
Locating RF Emitters with Large UAV Teams

Paul Scerri, Robin Glinton, Sean Owens and Katia Sycara
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

{pscerri, rglinton, owens, katia}@cs.cmu.edu

April 24, 2007

Abstract

This chapter describes a principled, yet computationally efficient way
for a team of UAVs with Received Signal Strength Indicator (RSSI) sen-
sors to locate radio frequency emitting ground vehicles in a large envi-
ronment. Such a capability has a range of both civilian and military
applications. RSSI sensor readings are noisy and multiple emitters will
cause ambiguous, overlapping signals to be received by the sensor. Gener-
ating a probability distribution over emitter locations requires integrating
multiple signals from different UAVs into a Bayesian filter, hence requir-
ing cooperation between the UAVs. To build a coherent distributed pic-
ture given communication limitations, the UAVs share only those sensor
readings that induce the largest changes in their local filter. Each UAV
translates its probability distribution into a map of information entropy
and then plans a path that will maximize the reduction in entropy (or con-
versely provides the highest information gain.) Planned paths are shared
with a subset of other UAVs to minimize overlapping search. Experi-
ments in a medium fidelity simulation environment show the approach to
be lightweight and effective. Live flight results with lightweight Class I
UAVs validate our approach.

1 Introduction

The rapidly improving availability of small, unmanned aerial vehicles (UAVs)
and their ever decreasing cost is leading to considerable interest in multi-UAV
applications. However, while UAVs have become smaller and cheaper, there is
a lack of sensors that are light, small and power efficient enough to be used
on a small UAV yet are capable of taking useful measurements of objects often
several hundred meters below them. Static or video cameras are one option,
however image processing normally requires human input or at least compu-
tationally intensive offboard processing, restricting their applicability to very
small UAV teams. In this chapter, we look at how teams of UAVs can use very

1



small Received Signal Strength Indicator (RSSI) sensors whose only capability
is to detect the approximate strength of a Radio Frequency (RF) signal, to
search for and accurately locate such sources. RSSI sensors give at most an
approximate range to an RF emitter and will be misleading when signals over-
lap. Applications of such UAV teams range from finding lost hikers or skiers
carrying small RF beacons to military reconnaissance operations. Moreover, the
core techniques have a wider applicability to a range of robotic teams that rely
on highly uncertain sensors, e.g., search and rescue in disaster environments.

Many of the key technologies required to build a UAV team for multi-UAV
applications have been developed and are reasonably mature and effective [1, 2].
However, for large UAV teams with very noisy sensors, key problems remain,
specifically, much previous work is formally grounded but impractical [3]. Often
the coordination and planning algorithms and the representations of the envi-
ronment are not appropriate for more than two or three UAVs and targets. For
example, some solutions require a UAV to know the planned paths of all other
UAVs in order to plan its own path [8], but this is infeasible (both in terms of
communication and computation) when the number of UAVs is large. Other
approaches only solve part of the problem, e.g., estimating locations from sensor
readings [12] or planning cooperative paths [11], but do not combine these ele-
ments in an integrated solution, although there are some exceptions [4]. Signal
processing techniques for creating probability distributions from noisy signals
have been extensively studied, but rarely have distributed filters versions been
created and those that have been do not scale to larger teams [9].

Our approach to this problem has three key elements that enable locating
RF emitters with large teams of lightweight UAVs. The first key element is a
distributed filter to localize RF emitters in the environment. Each UAV has a
Binary Bayesian Grid Filter [7] where a value of a cell in the grid represents the
probability that there is an emitter in the corresponding location on the ground.
Due to limitations on available communication bandwidth, it is infeasible for
UAVs to share their entire distribution, instead they share a small subset of
their sensor readings with others in the team. Hence, departing from previous
approaches that elicited a model of what teammates know in order to choose
what to send [9], we started from the assumption that if some information leads
to large local information gain, it will probably do so for much of the team. We
investigated two information gain based heuristics for choosing which readings to
share with teammates. The first heuristic is to send sensor readings that have
the greatest impact on the UAV’s local probability distribution. The second
heuristic is to create a parallel probability distribution based purely on readings
received from teammates and send sensor readings that have the biggest impact
on that distribution. Intuitively, the first heuristic sends readings that were
most important for the local UAV, while the second sends sensor readings that
are most important to the team, given a local model of what the team knows.
Experiments show that the first heuristic results in better team behavior than
sending random messages, but the second heuristic performs worse than random.

