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Multi-Variate Distributed Data Fusion with
Expensive Sensor Data

Blind

Abstract—Distributed fusion of complex information is critical
to the success of large organizations. For such organizations,
comprised of thousands of agents, improving and shaping the
quality of conclusions reached is a challenging problem. The
challenge is increased by the fact that acquisition of information
could be costly. This leads to the crucial requirement that the
organization should strive to reach correct conclusions while
minimizing information acquisition cost. In this paper, we have
developed a model of complex, interdependent information that
is costly to acquire and where complex fusion can be optimized
within an organization by optimizing the accuracy of the conclu-
sions reached, while minimizing the cost of acquiring the sensor
data. Our experimental results show a number of interesting
effects. First, unselfish agents who spend resources (even when
not strictly necessary) can lead to substantial improvement in
the overall accuracy of conclusions. Second, an organization can
substantially improve its performance by assigning resources
to get sensor data appropriately. Third, over time, agents can
learn the reliability of the members of the organization to whom
they are directly connected to improve performance. Learning
can also lead to better team decisions about whether to spend
resources and how much resource to expend to get sensor data.
Our conclusions and algorithms can help a range of organizations
reach better conclusions while expending less resources procuring
sensor data.

I. INTRODUCTION

Members of organizations typically need to know various facts
about the environment in which they are operating in order to
take actions towards team goals. Domains of interest include
commerce, disaster response, military and social networks.
Humans or agents will draw conclusions about uncertain
facts from both sensor data and information passed on from
other members of the organization. Different facts will be
important to different members of the organization and will
have different importance to the organization. For example,
in a disaster response scenario knowing whether a particular
street is blocked is relevant to agents interested in using that
street, while knowing the scale of the disaster is of interest
to the commanders and is generally more important. In many
interesting real-world cases, the collection of sensor data has
some cost which should be avoided wherever possible or the
organization may have some total budget for sensing. For
example, collecting data might require sending a robot into
the environment with costs of energy, wear and tear, or the
cost may simply be the time taken to get the information.
This paper examines human or agent organizations collecting
expensive sensor data and using that data to reach a range of
conclusions important to the team.

Information management in organizations has been extensively
studied in the literature, in fields ranging from agents, to

control, to economics. Agents researchers have looked closely
at simple information sharing models, e.g., [3], [1], [16],
[11], and developed a range of algorithms for moving around
and fusing information efficiently. In the control literature,
there has been extensive work looking at dynamics of simple
models of consensus formation, e.g., [11], [9], [5], [14],
[13]. Organization theory has examined very complex real-
world organization and tried to work out how information
moves around and how organizations can be changed to
improve information flow, but data is typically not available
to create detailed models of exactly what is happening. In this
paper, we use agents with a complex model of interdependent
information and expensive sensor data to examine in detail
how complex fusion can be optimized within organizations
and how the organization can minimize the price it pays for
sensor data, while accurately reaching correct conclusions.

We use a model of distributed information fusion where each
agent is interested in only one of a set of facts about the
environment. The facts are conditionally dependent on each
other and only some agents have direct access to sensors,
so many must rely on communication from neighbors in the
organizational structure to reach their conclusions. We assume
that it is infeasible for the organization to share raw sensor data
and instead agents must communicate only their conclusions.
Despite very noisy data, the team would typically reach correct
conclusions about all key facts. The more inter-dependent facts
that the team needed to reason about, the better the team was at
reaching correct conclusions because wrong information was
more effectively ignored.

A rationale agent should not spend more on collecting sensor
data than the value of reaching a correct conclusion. A local
decision model for choosing to buy sensor data based on
reliability of neighbors in the organization, time and the cost
of data significantly performed other local models of deciding
when sensors should be used. This can result in agents that
have low value for their variable of interest also often being
wrong about their conclusions, because they are unwilling to
buy the data to reach a correct conclusion. In turn, this can lead
to the whole team being less reliable at reaching conclusions
because their neighbors are providing less reliable information.
We investigated several methods for improving the team’s
overall reliability. By learning each others reliability the team
can significantly improve performance. By agents being less
selfish and paying for sensor even when neighbors are expected
to provide sufficient information to lead to a conclusion can
significantly improve team performance. By agents learning
the value of a correct conclusion to the team, not just the
local value and using the value to the team to decide whether
there is value to buying sensor the team’s performance can
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be improved. Finally, by allocating a total sensing budget
intelligently across the team and allowing agents to spend up
to their sensing budget to get data, the team’s performance
can be improved. Each of these optimizations is applicable to
a range of real human or agent organizations.

