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In this chapter, we explore the use of evolutionary game theory (EGT) [14, 10, 9]
to model the dynamics of adaptive opponent strategies for large population of players.
In particular, we explore effects of information propagation through social networks
in Evolutionary Games. The key underlying phenomenon that the information dif-
fusion aims to capture is that reasoning about the experiences of acquaintances can
dramatically impact the dynamics of a society. We present experimental results from
agent-based simulations that show the impact of diffusion through social networks on
the player strategies of an evolutionary game and the sensitivity of the dynamics to
features of the social network.

1 Introduction

We use evolutionary game theory (EGT) [14, 7, 4] to model the dynamics of
adaptive opponent strategies for large population of players. Previous EGT
work has produced interesting, and sometimes counter-intuitive results about
how populations of self-interested agents will evolve over time [6, 5].

In our model, at each stage of the game, boundedly rational players observe
the strategies and payoffs of a subset of others and use this information to choose



2

their strategies for the next stage of the interaction. Building on EGT, we intro-
duce a model of interaction where, unlike the standard EGT setting, the basic
stage game changes over time depending on the global state of the population
(state here means the strategies chosen by the players). More precisely, each
player has three strategies available (cooperate C, defect D and do-nothing N)
and the payoffs of the basic stage game are resampled when the proportion of the
players playing D crosses a certain threshold from above. This feature requires
long-term reasoning by the players that is not needed in the standard EGT
setting. A possible example of a similar real-world situation is a power strug-
gle between different groups. When cooperation drops sufficiently and there
are many defections, the situation turns to chaos. When order is restored, i.e.,
when cooperation resumes, the power structure and thus, the payoffs, will likely
be different than before the chaos. The payoffs are kept constant while most
of the players Cooperate (support the status quo) or do-Nothing, but when
enough players are unhappy and choose to Defect, the power balance breaks
and radically different one may emerge afterwards.

The available strategies were chosen to abstractly capture and model violent
uprisings in a society. Players playing C cooperate with the current regime and
receive reward when interacting with others playing C. If a player has a good
position in a regime, it has large incentive to continue playing C. D is a strategy
played to change the payoffs over a long term, but at an unavoidable immediate
cost. Intuitively, it resembles resorting to insurgency or other violent tactics to
overthrow a regime. When many players play D, playing C can lead to very low
payoffs. For example, one can imagine a person trying to run a small business
during a violent uprising. If these costs are too high, but the player has no
incentive to change the regime, playing N can limit payoffs – both negative and
positive, until the situation stabilizes. Intuitively, this might correspond to going
into hiding or temporarily leaving the conflicted area.

Similar to [9, 8], we investigate the spatial aspect of the interaction. Previous
work has shown that spatial interaction can change which strategies are most
effective, e.g., in [3] an interation lattice changed which strategies were most ef-
fective in an iterative prisoners dilemma game. In our model, the players are con-
nected into a social network, through which the rewards are propagated[13, 11].
Thus the players can benefit (or suffer) indirectly depending on how well off their
friends in the network are. We show empirically that the connectivity pattern
of the network, as well as the amount of information available to the players,
have significant influence on the outcome of the interaction. In particular, the
presence of a dense scale-free network or small-worlds network led to far higher
proportions of players playing C than other social network types.

2 Game Details

We consider a finite population X of players. At each stage all the players
are randomly matched in triples to play the basic stage game. Each player
thus participates in every stage. Each player has three strategies available:
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Figure 1: An example trace of an individual run of the system. x-axis is the stage
number (“’time step”), y-axis is the proportion SD of the population playing D. The
level of threshold T is also plotted for a reference.

cooperate (C), defect (D) and do-nothing (N) (one can interpret these choices
as participating in democratic process, resorting to insurgency and minimizing
interactions with the outer world correspondingly). The payoff pi(k) of the stage
k game to player xi is

0 opponents play D 1 or 2 opponents play D

xi’s strategy
C cci − #i(N)1 cd2

D dc dd

N n

where cci − 2 > n > dc > dd > cd. Note that the payoff matrices for different
players can only differ in the value of cci. All the other payoffs are constant
across the population.