The second element of the approach is to tightly couple estimates of the
current locations of the emitters to the UAV path planning process. Specifically,
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a probability distribution over emitter locations is translated into a map of the
information entropy in the environment. UAVs plan paths through areas of
maximum entropy, hence maximizing expected information gain. The UAVs
plan only a relatively short distance ahead in each planning cycle. This approach
allows the UAVs to be reactive to new information, which is critical when sensors
are highly uncertain and the domain is dynamic. For example, if a UAV traverses
an area, but the sensor readings do not provide an accurate picture of that area,
the entropy will remain high and the UAV will consider re-traversing the area.
Notice that the entropy map coupled with the path planner looking to maximize
information gain provides an integrated way for trading off between going to the
locations where there will be most information gain and locations that can be
quickly reached.

The third key element of the approach is a very lightweight, computationally
inexpensive method for cooperative path planning. The important application
feature underlying the approach is that due to the high uncertainty and dynami-
cism in the environment, some overlap of paths is acceptable (or even desirable),
provided that the UAVs mainly spread out and search areas of maximum en-
tropy. Our approach is for each UAV to share its planned path with some other
members of the team. When planning, each UAV estimates the change in en-
tropy that would be induced by those paths being flown by others and plans on
the resulting entropy map. If the most current path of a particular UAV is not
known the most recent location is used to roughly estimate where that UAV
might be searching.

2 Problem

This chapter presents a method for localizing an unknown number of RF emit-
ters using a team of UAVs. UAVs are outfitted wth RSSI sensors which detect
the power of an RF signal at a position in space. The UAVs must maintain a
belief over the state of all emitters in the environment in a decentralized manner.

The emitters are represented by the set: E = {e1 . . . en} where n is not
known to the team of UAVs. Emitters are all assumed to be emitting at a
single known frequency.1 Emitters are mobile and emit intermittently. The
homogeneous UAVs are represented by the set: U = {u1 . . . um}. Each ui flies a
path given by ~ui(t). During flight a UAV takes sensor readings, zt( ~loc) which are
the received signal power at a location ~loc = {x, y, z} where {x, y, z} gives the
Euclidean coordinates of a point in space relative to a fixed origin. The power
of the signal received is a result of three components. The first component,
Γ( ~loc, ei) = econst

dist( ~loc,ei)2
, where dist(loc, ei) is the Euclidean distance between loc

and ei and econst is a constant that gives the power at dist(loce1 , ei) = 0, is
due to the sources themselves. The second component, EN( ~loc, E), is due to
multi-path and attenuation of the signal due to environmental factors. Multi-
path occurs when a reflected component of the signal arrives at a receiver and

1This will be relaxed in future work.
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in combination with an attenuated direct signal results in a perturbed source
location estimate. Finally ε gives typical zero-mean normally distributed sensor
noise. The total power received at a location (loc) in space is then given by:

zt( ~loc) =
∑
ei∈E

Γ( ~loc, ei) + EN( ~loc, E) + ε ∼ N (0, σ)

Figure 1 shows some signals that will be received at different distances from
a single emitter (i.e., no overlap). This is the basic signal model used in the
simulation results below and closely represents real data collected from RSSI
sensors on a physical UAV. The x-axis shows the distance and the y-axis shows
the signal strength in dB (which is a log scale.) There are two important things
to notice about this signal. First, it is very noisy, with high variation at all dis-
tances from the emitter, with some background noise high enough to represent
being close to the emitter. Second, it has a very long “tail”, i.e., at a reasonable
distance from the emitter there is still useful information in the signal. Figure
2 shows the sensor readings when the UAV flies near one emitter and then an-
other. Notice the overlap in the signals between the emitters, which are about
350m apart.

Figure 1: Sensor readings taken from different distances from an RF emitter.

