect of
pruning large portions of the search space, thus invalidating many of the assignments
worth exploring for the underlying constraint optimization problem.

6 Conclusions and Future Work

In this paper we have dealt with two aspects related to reasoning aboutn-ary constraints
in ADOPT. First, we have detailed the enhancements necessary to deal withn-ary
constraints that are specified in the problem definition. This is achieved inADOPT-N,
a variant of the original algorithm which maintains optimality guarantees by means of
a variable ordering heuristic which produces locally or globally serialized DFS trees.
We have shown, both in theory and empirically, that there is a tradeoff between local
and global serialization. The former strived to maintain shallow DFS trees, but at the
cost of subverting the variable ordering heuristic, while the latter preserves the benefits
of the ordering heuristic at the cost of forfeiting partial ordering between variables. The
relative advantage of one method or the other are largely dependant on the domain. Our
experimental evaluation tips the scale in favor of global serialization in the D-RCTS
domain.

Secondly, this paper tackles the problem of taking into account constraints which
become known only during problem resolution, i.e., which are either deduced as a
result of a collateral domain-based computation, or which are communicated to the
agents from an external source. This capability is fundamental for application domains



in which n-ary constraints among variables are intensional, and computing the exten-
sion is expensive and/or unnecessary. More specifically, we show how the impact of
a-priori knowledge regarding then-ary relations which can arise during resolution af-
fects performance.

The problem instances constituting the D-RCTS benchmark are adapted from the
single mode project duration RCPSP/max benchmark [20], which is widely used in
the scheduling community. The experiments are aimed at assessing (1) the (expected)
increase in difficulty of the resource-constrained problems (for whichn-ary constraint
posting is necessary) with respect to the base problem (containing only statically de-
fined binary constraints), and (2) the influence of different amounts of a-priori knowl-
edge on then-ary relations which must be posted during resolution. With respect to the
second point, our analysis reveals two insights. First, the performance ofADOPT-N on
the D-RCTS benchmark is strongly affected by the ordering heuristic, thus the locally-
serializing ordering strategy, which tends to subvert this heuristic, is not suitable for the
D-RCTS benchmark. The second insight is that the more sophisticated RPA strategy
for collecting critical sets entails a performance advantage, since it determines a more
precise placement of then-agents. This is thanks to the more precise way in which RPA
isolates groups of variables which can contribute to resource contention, minimizing
the size of thesen-ary relations.

Future work will focus on providing further insight on implicit and explicitn-ary
constraint reasoning inADOPT-N. From the explicit point of view, we are interested in
performing a more in-depth evaluation of the performance ofADOPT-N on problems
with n-ary constraints in known domains, such as graph-coloring, as well as more
application oriented domains, e.g., agent coordination in logistics problems. In the
context of implicit constraint posting, we will focus on domains in which more precise
knowledge on then-ary relations entails an improvement inADOPT-N’s performance.
More specifically, the present work has given us some insight as to why performance
can benefit from more knowledge.
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