Denote SD(k) the proportion of the population that defected during stage
k:

SD(k) =
number of players that played D during stage k

|X |
,

Before the start of the first stage, cci are sampled uniformly from an interval
[CCmin, CCmax]. If during stage k∗ the series SD(k) crosses a fixed threshold3

T ∈ (0, 1) from above, i.e.

SD(k∗ − 1) > T and SD(k∗) < T,

then all cci are resampled. Otherwise they stay the same as for previous stage.
For example, in an individual run plotted in Fig. 1 the values of cci would be
resampled only at point B.

1#i(N) means the number of i’s opponents playing N .
2Here is a simple rule for distinguishing between these 4 variables: the first letter corre-

sponds to xi’s strategy, the second letter is c if both of the xi’s opponents play C and d

otherwise. For example, cd is the payoff of playing C given that at least one of the opponents
plays D.

3See the end of this section for the interpretation of this threshold.
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One can interpret the above interaction as a power struggle: if the proportion
of players supporting status quo (i.e. cooperating or doing nothing) is high
enough, the payoffs for each individual players do not change. When enough
players defect, the system “falls into chaos” and after it emerges back from this
state, a new power balance is formed and the payoffs change correspondingly.
Threshold T in this interpretation is the minimum number of defectors that
brings the system into chaos.

2.1 Impact of social networks

A social network for finite population X is an undirected graph < X, E >. Two
players xi and xj are neighbors in the network if and only if (xi, xj) ∈ E. We
investigate the effect of reward sharing in social networks. After each stage k

every player xi obtains in addition to its own payoff pi a shared payoff psi:

psi(k) = α
∑

xj∈neighbors(xi)

pj(k),

where α ∈ [0, 1] is a parameter of the system.
Notice that this does not incur payoff redistribution: the shared payoff is

not subtracted from payoffs of the players that cause it. One can interpret this
phenomenon as players being more happy when their friends are happy.

Social network type

The small-world property of the network means that the average distance be-
tween two nodes in the network is small. It has been shown [12] that regular
non-small-world networks, such as grids, may be transformed to small-world
ones by changing only a small fractions of edges. We followed the algorithm
from [12] to generate the networks with probability 0.1 of rewiring any edge of
the regular structure.

In scale-free networks [2] the number of neighbors of a vertex is distributed
according to a scale-free power law, therefore few highly-connected vertices domi-
nate the connectivity. Many real-world networks possess the small-worlds and/or
scale-free properties [2, 12].

The impact of both small-worlds and scale-free networks are explored below.

3 Player reasoning

3.1 Information available to players

Before describing the player reasoning algorithm one has to define what infor-
mation is available to the player, i.e. define an observation model. We assume
that the players are aware of the overall behavior of the game, but may not be
aware of the true values of parameters, such as the proportion SD(k) of the
population that played D at stage k. The players only observe the actions of
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their opponents for the given stage, as opposed to observing the whole popula-
tion. Therefore, the observations available to xi after stage k are its payoff pi(k),
shared payoff psi(k), and proportion SCobs

i (k), SDobs
i (k), SNobs

i (k) ∈ {0, 0.5, 1}
of its direct opponents playing C, D and N during the kth stage.

Note that the information about the global properties of social network con-
nectivity, such as density or whether the network is small-worlds or scale free,
is not available to players. Therefore, this global information is not used in the
reasoning algorithm.

3.2 The reasoning algorithm

It is easy to see that for any triple of players, a single-stage game has 2 Nash equi-
libria in pure strategies: everybody cooperating and everybody defecting. The
cooperative equilibrium Pareto-dominates the “all-defect” equilibrium. There-
fore, if the “all-cooperate” payoffs cci were always held constant across the stages,
one would expect a population of rational players to always play C. However,
the payoffs are resampled once the proportion of players playing C drops below
T and then grows above T again. This provides an incentive, for the players
which happened to receive relatively low values of cci, to play D for some period
of time in order to try and cause the resampling of payoffs. On the other hand,
if a significant share of the players play D, some of the players may decide to
play N , which guarantees a fixed payoff and provides an opportunity to “wait
until the violence ends”.

A natural way for a player to choose a strategy for the next stage is to
compare the (approximate) cumulative future expected payoffs resulting from
different strategies. Denote EPi(X) the approximate cumulative future expected
payoff for player i and strategy X . Let SXi(k) be i’s estimate of the share
of population playing X on time step k. Then the action selection for step
k + 1 is as follows. If SDi(k) > T , player i chooses action arg max

X=C,N
EPi(X).

