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New domains are emerging that impose new require-
ments for teamwork, where current teamwork infras-
tructure is inadequate. One such large class of applica-
tion require extreme teams, which are large teams that
need (soft) real-time response given dynamic tasks,
and where many resource limited agents have similar
functionality, but possibly varied capability. For in-
stance, when responding to a disaster, fire fighters and
paramedics comprise an extreme team as they must re-
spond rapidly to dynamic tasks; and fire fighters can
all extinguish fires although their capability to extin-
guish a particular fire quickly will depend on their ini-
tial distance from that fire.

This paper focuses on the critical challenge of role al-
location in extreme teams. In general, role allocation is
problem of assigning roles to agents so as to maximize
overall team utility[5]. Extreme teams emphasize key
additional requirements in role allocation: (i) rapid role
allocation as domain dynamics may cause tasks to dis-
appear; (ii) agents may perform one or more roles, but
within resource limits; (iii) many agents can fulfill the
same role; (iv) inter-role constraints may be present.
This role allocation challenge in extreme teams will be
referred to as E-GAP, as it subsumes the generalized
assignment problem (GAP), which is NP-complete[4].

This paper focuses on Distributed Constraint Opti-
mization (DCOP)[2] for role allocation, as DCOP offers
the key advantages of distributedness and a rich repre-
sentational language which can consider costs/utilities
of tasks. Despite these advantages, DCOP approaches
to role allocation suffer from three weaknesses. First,
complete DCOP algorithms[2] have exponential run-
time complexity and, thus, fail to meet the response
requirements of extreme teams. One reason for this is
that the purely local view of the team that each agent
has, forces the search to explore many potential solu-
tions that are clearly sub-optimal. However, teams of
agents will often have reasonably accurate estimates
of both the situation and the state of the team which
can be used to accurately estimate likely solution char-
acteristics. While relying on such estimates prevents

guarantees of optimality, they can dramatically reduce
the search space. Second, similar agent functionality
within extreme teams results in dense constraint graphs
increasing communication within a DCOP algorithm.
Third, DCOP algorithms do not address the additional
complications of constraints between roles.

To address these limitations in addressing E-GAP,
we propose a novel DCOP algorithm called LA-DCOP
(Low communication Approximate DCOP). LA-DCOP
uses a representation where agents are variables that
can take on values from a common pool, i.e., the pool
of roles to be assigned. The mechanism for allocating
values to variables encapsulates two novel ideas. First,
LA-DCOP improves efficiency by not focusing on an
exact optimal reward; instead by exploiting the likely
characteristics of optimal allocations, given the avail-
able probabilistic information, it focuses on maximiz-
ing the team’s expected total reward. In particular,
the agents compute a minimum threshold on the ex-
pected capability of the agent that would maximize
expected team performance. If the agent’s capability
to perform a role is less than the threshold capabil-
ity, it does not consider taking on the role, channeling
the role towards more capable agents. Second, to re-
duce the significant communication overheads due to
constraint graph denseness, tokens are used to regu-
late access to values. Only the agent currently hold-
ing the token for a particular value can consider as-
signing that value to its variable. The use of tokens
removes the possibility of several agents taking on the
same role, thus dramatically reducing the need to com-
municate about and repair conflicts.

Our first experiments tests LA-DCOP against three
competitors in an abstract simulator. The first com-
petitor is DSA, which is shown to outperform other
approximate DCOP algorithms in a range of settings
[2]; we choose optimal parameters for DSA [6]. DSA
does not easily allow multiple roles to be assigned to
a single agent so our comparison focuses on the case
where each agent can take only one role. As a base-
line we also compare against a centralized algorithm
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Figure 1. (a) comparing the average output per agent

versus the number of agents. (b) the number of mes-

sages sent versus the number of agents. Each point

represents the average of 20 runs.
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Figure 2. (a) shows the number of fires extinguished

by 200 fire trucks versus threshold (b) shows the num-

ber of targets hit by UAVs versus threshold.

that uses a “greedy” assignment[1] and against a ran-
dom assignment. In the simulator, agents are randomly
given capabilities for each type of role with some per-
centage being given zero capability. For each time step
that the agent has the role, the team receives on-
going reward based on the agent’s capability. Figure
1(a) shows the relative performance of each algorithm.
The experiment used 2000 roles over 1000 time steps.
The y-axis shows the total reward per agent, while
the x-axis shows the number of agents. Not supris-
ingly, the centralized algorithm performs best and the
random algorithm performs worst. LA-DCOP is sta-
tistically significantly better than DSA. However, the
key is the amount of communication used, as shown
in Figure 1(b). Notice that the y-axis is a logaritmic
scale, thus LA-DCOP uses approximately three orders
of magnitude fewer messages than the greedy algorithm
and four orders of magnitude less messages than DSA.
Thus, LA-DCOP performs better than DSA despite us-
ing far less communication and only marginally worse
than a centralized approach, despite using only a tiny
fraction of the number of messages.

In our second set of experiments, we used 200 LA-
DCOP enhanced versions of Machinetta proxies[3], dis-
tributed over a network, executing plans in two sim-

ple simulation environments. To the best of our knowl-
edge, this is larger than any published report on com-
plex multiagent teams, certainly an order of magni-
tude jump over the last published reports of teamwork
based on proxies [3]. Previous published techniques for
role allocation in the proxies fail to scale up to ex-
treme teams of 200 agents — complete DCOP fails on
dense graphs, and symbolic matching ignores quanti-
tative information. The proxies execute sophisticated
teamwork algorithms as well as LA-DCOP and thus
provide a realistic test of LA-DCOP. The first environ-
ment is a version of a disaster response domain where
fire trucks must fight fires. Capability in this case is the
distance of the truck from the fire, since this affects
the time until the fire is extinguished. Hence, in this
case, the threshold corresponds to the maximum dis-
tance the truck will travel to a fire. Figure 2(a) shows
the number of fires extinguished by the team versus
threshold. Increasing thresholds initially improves the
number of fires exstinguished, but too high a thresh-
old results in a lack of trucks accepting roles and a
decrease in performance. In the second domain, 200
simulated unmanned aerial vehicles (UAVs) explored a
battle space, destroying targets of interestFigure 2(b).
While in this domain LA-DCOP effectively allocates
roles across a large team, thresholds are of no bene-
fit. The key point of these experiments is to show that
LA-DCOP can work effectively, in a fully distributed
environment with realistic domains and large teams.
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