The process of learning neighbor’s reliability was expected
to produce some interesting dynamics, since all the agents
are simultaneously learning and much previous research has
shown complex and often undesirable effects. However, in
this case the learning was surprisingly effective, however
oscillations occurred over time.

II. RELATED WORK

[17] empirically studies the global cascades under random
networks with different interpersonal influences. [8] studies
the information sharing and propagation in social networks.
He argues that individual’s decision most likely depends on
social information instead of his own private information and
thus causes information cascades. [10] builds a stochastic
model for spreading of rumors. They use mean-field analysis
equation to describe the dynamics of the model for complex
social network and show that large complex networks has
critical threshold in the rumor spreading rate. [2] proposes an
distributed gossip algorithm for agents in peer to peer network
to share information. There are other works on the similar
topic, such as [15] which studies the epidemic spreading, and
[4] which studies the spreading of forest fire model. Glinton
et al. [7] and [6] have studied the emergent behavior of the
dynamics of large scale networks. Their model is based on
a network of small number of sensors and a team of agents
who share information about a single fact. They have shown
that system behaves optimally in a very small range of system
parameters. When the parameters deviate from that range, the
system performance degrades dramatically. They have shown
that this behavior is caused by cascades of belief changes
due to a single sensor reading. All these works show the
emergent behavior of information cascading, but they have
not studied the multidimensional facts or the relation of the
dynamic behavior and the correlation of different facts.

Reece et al. [12] have provided a multi-dimensional trust
model to allow agents to share correlated multi-dimensional
contracts. They have developed an approach based on Kalman
filter to fuse relevant information from other agents. They
have shown that their approach improves significantly over
the simple approach based on single dimension of trust.

III. DECISION MODELS

A. Model

We will describe the underlying model in this section. Agents
A = {a1, . . . , a|A|} are connected by an undirected network
graph G = (A,E) where E is the set of links which connect
agents in A. A link connecting agent A and B is represented
by e(A,B). Agent can only communicate directly with its

neighbors. Agent A’s neighbor N(A) is defined by N(A) =
{B|e(A,B) ∈ E}. Some agents are connected to sensors,
S = {s1, . . . , s|S|}, which provide noisy observations to the
team. Each observation from a sensor is treated independently.
Sensors charge for each observation they offer. The charges
may differ from sensor to sensor. Only one agent can see
directly the output of each sensor. F = {f1, f2, . . . , f|F |} is
the set of facts. Each sensor returns a binary observation b ∈
{true, false} about the fact it is monitoring. In this paper, we
assume that the probability of the fact fi being true is pi,
1 ≤ i ≤ |F |, and the covariance matrix of the distribution
functions of those facts is C. We refer to the probability that
a sensor s returns a correct observation as its reliability rs.
Each agent is interested in one of the facts. A reward is given
if the agent reaches the correct conclusion about the fact it is
interested in. The amount of reward may differ from agent to
agent. The probability distribution of the facts, the covariance
matrix and the reliability of a sensor is known to the agent
who receives the observation. In the remainder of this paper,
unless otherwise specified, |A| = 1000 , |S| = |A|/20 and
rs = 0.55∀s. So all agents must deal with noisy data and
most do not have direct access to the sensors.

Each sensor monitors the status of only one fact and each
agent is interested in only one fact . Each agent forms its
belief in the fact of interest by updating its belief based on
the information it receives from other agents or sensors. If
the information it receives is about a fact it is not interested
in, it can still use the information by taking advantage of the
correlation between those facts.

