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Abstract Enabling effective interactions between agent teams and humans for disaster re-
sponse is a critical area of research, with encouraging progress in the past few
years. However, previous work suffers from two key limitations: (i) limited
human situational awareness, reducing human effectiveness in directing agent
teams and (ii) the agent team’s rigid interaction strategies that limit team perfor-
mance. This paper presents a software prototype called DEFACTO (Demonstrat-
ing Effective Flexible Agent Coordination of Teams through Omnipresence).
DEFACTO is based on a software proxy architecture and 3D visualization sys-
tem, which addresses the two limitations described above. First, the 3D vi-
sualization interface enables human virtual omnipresence in the environment,
improving human situational awareness and ability to assist agents. Second,
generalizing past work on adjustable autonomy, the agent team chooses among
a variety of “team-level” interaction strategies, even excluding humans from the
loop in extreme circumstances.

*This research was supported by the United States Department of Homeland Security through the Center
for Risk and Economic Analysis of Terrorism Events (CREATE). However, any opinions, findings, and
conclusions or recommendations in this document are those of the author and do not necessarily reflect
views of the U.S. Department of Homeland Security.
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1.1 Introduction

We envision future disaster response to be performed with a mixture of hu-
mans performing high level decision-making, intelligent agents coordinating
the response and humans and robots performing key physical tasks. These het-
erogeneous teams of robots, agents, and people [18] will provide the safest and
most effective means for quickly responding to a disaster, such as a terrorist at-
tack. A key aspect of such a response will be agent-assisted vehicles working
together. Specifically, agents will assist the vehicles in planning routes, de-
termining resources to use and even determining which fire to fight. However,
despite advances in agent technologies, human involvement will be crucial. Al-
lowing humans to make critical decisions within a team of intelligent agents or
robots is prerequisite for allowing such teams to be used in domains where they
can cause physical, financial or psychological harm. These critical decisions
include not only the decisions that, for moral or political reasons, humans must
be allowed to make, but also coordination decisions that humans are better at
making due to access to important global knowledge, general information or
support tools.

Already, human interaction with agent teams is critical in a large number
of current and future applications [2, 5, 18, 3]. For example, current efforts
emphasize humans collaboration with robot teams in space explorations, hu-
mans teaming with robots and agents for disaster rescue, as well as humans
collaborating with multiple software agents for training [4, 6].

This paper focuses on the challenge of improving the effectiveness of appli-
cations of human collaboration with agent teams. Previous work has reported
encouraging progress in this arena, e.g., via proxy-based integration architec-
tures[13], adjustable autonomy[17, 4] and agent-human dialogue [1]. Despite
this encouraging progress, previous work suffers from two key limitations.
First, when interacting with agent teams acting remotely, human effectiveness
is hampered by interfaces that limit their ability to apply decision-making skills
in a fast and accurate manner. Techniques that provide telepresence via video
are helpful [5], but cannot provide the global situation awareness. Second,
agent teams have been equipped with adjustable autonomy (AA)[18] but not
the flexibility critical in such AA. Indeed, the appropriate AA method varies
from situation to situation. In some cases the human user should make most
of the decisions. However, in other cases human involvement may need to
be restricted. Such flexible AA techniques have been developed in domains
where humans interact with individual agents [17], but whether they apply to
situations where humans interact with agent teams is unknown.
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We report on a software prototype system, DEFACTO (Demonstrating Ef-
fective Flexible Agent Coordination of Teams through Omnipresence), that
enables agent-human collaboration and addresses the two shortcomings out-
lined above. The system incorporates state of the art artificial intelligence,
3D visualization and human-interaction reasoning into a unique high fidelity
system for research into human agent coordination in complex environments.
DEFACTO incorporates a visualizer that allows for the human to have an om-
nipresent interaction with remote agent teams, overcoming the first limitation
described above. We refer to this as the Omni-Viewer, and it combines two
modes of operation. The Navigation Mode allows for a navigable, high quality
3D visualization of the world, whereas the Allocation Mode provides a tra-
ditional 2D view and a list of possible task allocations that the human may
perform. Human experts can quickly absorb on-going agent and world activ-
ity, taking advantage of both the brain’s favored visual object processing skills
(relative to textual search, [11]), and the fact that 3D representations can be
innately recognizable, without the layer of interpretation required of map-like
displays or raw computer logs. The Navigation mode enables the human to
understand the local perspectives of each agent in conjunction with the global,
system-wide perspective that is obtained in the Allocation mode.