Otherwise it chooses arg max
X=C,D,N

EPi(X). The reason for treating situation

SDi(k) > T specially is that once the share of defectors reaches the threshold,
reducing the share of players below T is in common interest of all the players,
and the approximate computations of expected utilities do not always capture
this feature.

The previous paragraph assumed EPi(X) to be known. We now turn to their
approximate computation.

First consider EPi(D). The only incentive for a player i to play D is to try to
bring the system into chaos in hope that, when the system emerges from chaos,
the resampled all-cooperate payoff cci for that player will be higher then it is
now. Denote TTCi the i’s estimate of the number of stages that it will need to
play D before the share of those playing D is higher than T , TCi - estimate of
the number of stages that the system will spend above the threshold and finally,
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TSi the length of the following “stability period”. Then

EPi(D) ≈ (TTCi + TCi)E [pi(D)] + TSiE[ccnew
i ] (1)

= TTRiE[pi(D)] + TSi

CCmin + CCmax

2
,

where TTRi ≡ TTCi + TCi is “time to resampling” and

E[pi(D)] = P (#i(D) = 0)dc + P (#i(D) > 0)dd.

Expected payoff for action C over the time period is approximated as

EP (C) ≈ TSi(pi(C) + psi) + TTCiE[pi(c)] (2)

+TCi(P (#i(D) > 0)cd + P (#i(D) = 0)(pi(C) + psi)),

where P (#i(D) > 0) = 1 − (1 − T )2 and

E[pi(C)] = P (#i(C) = 2)cci + P (#i(C) = 1, #i(N) = 1)(cci − 1)

+P (#i(N) = 2)(cci − 2) + P (#i(D) > 0)cd

(note that the probabilities here sum to one).
Finally, expected payoff for N over the same time interval is

EP (H) = (TTCi + TCi + TSi)n.

One can see that a player only expects to get the shared payoff in case of all-
cooperative outcomes.

In our model, time of stability TSi and time in chaos TCi are system con-
stants that do not differ across the population.

The belief SXi(k) about the proportion of players playing X at stage k is
maintained by each player individually. After each stage each player learns about
the strategies of its opponents for that stage. SXi is then updated according to

SXi(k + 1) = γSXobs
i (k + 1) + (1 − γ)SXi(k) (3)

where γ ∈ (0, 1] is learning rate. Each player also maintains δSXi(k), an estimate
of

δSX(k) ≡ SX(k) − SX(k − 1),

using an expression analogous to Eq. 3 to update it. In the expressions (1-2)
P (#i(X)) are approximated straightforwardly using SXi, for example

P (#i(C) = 2) ≈ SC2
i (k)

Having SXi and δSXi, each player can estimate TTCi using a linear approx-
imation. For SDi < T , we have (TTC is a system-wide constant)

TTCi =

{

TTC, δSDi ≤ 0
T−SDi

δSDi
, δSDi > 0

For SDi ≥ T , TTCi = 0.



7

4 Experimental results

In our experiments the population size was fixed to 1000 players. The numerical
values of payoff constants were

dc = −1, dd = −3, cd = −5, CCmin = 3, CCmax = 10

Estimated time of stability was fixed to TSi = TS = 50 stages, “chaos threshold”
T = 0.3. Initial player-specific values were SCi(0) = 1, δSCi(0) = −0.02. For
each set of specific parameter values the results were averaged over 500 runs.
Unless otherwise noted, the players were connected via a scale-free network with
average density of 8.

We were primarily interest in how different parameters of the model affect
the evolution of proportion of players playing C over time. On all graphs x-axis
denotes the stage of the interaction, y-axis denotes SC, SD and SN . In previous
work[1], we presented results for the case where action N was not available to
the players. In each of the figures below we contrast the results when N is and
is not available to the players.

Note that because the plotted results are averages over 100 runs. Averages
provide more meaningful information about the influence of the parameters val-
ues on the system, than do individual runs which can vary distinctly from run
to run. Most parameter values allow the SC to fall below T on some occasions,
but what varies is how often this occurs, how rapidly changes happen and how
quickly cooperation resumes. These effects are more clearly seen on graphs of
averages than many individual runs super-imposed on a single graph. Notice
that the fact that the value of SD on the plots rarely rises above T does not
mean that payoffs are almost never resampled - individual runs have much more
variance and resampling happens quite often. It simply means that on average
SD is below T .