We assume that agents only communicate their conclusions to
other agents instead of degree of belief. A conclusion about a
fact is one of true, false, and unknown. We define a threshold T
where 0.5 < T < 1. When agent’s belief is greater than T, the
agent’s conclusion about the fact is true, if the belief is below
1− T , the conclusion is false, if the belief is between 1− T
and T , the conclusion is unknown. Agent communicates only
when its conclusion changes. Only the last communication
from any neighbor is used, which means that the newest
conclusion overrides all previous conclusions from the same
agent about the fact. Conclusions from different neighbors are
treated as independent information. Treating conclusions from
neighbors as independent information causes double counting
which is impossible to remove double counting completely
without communicating actual sensor data to everybody, In
the remainder of this section, we describe how agents make
decisions.

B. Belief Update

The first part of the agent’s decision is how to form conclu-
sions based on incoming data. We assume a bayesian model
and a known covariance matrix of facts. Agents update belief
based on information it receives. There are two cases:

• Case 1: The information received is about the fact the
agent is interested in

• Case 2: The information received is about a different fact
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Sensor data and information from neighbors are treated the
same way. Agent uses the same formula to update its belief
based on sensor’s reliability or neighbor’s reliability.

a) Information about the same fact: Suppose the reliability
of the information source is c and the prior belief about the
fact being true is b. The new belief is b′. By Bayesian rule,
when the information says the fact is true, then

b′ =
bc

bc+ (1− b)(1− c)
(1)

When the information says the fact is false, then

b′ =
b(1− c)

b(1− c) + (1− b)c
(2)

b) Information about a different fact:

Theorem 1: Suppose the reliability of the information source
is c, the information is about fact j and the agent is interested
in fact i. Let pi and pj be the probability of fact i and j being
true respectively. The covariance between the two facts is a.
The prior belief of the agent about the fact i being true is
b. Suppose the new belief is b′. By Bayesian rule, when the
information says that fact j is true

b′ =
pi(1− pi)(2cpj − c− pj + 1)b+ (2c− 1)(1− pi)ab
pi(1− pi)(2cpj − c− pj + 1) + (2cb+ pi − b− 2cpi)a

(3)
When the information says that fact j is false, then

b′ =
pi(1− pi)(pj + c− 2cpj)b+ (1− pi)(1− 2c)ab

pi(1− pi)(pj + c− 2cpj) + (2cpi − pi − 2cb+ b)a
(4)

C. Belief Update Operators and Theory

The key for an organization to minimize sensing costs is to
know the potential value of performing sensing. In this section,
we lay the foundation for this computation by defining the
effectiveness of a sensor reading at helping an agent reach a
conclusion.

Definition 1: Suppose an agent receives information f , its
prior belief about the fact being true is b, its new belief is
b′. We define the operator ⊕, such that

b′ = b⊕ f (5)

Theorem 2: Suppose an agent is interested in fact i and it
receives information f1 about fact i, the reliability of the its
source is c. Suppose information f2 is about fact j. Let pi and
pj be the probability of fact i and j being true respectively.
The covariance between the two facts is a. Let the reliability
of the source of f2 is rji(c), then

rji(c) =
pi(1− pi)(1 + 2cpj − c− pj) + a(1− pi)(2c− 1)

2pi(1− pi)(1 + 2cpj − c− pj) + a(2pi + 2c− 4cpi − 1)
(6)

we have
b⊕ f1 = b⊕ f2

Theorem 2 builds an equivalence relation between information
about different facts and information about the same fact. So
in order to update belief based on information from a different
fact, we can always transfer the reliability of the information
source based on formula 6 to a new reliability and update the
belief based on the information as if it is about the same fact.