The sensor readings taken by the ith UAV, up until time t are zi
t0 . . . zi

t.
Each UAV maintains a posterior distribution P over emitter locations given by
P i

t (e1 . . . en|zi
t0 . . . zi

t). The UAVs proactively share sensor readings to improve
each other’s posterior distribution. At time t each ui can send some subset of
locally sensed readings: ~zi

t ⊂ zi
t0 . . . zi

t.
The true configuration of the emitters in the environment at time t is rep-

resented as a distribution Q such that

Qt(e1 . . . en) = 1

when e1 . . . en gives the true configuration of the emitters at t. The objective
is to minimize the divergence between the team belief and the true state of
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Figure 2: Sensor readings taken when flying between two emitters, first near
one, then near the other.

the emitters, while minimizing the cost of UAV flight path, and minimizing
the total number of messages shared between UAVs. The following function
expresses this mathematically:

min
~ui

∑
t

∑
ui∈U

β1Cost(~ui(t)) + β2DKL(P i
t ‖Q) + β3|~zi

t|

where DKL denotes the Kullback Leibler divergence and β1...3 are weights which
control the importance of the individual factors in the optimization process.

3 Algorithm

The most important feature of the overall algorithm is the tight integration of
all the key elements to maximize performance at a reasonable computational
and communication cost. A Binary, Bayesian Grid Filter (BBGF) maintains an
estimate of the current locations of any RF emitters in the environment. This
distribution is translated into a map of the entropy in the environment. The
entropy is captured in a cost map. UAVs plan paths with a modified Rapidly-
expanding Randomized Tree (RRT) planner that maximize the expected change
in entropy that will occur due to flying a particular path. The most important
incoming sensor readings, as computed by the KL information gain they cause,
are forwarded to other members of the team for integration into the BBGFs
of other UAVs. Planned paths are also shared so that other UAVs can take
into account the expected entropy gain of other UAVs when planning their own
paths. The paths of other UAVs are also captured in a cost map. Additional
cost maps, perhaps capturing results of terrain analysis or no-fly zones, can be
easily added to the planner.
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3.1 Implementation

The overall, integrated process aims to balance the desire to have a principled,
formally grounded approach, yet be lightweight and robust enough to be prac-
tical for a team of UAVs. The hardware independent components (planners,
filters, etc.) are isolated from the hardware specific components (sensor drivers,
autopilot) to allow the approach to be quickly integrated with different UAVs
or moved from simulation to physical UAVs. The hardware independent com-
ponents are encapsulated in a proxy which will either be on the physical UAV or
on a UAV ground station, depending on the vehicle. In the experiments below,
the simulations use exactly the same proxy code as the live flight experiments
with physical UAVs. Figure 3 shows the main components and information
flows from the perspective of one UAV-proxy.

Figure 3: Block diagram of architecture.

4 Distributed State Estimation

In this section, we describe the filter used to estimate the locations of the emit-
ters and the decisions individual UAVs make about sending information to one
another.
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4.1 Binary, Bayesian Grid Filter

The filter uses a grid representation, where each cell in the grid represents the
probability that there is an emitter in the area on the ground corresponding to
that location.2 For a grid cell c the probability that it contains an emitter is
written P (c). The grid as a whole acts as the posterior P i

t (e1 . . . en|zi
t0 . . . zi

t).
To make calculations efficient, we represent probabilities in log odds form,

i.e., lt = logP (i). Updates on grid cells are done in a straightforward Bayesian
manner.

lt = lt−1 + log
P (ei|zt)

1− P (ei|zt)
− log

P (ei)
1− P (ei)

where P (ei|zt) is a inversion of the signal model, with the standard deviation
extended for higher powered signals, i.e.,

P (ei|zt) =


1√

2π(σ2
1)

e−
1
2 (zt−Γ)2 if zt ≥ Γ

1√
2π(σ2

2)
e−

1
2 (zt−Γ)2 otherwise

where σ1 > σ2 scales the standard deviation on the noise to take into account
structural environmental noise and overlapping signals. Intuitively, overlapping
and other effects might make the signal stronger than expected, but they are
less likely to make the signal weaker than expected. Figure 4 shows a plot of
the (log) probability (y-axis) of a signal of a particular strength (x-axis) when
the emitter is 500 m from the sensor.