Second, to provide flexible AA, we generalize the notion of strategies from
single-agent single-human context [17]. In our work, agents may flexibly
choose among team strategies for adjustable autonomy instead of only indi-
vidual strategies; thus, depending on the situation, the agent team has the flex-
ibility to limit human interaction, and may in extreme cases exclude humans
from the loop.

We present results from detailed experiments with DEFACTO, which reveal
two major surprises. First, contrary to previous results [18], human involve-
ment is not always beneficial to an agent team— despite their best efforts,
humans may sometimes end up hurting an agent team’s performance. Second,
increasing the number of agents in an agent-human team may also degrade the
team performance, even though increasing the number of agents in a pure agent
team under identical circumstances improves team performance. Fortunately,
in both the surprising instances above, DEFACTO’s flexible AA strategies al-
leviate such problematic situations.

DEFACTO is currently instantiated as a prototype of a future disaster re-
sponse system. DEFACTO has been repeatedly demonstrated to key police
and fire department personnel in Los Angeles area, with very positive feed-
back.
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1.2 DEFACTO System Details

In this chapter we will describe two major components of DEFACTO: the
Omni-Viewer and the proxy-based teamwork (see Figure 1.1). The Omni-
Viewer is an advanced human interface for interacting with an agent-assisted
response effort. The Omni-Viewer provides for both global and local views
of an unfolding situation, allowing a human decision-maker to precisely the
information required for a particular decision. A team of completely distrib-
uted proxies, where each proxy encapsulates advanced coordination reasoning
based on the theory of teamwork, controls and coordinates agents in a simu-
lated environment. The use of the proxy-based team brings realistic coordina-
tion complexity to the prototype and allows more realistic assessment of the
interactions between humans and agent-assisted response. Currently, we have
applied DEFACTO to a disaster rescue domain. The incident commander of
the disaster acts as the human user of DEFACTO. This disaster can either be
“man made” (terrorism) or “natural” (earthquake). We focus on two urban ar-
eas: a square block that is densely covered with buildings (we use one from
Kobe, Japan) and our university campus (withheld for blind review), which
is more sparsely covered with buildings. In our scenario, several buildings
are initially on fire, and these fires spread to adjacent buildings if they are not
quickly contained. The goal is to have a human interact with the team of fire
engines in order to save the most buildings. Our overall system architecture
applied to disaster response can be seen in Figure 1.1. While designed for real
world situations, DEFACTO can also be used as a training tool for incident
commanders when hooked up to a simulated disaster scenario.

1.2.1 Omni-Viewer

Our goal of allowing fluid human interaction with agents requires a visual-
ization system that provides the human with a global view of agent activity as
well as showing the local view of a particular agent when needed. Hence, we
have developed an omnipresent viewer, or Omni-Viewer, which will allow the
human user diverse interaction with remote agent teams. While a global view
is obtainable from a two-dimensional map, a local perspective is best obtained
from a 3D viewer, since the 3D view incorporates the perspective and occlu-
sion effects generated by a particular viewpoint. The literature on 2D- versus
3D-viewers is ambiguous. For example, spatial learning of environments from
virtual navigation has been found to be impaired relative to studying simple
maps of the same environments [14]. On the other hand, the problem may
be that many virtual environments are relatively bland and featureless. Rud-
dle points out that navigating virtual environments can be successful if rich,
distinguishable landmarks are present [15].
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Figure 1.1. DEFACTO system applied to a disaster rescue.

To address our discrepant goals, the Omni-Viewer incorporates both a con-
ventional map-like 2D view, Allocation Mode (Figure 1.2-c) and a detailed
3D viewer, Navigation Mode (Figure 1.2-a). The Allocation mode shows the
global overview as events are progressing and provides a list of tasks that the
agents have transfered to the human. The Navigation mode shows the same
dynamic world view, but allows for more freedom to move to desired locations
and views. In particular, the user can drop to the virtual ground level, thereby
obtaining the world view (local perspective) of a particular agent. At this level,
the user can “walk” freely around the scene, observing the local logistics in-
volved as various entities are performing their duties. This can be helpful in
evaluating the physical ground circumstances and altering the team’s behavior
accordingly. It also allows the user to feel immersed in the scene where various
factors (psychological, etc.) may come into effect.