Theorem 3: Suppose information f1 and f2 are from the same
source, and about same fact. If f1 and f2’s statements about
the state of fact is different, i.e, one says the fact is true and
the other says the fact is false, then both information cancels
out each other, which is

(b⊕ f1)⊕ f2 = b (7)

Theorem 4: Suppose f1 and f2 are two pieces of information,
then

(b⊕ f1)⊕ f2 = (b⊕ f2)⊕ f1 (8)

Theorem 5: Suppose f1 and f2 are two pieces of information
about the same fact, the reliabilities of their sources are c1
and c2, then if we define a new information f about the same
fact, source reliability c = c1c2

2c1c2−c1−c2+1 , then we have

(b⊕ f1)⊕ f2 = b⊕ f (9)

Definition 2: f1 , f2 and f are defined in Theorem 5, we
define

f1 ⊕ f2 = f (10)

From theorem 4, 5 and definition 2, we have

(b⊕ f1)⊕ f2 = b⊕ (f1 ⊕ f2) = b⊕ f1 ⊕ f2 (11)

Definition 3: Suppose the agent cares about fact i and in-
formation f is about the same fact i, the reliability of the
information source is c, the threshold is T , we define the
effectiveness of the information to be

e(f) = e(c) =
ln( 1c − 1)

ln( 1
T − 1)

(12)

If the information is about a different fact j, we define

e(f) = e(rji(c)) =
ln( 1

rji(c)
− 1)

ln( 1
T − 1)

(13)

where eji(c) is defined in equation 6

Theorem 6: Let f1 and f2 be two pieces of information about
the same information source, we have

e(f1 ⊕ f2) = e(f1) + e(f2) (14)

Information with effectiveness e is called e piece of effective
information. Suppose a piece of information is about the same
fact as the agent, and the reliability of the source is T . If it
says that the fact is true, then from Equation 1, we have
0.5⊕f = 0.8, if it says that the fact is false, then from 2, we
have 0.5⊕f = 0.2. Since e(f) = 1.0, so an agent needs a total
1.0 information effectiveness in order to reach from unknown
state to ”true” or total −1.0 information effectiveness in order
to reach a ”false” state.
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Definition 4: Suppose the agent’s belief about the fact is b,
the threshold is T , we define the effectiveness of the belief by

e(b) =
ln( 1b − 1)

ln( 1
T − 1)

(15)

So an agent with belief b needs total information effectiveness
of 1 − e(b) in order to reach a true state and effectiveness
of −e(b)− 1 to reach a false state. In other words, the agent
needs 1− e(b) piece of effective information in order to reach
a conclusion about the fact.

D. Resource Allocation

Agents need to decide locally if they should pay for sensor
readings. Agents decisions should based on available budget,
price of sensors, their belief states and their value to other
agents. When the total budget or resource is limited, the
resources should be carefully assigned to those agents with the
sensors, since only agents with sensors can use resources. The
naive assignment is to allocate resource evenly to all agents
near sensors. But in most cases, it is not an efficient method.
Instead we need to allocate resources to more important
agents. So we need to define weight for each agent, which
represents how important an agent is. We first define the value
of the conclusion from one agent to the other agent.

Definition 5: Let agent a be interested in fact i, its reliability
is c, the probability that a will reach a conclusion is p. Its
neighbor b is interested in fact j. The probability that b will
reach a conclusion is q. Let the value of agent b to the whole
team be w, Then we define vab, the value of agent a to agent
b by

vab = e(rij(c))w

Since agent a’s conclusion is e(rij(c)) piece of effective
information to agent b, and agent b needs 1 piece of effective
information to reach a conclusion from an unknown state, so
the value of agent a’s correct conclusion worth e(rij(c))w to
agent b.

If we treat weight the same as value, then since agent’s value
is its own reward plus its value to its neighbors.

So weight should satisfy the following condition. Suppose
agent a is interested in fact i, the weight is w, reward is
r, the reliability is c and its neighbors are b1, · · · , bk, which
are interested in facts i1, · · · , ik, respectively. Suppose their
weights are w1, · · · , wk, then the effectiveness of a correct
conclusion of agent a to bj is e(riim(c)), so the value of the
correct conclusion is e(riim(c))wm. But its neighbor can’t
always take advantage of the conclusion, since sometimes,
they are not able to reach a conclusion, and the information is
wasted. So we need to introduce a damping factor 0 < d < 1.

w = r +

k∑
m=1

de(riim(c))wm (16)

We can calculate weights of all agents iteratively until they
converge to a fixed value.