Notice that there is no normalization process across the grid because the
number of emitters is not known. If the number of emitters were known, a
normalization process might be able to change the probability of emitters even
in areas where no sensor readings had been taken. Initial values of grid cells are
set to values reflecting any prior knowledge or some small uniform value if no
knowledge is available.

Entropy The UAVs will fly to areas of maximum entropy, hence the proba-
bility distribution has to be translated into an entropy distribution. We assume
independence between grid cells, so entropy can be calculated on a grid cell by
grid cell basis. Specifically, the entropy, H, of a grid cell i is:

H(i) = P (i)log(P (i)) + (1− P (i))log(1− P (i))

Figure 5 shows how probability and entropy are related.
2A quad-tree or other representation might reduce memory and computational require-

ments in very large environments, but the algorithmic complexity is not justified for reasonable
sized domains.
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Figure 4: Mapping between probability and signal strength.

4.2 Information Sharing Approaches

For UAVs to plan the best possible paths, i.e., ones that lead to the greatest
information gain for the team, it is important that each member of the team
have an accurate picture of the distribution. Hence, UAVs must share local
sensor readings with other members of the team. However, it is not scalable to
simply send all sensor readings, nor is it likely to be particularly useful since
some readings will not change the distribution very much. In this section, we
describe a number of heuristics that are used to decide which sensor readings
to pass around the team.

There are two reasons why we choose to share sensor readings rather than
sharing probability distributions. First, for arbitrary probability distributions
it is difficult to find concise representations that can be easily sent. Second,
each UAV will have different confidence in different parts of its distribution
and this confidence would need to be calculated and communicated with the
distribution. While these problems are not insurmountable, they justify first
trying the simpler approach of sending raw sensor readings.

Rosencrantz and Thrun [9] developed an approach to distributed particle
filters that relied on teammates providing some information about what they
know, so that the most appropriate information can be sent to each teammate.
While such an approach clearly has some benefits in terms of getting the right
information to the right team members, it does not scale to larger teams, from
either a computational or communication perspective.

Instead, by using only local information to determine what readings to send
and allowing other team members to decide whether those readings are for-
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Figure 5: Mapping between probability of an emitter and entropy. The broken
line shows the probability and the unbroken line the entropy.

warded, we reduce computational and communication complexity. Specifically,
each agent looks at each sensor reading they get, either directly from their sen-
sors or from other agents. If they think that this reading is sufficiently useful,
they will create a token containing both the sensor reading and a time to live,
TTL. The TTL is initially set to some small number (see 4.2.1). The token is
randomly forwarded to a teammate3. The team member receiving the reading
will integrate it into its own probability distribution. Each token has a unique
identifier which is used to ensure sensor readings are only incorporated into the
filter once. If the receiving agent finds the reading useful, it will increase the
TTL on the token, otherwise it will decrease the TTL. While TTL > 0 and not
all team members have been visited by the token, it will continue to be passed
around the team, but as soon as TTL = 0 propagation stops. In this way, read-
ings that are widely useful to the team are widely shared because many UAVs
will increment the TTL, but those that are not widely useful will either be not
shared at all or shared with only a small portion of the team (see 4.2.1).

The UAVs increment the TTL on tokens with sensor readings that lead to a
new distribution with a KL-difference from the original distribution above some
threshold α. Formally, the UAV increases the TTL on a token containing, zt(~l),
iff:

DKL(P i
t (e1 . . . en|zi

t0 . . . zi
t))||P (e1 . . . en|zt0 . . . zi

t−1)) =∑
i

P i
t (e1 . . . en|zi

t0 . . . zi
t) log

P i
t (e1 . . . en|zi

t0 . . . zi
t)

P i
t (e1 . . . en|zt0 . . . zi

t−1)
> α

Intuitively, the UAVs are sending the most important readings from their
perspective. In the results below, we refer to this heuristic as H LOCAL KL.