In order to prevent communication bandwidth issues, we assume that a high
resolution 3D model has already been created and the only data that is trans-
fered during the disaster are important changes to the world. Generating this
suitable 3D model environment for the Navigation mode can require months or
even years of manual modeling effort, as is commonly seen in the development
of commercial video-games. However, to avoid this level of effort we make
use of the work of You et. al. [19] in rapid, minimally assisted construction of
polygonal models from LiDAR (Light Detection and Ranging) data. Given the
raw LiDAR point data, we can automatically segment buildings from ground
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Figure 1.2. Omni-Viewer during a scenario: (a) Multiple fires start across the campus (b) The
Incident Commander uses the Navigation mode to quickly grasp the situation (c) Navigation
mode shows a closer look at one of the fires (d) Allocation mode is used to assign a fire engine
to the fire (e) The fire engine has arrived at the fire (f) The fire has been extinguished.
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and create the high resolution model that the Navigation mode utilizes. The
construction of the campus (withheld for blind review) and surrounding area
required only two days using this approach. LiDAR is an effective way for any
new geographic area to be easily inserted into the Omni-Viewer.

We use the JME game engine to perform the actual rendering due to its
cross-platform capabilities. JME is an extensible library built on LWIJGL
(Light Weight Java Game Library), which interfaces with OpenGL and Ope-
nAL. This environment easily provided real-time rendering of the textured
campus environment on mid-range commodity PCs. JME utilizes a scene
graph to order the rendering of geometric entities. It provides some impor-
tant features such as OBJ format model loading (which allows us to author the
model and textures in a tool like Maya and load it in JME) and also various
assorted effects such as particle systems for fires.

1.2.2 Proxy: Teamwork

A key hypothesis in this work is that intelligent distributed agents will be
a key element of a future disaster response. Taking advantage of emerging
robust, high bandwidth communication infrastructure we believe that a criti-
cal role of these intelligent agents will be to manage coordination between all
members of the response team. Specifically, we are using coordination algo-
rithms inspired by theories of teamwork to manage the distributed response
[20]. The general coordination algorithms are encapsulated in proxies, with
each team member having its own proxy and representing it in the team. The
current version of the proxies is called Machinetta[16] and extends the suc-
cessful Teamcore proxies [13]. Machinetta is implemented in Java and is
freely available on the web. Notice that the concept of a reusable proxy differs
from many other “multiagent toolkits™ in that it provides the coordination al-
gorithms, e.g., algorithms for allocating tasks, as opposed to the infrastructure,
e.g., APIs for reliable communication.

Communication: communication with other proxies
Coordination: reasoning about team plans and communication
State: the working memory of the proxy

Adjustable Autonomy: reasoning about whether to act autonomously or pass
control to the team member

RAP Interface: communication with the team member

The Machinetta software consists of five main modules, three of which are
domain independent and two of which are tailored for specific domains. The
three domain independent modules are for coordination reasoning, maintain-
ing local beliefs (state) and adjustable autonomy. The domain specific modules
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Figure 1.3. Proxy Architecture

are for communication between proxies and communication between a proxy
and a team member. The modules interact with each other only via the local
state with a blackboard design and are designed to be “plug and play”, thus,
e.g., new adjustable autonomy algorithms can be used with existing coordi-
nation algorithms. The coordination reasoning is responsible for reasoning
about interactions with other proxies, thus implementing the coordination al-
gorithms. The adjustable autonomy algorithms reason about the interaction
with the team member, providing the possibility for the team member to make
any coordination decision instead of the proxy. For example, the adjustable
autonomy module can reason that a decision to accept a role to rescue a civil-
ian from a burning building should be made by the human who will go into
the building rather than the proxy. In practice, the overwhelming majority of
coordination decisions are made by the proxy, with only key decisions referred
to team members.