Algorithm 1 Calculating weights
accurate = false
while accurate = false do
accurate = true
for each location agent A do

old = weight of A
weightofA = A′sreward
for each neighbors N of A do

calculate A’s value V, to N
incrementA′sweightbyV

end for
if |A′sweight− old| > 0.001 then
accurate = false

end if
end for

end while

If we assigned total resource purely according to weights and
sensor costs, it might be the case that none of the agents gets
enough resources to buy sensor readings to reach a conclusion.
Agent needs certain amount of resources in order to buy
enough sensor readings. So we need to satisfy the need of
the most important agent first, then second, etc. If there are
still resources left, they can be allocated to them according to
their importance. Importance is defined by the weight divided
by cost of sensor reading of the agent. The need for agents
can be calculated by 17

1

2c− 1

ln( 1
T − 1)

ln( 1c − 1)
x (17)

where c is the sensor reliability and x is the cost. Since each
reading provide ln( 1

c−1)
ln( 1

T −1)
piece of effective information, so

the agent needs ln( 1
T −1)

ln( 1
c−1)

many correct readings in order to
reach a conclusion. Since the sensor provides correct readings
with probability c, so on average, the agent needs to buy

1
2c−1

ln( 1
T −1)

ln( 1
c−1)

many readings.

Algorithm 2 Allocate resources
INPUT: totoal resource T
calculate weights of agents
order agents with sensors by weight

sensorcost in decreasing order
for each agent A in the ordered set do

calculate A’s need , NA
if NA <= T then

callocate NA to A
else

allocate T to A
end if

end for
if T > 0 then

allocate T proportionally to weight
sensorcost

end if
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E. Agent Decision

With the definitions in hand, we move onto showing the correct
action for the agent to take. An agent near the sensor needs
to decide if they should buy the sensor readings or not. The
decision depends on the value of the agent (or weight), its
belief, sensor cost, its budget, and time.

c) Selfish and unselfish: Agent needs to decide if the sensor
reading is worth the cost. It can calculate the value based on its
own reward or on its value to the whole team. Selfish agents
only care about their own reward, unselfish agents consider
their value to the whole team.

d) Dependency on other agents: Agent can estimate how
much information it can receive from its neighbors. If it has
not reached a conclusion, amd if there will be information
from its neighbors enough for it to reach a conclusion, it does
not need to buy sensor readings.

e) Time sensitive: Agents may also take time into consider-
ation. When the time is approaching to the end, agent might
depend less on the neighbors. Suppose h is the average help
it can expect from its neighbors in the whole game, then at
time t, the help it should expect from its neighbors should be
h(t) where

h(t) = dh(1− t

t0
) (18)

where t0 is the total time.

f) Expected help from neighbors: Agent can calculate the
expected help from its neighbors. If it uses part of the expected
help, we call the agent partially dependent on others. When all
agents depend on their neighbors, it can happen that all agents
wait for their neighbors and nobody wants to buy the sensor
readings. So we define the dependency factor 0 ≤ d ≤ 1.
When d = 0, agents do not depend on their neighbors when
making a decision, when d = 1, agents depend fully on their
neighbors when making a decision.

Suppose agent a is interested in fact i, the weight is w,
reward is r, the reliability is c and its neighbors are b1, · · · , bk,
which are interested in facts i1, · · · , ik, respectively. Suppose
their weights are w1, · · · , wk,and reliability ci1 , · · · , cik , the
probabilities that they reach conclusions are pi1 , · · · , pik then
the expected help from the neighbors is

h =

k∑
m=1

e(rim,i(cim))pim(2cim − 1) (19)

g) Value of sensor readings: The value of the sensor reading
based on agent own reward is

v =
ln( 1c − 1)

ln( 1
T − 1)

y

1− e(b)− hd(1− δ tt0 )
(20)

Where e(b) is defined in 15, h is defined in 19, and
δ represents if the agent considers time when it makes a
decision. δ = 1 if the agent is considering time, and δ = 0
if not. If agent is using reward when making a decision, then
replace y by agent reward, if the agent uses its value to the
whole team, replace it by its weight.