However, in some situations, information that does not seem important lo-
cally, may be important to the rest of the team. For example, a sequence of

3More intelligent approaches than completely random can be envisioned, but random send-
ing minimizes computational requirements at the UAV and works effectively.
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readings might slowly change the local perspective, with none of the readings
having large enough KL information to send, but overall having high value.
A second KL-difference heuristic utilizes a second probability distribution over
emitters locations, but created only from sensor readings received on incoming
tokens or sent on out-going tokens. Intuitively, this second distribution models
the team’s perspective of the BBGF. The heuristic H TEAM KL increases the
TTL on tokens where the sensor reading leads to a KL-difference greater than
the threshold on this model of the team’s perspective on the BBGF. In exper-
iments below we baseline the approach by sending random readings, denoted
H RAND.

4.2.1 Analysis

In this section we describe an analytical approach to modeling the propagation
of sensor readings using the H LOCAL KL or H TEAM KL heuristics. Let
p denote the probability that an agent will compute a new distribution with
KL-divergence greater than the threshold α, given a new sensor reading. We
assume that for a given sensor reading, p is identical for all m agents, and all
agents will make a decision independently of the others. We also assume that
an agent will never forward a reading to another agent that has already seen it;
this can be implemented by attaching a history of recipients to the token.

Let c be the TTL increment. Because no agent ever receives the same reading
twice, the total number of agents that ultimately receive a token always has the
form T = ic + 1, where i ∈ {0, 1, 2, . . . }. The distribution of T for values less
than m is given exactly by

Pr(T = ic + 1) = pi(1− p)ic−i+1
c∑

x1=1

2c∑
x2=x1+1

· · ·
(i−2)c∑

xi−2=xi−3+1

(i− 1)c− xi−2 (1)

and the expected value of T can be calculated directly by

〈T 〉 =

d(m−1)/ce∑
i=0

(ic + 1) Pr(T = ic + 1)


+m

1−
d(m−1)/ce∑

i=0

Pr(T = ic + 1)

 (2)

Calculating 〈T 〉 from Eq. 2 can be cumbersome for large teams, but for-
tunately significant insight into the behavior of the system can be obtained
without resorting to brute calculation. An agent receiving a sensor reading
will forward it to pc other agents on average. When pc < 1 and m � c,
Pr(T = m) ≈ 0 and the expected value of T can be approximated by the ge-
ometric series 〈T 〉 ≈

∑∞
j=0 (pc)j = 1 + pc/(1 − pc). When pc > 1, on average
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each forwarding of a token will result in even more agents forwarding the sensor
reading, and hence Pr(T = m) > 0 even for very large m. As p increases from
1/m to 1, 〈 T

m 〉 increases to 1, primarily because Pr(T = m) increases toward 1.
Intuitively, when pc > 1, if enough of the team receives a reading, it becomes
very likely that eventually all of the agents will receive the reading. Mathe-
matically this is shown by the the fact that the probability of a token stopping
before reaching all of the team decreases exponentially with the accumulated
TTL. The use of an initial TTL greater than 1 takes advantage of this fact and
greatly increases 〈T 〉 for p > 1/c, although it has a much lesser effect when
p < 1/c.

The dramatic change in behavior at p = 1
c offers a promising way to choose

c. Suppose that sensor readings are of two types, either useful to the team
or useless to the team, and that agents correctly classify useful readings with
probability p (and thus forward them) and incorrectly classify useless readings
with probability 1− q (and thus forward them with probability q). This causes
both useful and useless readings to be forwarded through the team, and we
wish to choose c such that the fraction of useful messages passed is maximized.
Since the number of messages passed for a reading is equal to the number of
agents that receive the reading, we wish to maximize the ratio〈Tp〉/(〈Tp〉+〈Tq〉),
where Tp, Tq are the number of agents that ultimately receive useful and useless
readings, respectively. As long as p > q, this can be accomplished by choosing
c such that q < 1

c < p. This is quite powerful because as long as agents are
correct more often than they are wrong (a quite reasonable assumption), then
q < 1/2 < p, and so c = 2 suffices to dramatically reduce the fraction of useless
messages. Figure 6 shows the effect of different values of c on 〈Tp〉/(〈Tp〉+ 〈Tq〉)
for p = 0.8 and q = 0.3 and m = 500; for these settings the optimal choice is
c = 2.