Teams of proxies implement team oriented plans (TOPs) which describe
joint activities to be performed in terms of the individual roles to be performed
and any constraints between those roles[]. Typically, TOPs are instantiated dy-
namically from TOP templates at runtime when preconditions associated with
the templates are filled. Typically, a large team will be simultaneously exe-
cuting many TOPs. For example, a disaster response team might be executing
multiple fight fire TOPs. Such fight fire TOPs might specify a breakdown of
fighting a fire into activities such as checking for civilians, ensuring power and
gas is turned off and spraying water. Constraints between these roles will spec-
ify interactions such as required execution ordering and whether one role can
be performed if another is not currently being performed. Notice that TOPs do
not specify the coordination or communication required to execute a plan, the
proxy determines the coordination that should be performed.

Current versions of Machinetta include state-of-the-art algorithms for plan
instantiation[9], role allocation[10], information sharing[22], task deconflic-
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tion[9] and adjustable autonomy[17]. Many of these algorithms utilize a log-
ical associates network[21] statically connecting all the team members. The
associates network is a scale free network which allows the team to balance the
complexity of needing to know about all the team and maintaining cohesion
[12]. Using the associates network key algorithms, including role allocation,
resource allocation, information sharing and plan instantiation are based on the
use of tokens which are “pushed” onto the network and routed to where they are
required by the proxies. For example, the role allocation algorithm, LA-DCOP
[10], represents each role to be allocated with a token and pushes the tokens
around the network until a sufficiently capable and available team member is
found to execute the role. The implementation of the coordination algorithms
uses the abstraction of a simple mobile agent to implement the tokens, leading
to robust and efficient software.

1.2.3 Proxy: Adjustable Autonomy

In this paper, we focus on a key aspect of the proxy-based coordination: Ad-
justable Autonomy. Adjustable autonomy refers to an agent’s ability to dynam-
ically change its own autonomy, possibly to transfer control over a decision to
a human. Previous work on adjustable autonomy could be categorized as either
involving a single person interacting with a single agent (the agent itself may
interact with others) or a single person directly interacting with a team. In the
single-agent single-human category, the concept of flexible transfer-of-control
strategy has shown promise [17]. A transfer-of-control strategy is a preplanned
sequence of actions to transfer control over a decision among multiple entities,
for example, an AHy Hy strategy implies that an agent (Ar) attempts a deci-
sion and if the agent fails in the decision then the control over the decision is
passed to a human 1, and then if /| cannot reach a decision, then the control
is passed to H5. Since previous work focused on single-agent single-human in-
teraction, strategies were individual agent strategies where only a single agent
acted at a time.

An optimal transfer-of-control strategy optimally balances the risks of not
getting a high quality decision against the risk of costs incurred due to a delay
in getting that decision. Flexibility in such strategies implies that an agent
dynamically chooses the one that is optimal, based on the situation, among
multiple such strategies (H1 A, AHy, AH1 A, etc.) rather than always rigidly
choosing one strategy. The notion of flexible strategies, however, has not been
applied in the context of humans interacting with agent-teams. Thus, a key
question is whether such flexible transfer of control strategies are relevant in
agent-teams, particularly in a large-scale application such as ours.

DEFACTO aims to answer this question by implementing transfer-of-control
strategies in the context of agent teams. One key advance in DEFACTO, how-
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ever, is that the strategies are not limited to individual agent strategies, but
also enables team-level strategies. For example, rather than transferring con-
trol from a human to a single agent, a team-level strategy could transfer control
from a human to an agent-team. Concretely, each proxy is provided with all
strategy options; the key is to select the right strategy given the situation. An
example of a team level strategy would combine A Strategy and H Strategy
in order to make Ay H Strategy. The default team strategy, A, keeps control
over a decision with the agent team for the entire duration of the decision. The
H strategy always immediately transfers control to the human. ArH strategy
is the conjunction of team level Ay strategy with H strategy. This strategy
aims to significantly reduced the burden on the user by allowing the decision
to first pass through all agents before finally going to the user, if the agent team
fails to reach a decision.