Algorithm 3 Agent decision
INPUT: sensor cost c, reliability rs, agent’s belief in the
fact b
e(b) =

ln( 1
b−1)

ln( 1
T −1)

agent’s help h = 0
for each neighbor N do
c = N ′sreliability
p = N ′sprobabilityinreachingaconclusion
calculate neighbor’s equivalent reliability c’ as if the
neighbor is interested in the same fact
e(c′) =

ln( 1
c′−1)

ln( 1
T −1)

h = h+ e(c′)p(2c− 1)
end for
if the agent is selfish then
y = agent′sreward

else
y = agent′sweight

end if
if the agent is time sensitive then
δ = 1

else
δ = 0

end if
e(r) =

ln( 1
r−1)

ln( 1
T −1)

d = agent′sdependency
t0 = total time, t = current time
v = e(r) y

1−e(b)−dh(1−δ t
t0

)

if v <= cost then
return true

end if
return false

IV. RESULTS

A. Experiment Setup

By default, there are 1000 agents, 100 different facts and 50
sensors in the network. We study three different networks,
random, grid, and scale free. Average number of degree of
each node is 4. The cost per observation is between 0 and 1,
which is randomly assigned to each sensor. The reliability of
sensor is set at 0.55. Agent rewards is normally distributed
with mean 1.0 and variation 0.2. We run the experiment
for 500 cycles, each cycle has 1000 steps. In the beginning
of each cycle, resources are allocated to those agents near
sensors. In the end of each cycle, each agent get a reward if
it has the correct conclusion about the fact it is interested
in. Each agent also update its trust in all its neighbors at
the end of the cycle. At each step, each sensor provides a
reading with probability 0.2, which means it provides a reading
every 5 steps. Agent near the sensor will decide if it needs
to buy the sensor based on its decision policy. Then it will
freely pass on the information to all its neighbors. Each agent
updates its belief whenever new information is received. If
it changes its conclusion about the fact it is interested in,
it broadcast that conclusion to all its neighbors. We study
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the impact of different techniques and parameters on the
system performance. Which include resource allocation, agent
decision, selfishness of agents, dependency of agents on other
agents, correlation between facts, network types, number of
agents, number of sensors, and number of facts. In this paper,
we use fund and resource interchangeably.

B. Resource Allocation and Total Resource

When the total budget is tight, it is critical to assign the
resource to the right agents. We vary the total fund from
0 to 1000. We compare the simple even allocation and our
weighted allocation. As in Figure 1, weighted allocation

Fig. 1. Resource allocation, agents use unselfish and time sensitive decision,
dependency 0.5.

method outperforms the even allocation method dramatically
when total fund is relatively low, when the total fund increases
to a certain level, they perform about the same, that’s because,
when total fund is high, even allocation will assign enough
funds to important agents too.

Increase total fund will increase system performance when it
is low. When the total fund reaches a certain level, it does not
increase the system performance. It is because agents will not
spend the fund when it reaches a conclusion or it thinks the
sensor reading is not worth the money. So when it has what it
needs, it does not help to have more. For random networks, the
system performance remains about the same after total fund
reaches 200, for grid network, it is 650 and 100 for scale free
network. For scale free networks, there is a sharp increase in
system performance, when total fund increase from 0 to 50.
(Explain)

C. Agent Decision

We run the experiment under different kinds of decision
policies, selfish and time insensitive, selfish and time sensitive,
unselfish and time insensitive , unselfish and time insensitive.
We set the dependency to be 0.5. Weighted allocation is used
in all cases. Total fund varies from 0 to 900.

h) Selfish and Unselfish: As in Figure 2, As for random
and grid networks, unselfish, time sensitive agents performs
much better than selfish, time sensitive agents, which in turn
outperforms time insensitive agents. For scale free networks,
when agents are time sensitive, selfish and unselfish agents
perform about the same. But time sensitive agents performs
much better than time insensitive agents.

Fig. 2. Comparison of agent decisions.

i) Time sensitive decision: as in Figure 2. For all three
kinds of networks, time sensitivity is more important than
selfishness.

j) Dependency on other agents: We fix the agent decision to
be unselfish and time sensitive. We vary dependency from 0
to 1.0. as in Figure 3, we found that when dependency is
low, system performs poor, but once the dependency reaches
a certain level, the system perform remains about the same
with some fluctuations.