Figure 2 shows the baseline configuration, with 2(a) showing the case where
N is available and 2(b) showing the case where it is not. In both cases, early in
the game many players choose D to either try to change the payoffs or protect
against losses. When N is available to the players, many choose this action
in response to others playing D. Eventually this discourages the use of D an
equilibrium settles in. While the initial dynamics in both cases are similar,
notice that over time the proportion of C is far higher in the case where N is
available than when it is not. This may indicate that if players are able to avoid
spasms of violence without getting hurt, the outcome for all will be better.

Figure 3 shows the impact of setting the network density to 2, 4, 8 and 16. In
general, the higher the average network degree, the more players played C and
the more quickly players stopped playing D. For the less dense networks, players
often chose D early on, but in the most dense network, the lure of shared rewards
was too high for players to have incentive to try to move the system towards
chaos. In the less dense networks, the availability of the N action allowed the
system to move toward all playing C, but as in the baseline case, without the
N action, some level of SD persisted. When the average network density was 4,
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Figure 2: Baseline configuration (scale-free network with density 8) with available
action N (a) and with N not available (b).

the system moved back towards SC = 1 faster than when the network density
was 2. This result may indicate that dense social networks are critical to stable
societies.

Figure 4 shows what happens when there is no sharing across the social
network. The sharp early peak in SD is similar to the sparse network shown
above. This is one of the few cases where the availability of the N action leads
to a lower SC over the course of the game. However, the option to play N is
extensively used and SD is reduced to 0. Over an extended period of time, SC

does rise to 1, but N dominates for a long time.
If the type of the network is set to small-worlds instead of scale-free (with the

average of 4 neighbors), SC stays very close to 1 regardless of the availability
of N to the players (there is no plot for this case, because the results are so
trivial). This remarkable relative stability is likely due to the very even sharing
of reward across all members of the team, reducing the possibility of a cascade
towards chaos. This result may suggest that human societies that have a more
scale-free nature will be more likely to descend into chaos.

Figure 5 shows the result as the learning rate is set to 0.05, 0.1, 0.4 and 0.8.
Smaller learning rate means that the players are reluctant to change their esti-
mates of the parameters; the closer the learning rate to 1, the more importance
is attributed to the most recent observations.

Several interesting effects occur due to the learning rate. Firstly, an in-
termediate learning rate induces an oscillation in behavior with increasing and
decreasing SD. Higher or lower learning rates induce different behavior. A high
learning rate quickly settles the population down to playing C, because the play-
ers are better able to estimate future rewards which are maximized by a stable
society. A low learning rate eventually allows a stable society but not before a
large SD has occurred. Interestingly, none of these effects were observed when
the N action was not available to the players. With learning eventual behavior
(except for the intermediate learning rate) SC was higher when N was available.
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Figure 3: Impact of network density on the players’ strategies. In the top row, the
share of players playing cooperate, in the bottom - defect. On the left, the action N is
available to the players, on the right - not available.
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Figure 4: Results with reward sharing disabled with available action N (1.4(a)) and
with N not available (1.4(b)).
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Figure 5: Impact of learning rate on the players’ strategies. In the top row, the
share of players playing cooperate, in the bottom - defect. On the left, the action N is
available to the players, on the right - not available.

5 Conclusions and future work

This paper presented an evolutionary game with players connected into a social
network, sharing payoffs with their neighbors in that network. If individual
players reason that increased long term payoffs might be higher if the whole
society can be forced into chaos, they will accept significant short term costs
and risk, to bring that situation about. The key conclusion from this game is
that a society of rational agents who will all gain if they all play cooperative
strategies can easily be induced to play strategies that are guaranteed to lead to
a negative payoff.

Our experiments show that the existence and nature of a social network
makes a dramatic difference to the evolution and conclusion of the game. Very
dense networks or small worlds networks had far higher proportions of players
playing cooperative strategies than when there is a sparse scale-free network.
This result has implications for all EGT where interaction occurs between play-
ers, but only simple social networks are used. It is possible that such results will
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change if different interaction networks are used.
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