1.3 Experiments and Evaluation

Our DEFACTO system was evaluated in three key ways, with the first two
focusing on key individual components of the DEFACTO system and the last
attempting to evaluate the entire system. First, we performed detailed exper-
iments comparing the effectiveness of Adjustable Autonomy (AA) strategies
over multiple users. In order to provide DEFACTO with a dynamic rescue
domain we chose to connect it to a simulator. We chose the previously de-
veloped RoboCup Rescue simulation environment [8]. In this simulator, fire
engine agents can search the city and attempt to extinguish any fires that have
started in the city. To interface with DEFACTO, each fire engine is controlled
by a proxy in order to handle the coordination and execution of AA strategies.
Consequently, the proxies can try to allocate fire engines to fires in a distrib-
uted manner, but can also transfer control to the more expert user. The user
can then use the Omni-Viewer in Allocation mode to allocate engines to the
fires that he has control over. In order to focus on the AA strategies (transfer-
ring the control of task allocation) and not have the users ability to navigate
interfere with results, the Navigation mode was not used during this first set of
experiments.

The results of our experiments are shown in Figure 1.4, which shows the
results of subjects 1, 2, and 3. Each subject was confronted with the task of
aiding fire engines in saving a city hit by a disaster. For each subject, we
tested three strategies, specifically, H, AH and Ar H; their performance was
compared with the completely autonomous A7 strategy. AH is an individual
agent strategy, tested for comparison with A7 H, where agents act individually,
and pass those tasks to a human user that they cannot immediately perform.
Each experiment was conducted with the same initial locations of fires and
building damage. For each strategy we tested, varied the number of fire engines



Ezxperiments and Evaluation

Subject 1
300
T 250 -
3
& 200 -
& 150 |
£
T 100 -
@ 50 -
0 T T T T T T T
3 4 5 6 7 8 10 11
Number of Agents
A —++H-©- AH — ATH|
Subject 2
300 ;
T 250 - A __/.-“6
> 0 et =]
3 200 + %;‘::—:—:—:_ _:_"._?—"'"'-—‘
@ 150 - /
£
S 100
3 50 /
0 T T T T T T T
3 5 6 7 8 10 11
Number of Agents
|——A < ~H-©- AH - ATH]
Subject 3
300
B 250
8 200
n
& 150 -
£
T 100 |
]
m 50 -
0 T T T T T T T
3 5 6 7 8 10 11
Number of Agents
|——A —<+-H-©- AH —- ATH]
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between 4, 6 and 10. Each chart in Figure 1.4 shows the varying number of
fire engines on the x-axis, and the team performance in terms of numbers of
building saved on the y-axis. For instance, strategy A7 saves 50 building with 4
agents. Each data point on the graph is an average of three runs. Each run itself
took 15 minutes, and each user was required to participate in 27 experiments,
which together with 2 hours of getting oriented with the system, equates to
about 9 hours of experiments per volunteer.
Figure 1.4 enables us to conclude the following:

m  Human involvement with agent teams does not necessarily lead to im-
provement in team performance. Contrary to expectations and prior
results, human involvement does not uniformly improve team perfor-
mance, as seen by human-involving strategies performing worse than
the Ar strategy in some instances. For instance, for subject 3, human
involving strategies such as AH provide a somewhat higher quality than
Ar for 4 agents, yet at higher numbers of agents, the strategy perfor-
mance is lower than Ar.

m  Providing more agents at a human’s command does not necessarily im-
prove the agent team performance As seen for subject 2 and subject 3,
increasing agents from 4 to 6 given AH and Ar H strategies is seen to
degrade performance. In contrast, for the Ap strategy, the performance
of the fully autonomous agent team continues to improve with additions
of agents, thus indicating that the reduction in AH and ArH perfor-
mance is due to human involvement. As the number of agents increase
to 10, the agent team does recover.

m  No strategy dominates through all the experiments given varying num-
bers of agents. For instance, at 4 agents, human-involving strategies
dominate the Ar strategy. However, at 10 agents, the A strategy out-
performs all possible strategies for subjects 1 and 3.

m  Complex team-level strategies are helpful in practice: ApH leads to
improvement over H with 4 agents for all subjects, although surprising
domination of AH over ArH in some cases indicates that AH may also
a useful strategy to have available in a team setting.