D. Variable Correlation

In this experiment, we compare different level of correlations
between facts. Strong correlation, low correlation and no corre-
lation. Weighted allocation is used in all cases, dependency is
set at 0.5, unselfish and time sensitive decision policy is used.
We vary the total fund from 0 to 1000. As in Figure 4, we see
that system performance with strong correlation among facts
is significantly higher than that with low correlation, which is
significantly higher than that with no correlation.

E. System Parameters

In order to study the impact of system parameters on the
performance, we run experiments under different number of
agents, sensors and facts. Weighted allocation is used in all
cases. Dependency is set at 0.5. Unselfish and time sensitive
decision is used. Total fund is 300.
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Fig. 3. system performance vs dependency

Fig. 4. system performance vs correlation in facts

k) Number of facts: As in Figure 5,, the system performance
fluctuate when the number of variable varies. The performance
in scale free network is the most stable, random network
less stable , and the performance fluctuates the most in grid
network.

l) Number of sensors: As in Figure 6, system performs
better with more sensors, when the number reaches a level,
increasing the number of sensors does not increase system
performance. Random and Gird networks perform poorly
when the number of sensors is low, but scale free network

Fig. 5. system performance vs number of facts

Fig. 6. system performance vs number of sensors

performs well with low number of sensors, this is because
scale free network has few agents with very high degrees and
avalanche happens with small amount of readings, which leads
to better system performance, [6].

Fig. 7. system performance vs number of agemts

m) Number of agents: As in As in Figure 7, for random
networks, the system performance increases with more agents,
after it reaches a certain level, it begin to decrease slowly.
For grid networks, it increases first, then decreases to zero.
This is because the total fund is limited, with more agents,
fewer agents get what they need. It is getting worse in grid
network. As in scale free network, the performance increases
almost linearly when the number of agents increases. This is
because there are few agents with high degrees, small amount
information can lead to system wide avalanches, increasing
the size of network, can lead to overall profit.

n) Agent learning: Glinton et al. [7] and [6] have studied the
emergent behavior of the dynamics of large scale networks.
Their model is based on a network of small number of sensors
and a team of agents who share information about a single
fact. They have shown that system behaves optimally when
cp is in a very small interval. When cp deviates from that
range, the system performance degrades dramatically. cp is a
fixed parameter representing agents reliability.It needs to be
tuned to increase system performance. We think cp should
be based on past experience and should differ from agents to
agents. So we conduct an experiment in which agents learn
cp of their neighbors based on their past performance. There
are 500 cycles in our experiment, each cycle has 1000 steps.
At the end of each cycle, agents learn neighbors reliability.
We divide 500 cycles into 50 steps, 10 cycles each step. We
measure the average performance in each step. We set agent
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reliability at 0.5, As in Figre 8, agents learn quickly and
perform nearly optimal after 10 steps. Random and scale free
networks learn much faster than grid network due to their scale
invariant dynamics, [6].

Fig. 8. Performance vs time

V. CONCLUSIONS

In this paper we considered the question of how large orga-
nizations can reach complex conclusions, while minimizing
the price they pay for sensor data. We showed that if agents
learned their importance to the overall organization and took
this into account when deciding whether to pay for sensor data,
the performance of the whole organization improved, although
some oscillations in performance could occur. Moreover, we
showed an intelligent way to allocate an organization’s sensing
budget across the organization so as to get the most accurate
conclusions, despite agents only considering their local sensing
budget.

While we believe that this work represents an important first
step for improving the information processing of organizations
that rely on expensive sensing to reach conclusions, there
is much more work to be done. Most critically, the work
presented here assumes the world, the organization and the
reward for reaching correct conclusions about specific facts is
constant over time. This is not true for interesting organiza-
tions. Key challenges to extending this work to more realistic
organizations include being able to reuse learned information
as the organizational structure changes and working out when
to take additional sensor readings when the world may have
changed.
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