Note that the phenomena described range over multiple users, multiple runs,
and multiple strategies. The most important conclusion from these figures is
that flexibility is necessary to allow for the optimal AA strategy to be applied.
The key question is then how to select the appropriate strategy for a team in-
volving a human whose expected decision quality is FQ . In fact, by esti-
mating the FQp of a subject by checking the “H” strategy for small number
of agents (say 4), and comparing to A strategy, we may begin to select the
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Figure 1.5. (a) AGy and (b) H performance

appropriate strategy for teams involving more agents. In general, higher £Q) iy
lets us still choose strategies involving humans for a more numerous team. For
large teams however, the number of agents AG j; effectively controlled by the
human does not grow linearly thus A strategy becomes dominant.

Unfortunately, the strategies including the humans and agents (AH and
ArH) for 6 agents show a noticeable decrease in performance for subjects
2 and 3 (see Figure 1.4). It would be useful to understand which factors con-
tributed to this phenomena.

Our crucial predictions were that while numbers of agents increase, AG i
steadily increases and F'(Qy remains constant. Thus, the dip at 6 agents is
essentially affected by either AG or EQp. We first tested AG 7 in our do-
main. The amount of effective agents, AG, is calculated by dividing how
many total allocations each subject made by how many the A7 strategy made
per agent, assuming Arp strategy effectively uses all agents. Figure 1.5-(a)
shows the number of agents on the x-axis and the number of agents effective
used, AG g, on the y-axis; the Ap strategy, which is using all available agents,
is also shown as a reference. However, the amount of effective agents is actu-
ally about the same in 4 and 6 agents. This would not account for the sharp
drop we see in the performance. We then shifted our attention to the EQ g
of each subject. One reduction in £ Q) could be because subjects simply did
not send as many allocations totally over the course of the experiments. This,
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Figure 1.6. Amount of agents per fire assigned by subjects 1, 2, and 3

however is not the case as can be seen in Table 1.1 where for 6 agents, the total
amount of allocations given is comparable to that of 4 agents. To investigate
further, we checked if the quality of human allocation had degraded. For our
domain, the more fire engines that fight the same fire, the more likely it is to
be extinguished and in less time. For this reason, the amount of agents that
were tasked to each fire is a good indicator of the quality of allocations that the
subject makes 1.5-(b). Figure 1.6 shows the number agents on the x-axis and
the average amount of fire engines allocated to each fire on the y-axis. AH and
A7 H for 6 agents result in significantly less average fire engines per task (fire)
and therefore less average EQ .

The next question is then to understand why for 6 agents AH and ArH
result in lower average fire engines per fire. One hypothesis is the possible
interference among the agents’ self allocations vs human task allocations at
6 agents. Table 2 shows the number of task changes for 4, 6 and 10 agents
for AH and A7 H strategies, showing that maximum occurs at 6 agents. A
task change occurs because an agent pursuing its own task is provided another
task by a human or a human-given task is preempted by the agent. Thus,
when running mixed agent-human strategies, the possible clash of tasks causes
a significant increase task changes. While the reason for such interference
peaking at 6 may be domain specific, the key lesson is that interference has the
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| Strategy “ 4 agents [ 6 agents [ 10 agents

AH 34 75 14
ArH 54 231 47

Table 1.2. Task conflicts for subject 2.

potential to occur in complex team-level strategies. Consequently, modeling
strategy predictions would require taking into account such interference effects
by not assuming a constant £Q) .

The second aspect of our evaluation was to explore the benefits of the Nav-
igation mode (3D) in the Omni-Viewer over solely an Allocation mode (2D).
We performed 2 tests on 20 subjects. All subjects were familiar with the USC
university campus. Test 1 showed Navigation and Allocation mode screenshots
of the university campus to subjects. Subjects were asked to identify a unique
building on campus, while timing each response. The average time for a sub-
ject to find the building in 2D was 29.3 seconds, whereas the 3D allowed them
to find the same building in an average of 17.1 seconds. Test 2 again displayed
Navigation and Allocation mode screenshots of two buildings on campus that
had just caught fire. In Test 2, subjects were asked first asked to allocate fire
engines to the buildings using only the Allocation mode. Then subjects were
shown the Navigation mode of the same scene. 90 percent of the subjects ac-
tually chose to change their initial allocation, given the extra information that
the Navigation mode provided.

Third, the complete DEFACTO system has been periodically demonstrated
to key government agencies, public safety officials and disaster researchers for
assessing its utility by the ultimate consumers of the technology, with exciting
feedback. Indeed they were eager to deploy DEFACTO and begin using it as
a research tool to explore the unfolding of different disasters. For example,
during one of the demonstrations on Nov 18, 2004 Gary Ackerman, a Senior
Research Associate at the Center for Nonproliferation Studies at the Monterey
Institute of International Studies pointed out in reference to DEFACTO, “This
is exactly the type of system we are looking for” to study the potential effect of
terrorist attacks. Also, we have met with several public safety officials about
using DEFACTO as a training tool for their staff. According to Los Angeles
County Fire Department Fire Captain Michael Lewis: “Effective simulation
programs for firefighters must be realistic, relevant in scope, and imitate the
communication challenges on the fire ground. DEFACTO focuses on these
very issues.”

1.4 Related Work and Summary

We have discussed related work throughout this paper, however, we now
provide comparisons with key previous agent software prototypes and research.
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Among the current tools aimed at simulating rescue environments it is im-
portant to mention products like TerraSim, JCATS and EPICS. TerraTools is
a complete simulation database construction system for automated and rapid
generation of high-fidelity 3D simulation databases from cartographic source
materials. Developed by TerraSim, Inc. TerraTools provides the set of inte-
grated tools aimed at generating various terrains, however, it cannot simulate
rescue operations not it has any notion of intelligence. JCATS represents a
self-contained, high-resolution joint simulation in use for entity-level training
in open, urban and subterranean environments. Developed by Lawrence Liv-
ermore National Laboratory, JCATS gives users the capability to detail the
replication of small group and individual activities during a simulated opera-
tion. Although it provides a great human training environment, JCATS does
not allow to simulate intelligent agents. Finally, EPICS is a computer-based,
scenario-driven, high-resolution simulation. It is used by emergency response
agencies to train for emergency situations that require multi-echelon and/or
inter-agency communication and coordination. Developed by the U.S. Army
Training and Doctrine Command Analysis Center, EPICS is also used for exer-
cising communications and command and control procedures at multiple lev-
els. Similar to JCATS however, intelligent agents and agent-human interaction
cannot be simulated.

Given our application domains, Scerri et al’s work on robot-agent-person
(RAP) teams for disaster rescue is likely the most closely related to DEFACTO
[18]. Our work takes a significant step forward in comparison. First, the omni-
viewer enables navigational capabilities improving human situational aware-
ness not present in previous work. Second, we provide team-level strategies,
which we experimentally verify, absent in that work. Third, we provide ex-
tensive experimentation, and illustrate that some of the conclusions reached in
[18] were indeed preliminary, e.g., they conclude that human involvement is
always beneficial to agent team performance, while our more extensive results
indicate that sometimes agent teams are better off excluding humans from the
loop. Human interactions in agent teams is also investigated in [2, 19], and
there is significant research on human interactions with robot-teams [5, 3].
However they do not use flexible AA strategies and/or team-level AA strate-
gies. Furthermore, our experimental results may assist these researchers in
recognizing the potential for harm that humans may cause to agent or ro-
bot team performance. Significant attention has been paid in the context of
adjustable autonomy and mixed-initiative in single-agent single-human inter-
actions [7, 1]. However, this paper focuses on new phenomena that arise in
human interactions with agent teams.

This paper presents a large-scale prototype, DEFACTO, that is based on a
software proxy architecture and 3D visualization system and provides two key
advances over previous work. First, DEFACTO’s Omni-Viewer enables the
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human to both improve situational awareness and assist agents, by providing a
navigable 3D view along with a 2D global allocation view. Second, DEFACTO
incorporates flexible AA strategies, even excluding humans from the loop in
extreme circumstances. We performed detailed experiments using DEFACTO,
leading to some surprising results. These results illustrate that an agent team
must be equipped with flexible strategies for adjustable autonomy so that the
appropriate strategy can be selected. Exciting feedback from DEFACTO’s ulti-
mate consumers illustrates its promise and potential for real-world application.
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