5 Cooperative Search

In this section, we describe the cooperative path planning for maximizing the
team’s expected information gain and, hence, its estimate of emitter locations.

Shortly before traversing a path, the UAV plans its next path, using an RRT
planner as described below. The path is encapsulated in a token and forwarded
to some of the other team members. It is not critical for the token to reach
all other team members, although team performance will be better if it does.
UAVs store all the paths they receive via tokens. When planning new paths a
change in entropy due to other UAVs flying their planned paths is assumed by
the planner. Effectively, the entropy is reduced in areas where other UAVs plan
to fly, reducing the incentive for flying in those areas. If the UAV does not know
the current planned path of a particular UAV, it takes the last known location
of that UAV, i.e., typically the last point on the last plan from that UAV, and
assumes that the UAV moved randomly from there.4 Using this technique, the

4In future work, we may take into account that the other UAV will also be attempting to
maximize entropy and thereby create better models of what it intends to do.
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Figure 6: The ratio of useful messages to total messages for a team of 500
agents that forward useful readings with probability p = 0.8 and forward useless
readings with probability q = 0.3. The fraction of useful messages is maximized
at c = 2.

UAVs mostly search different parts of the environment, but will sometimes have
overlapping paths. Importantly, the approach is computationally and commu-
nication efficient, scalable and very robust to message loss.

5.1 Modified RRT Planner

Once the UAV has the entropy map and knowledge of the paths of other UAVs,
it needs to actually plan a path that maximizes the team’s information gain.
We chose to apply an RRT planner [6, 5] because it is fast, capable of handling
large, continuous search spaces and able to handle non-trivial vehicle dynamics.

However, efficient RRT planners typically rely on using a goal destination to
guide which points in the space to expand to. In this case, there is no specific
goal, the UAV should just find a path that maximizes information gain. Initial
tests with an RRT planner showed them to be inefficient in such cases. Moreover,
the RRT planner did not handle the subtle features of the entropy map well. To
make the planner more efficient for this particular problem, it was necessary to
change a key step in the algorithm. Specifically, instead of picking a new point
in space to expand the nearest node towards, a promising node is selected and
expanded randomly outwards in a number of directions. This modified search
works something like a depth first search, but with the RRT qualities of being
able to quickly handle large, continuous search spaces and vehicle dynamics.
Notice that this change also eliminates the most computationally expensive
part of a normal RRT planner, the nearest neighbor computation, making it
much faster.

Algorithm 5.1 shows the modified RRT planning process. Input to the al-
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gorithm includes a cost map encoding the goals of the vehicle and another cost
map with the known paths of other vehicles. Lines 1-5 initialize the algorithm,
creating a priority queue (plist) and initial node (n). The ordering of the pri-
ority queue is very important for the functioning of the algorithm, since the
highest priority node will be expanded. The function ComputePriority uses
both the cost of the node and the number of times it has been expanded to
determine a priority. Intuitively, the algorithm works best if good nodes that
have not been expanded too many times previously are expanded. The main
search loop is lines 6-17 and is repeated 20,000 times (about 10ms on a stan-
dard desktop.) The highest priority node is taken off the queue (then added
again with new priority). This node, representing the most promising path, is
expanded 10 times in the inner loop, lines 10-17. The expansion creates a new
node, representing the next point on a path, extending the previous best path
by a small amount. The Expand function is designed so that all new nodes lead
to kinematically feasible paths. The function ComputeCost then determines
the cost for the new search node, taking into account the cost of the node it
succeeds and the cost maps. The cost map representing other paths will return
positive infinity if the new node leads to a path segment that would lead to a
collision. The expanded nodes are added to the priority list for possible future
expansion and the process continues. Finally, the node with the lowest cost is
returned. The best path is found by iterating back over the prev pointers from
the best node.

Algorithm 1: RRT Planning Process
RRTPlanner(x, y, CostMaps, time, state)
(1) plist← []
(2) n← 〈x, y, t, cost = 0, prev = ∅, priority = 0〉
(3) n← ComputePriority(n)
(4) plist.insert(n)
(5) best = n
(6) foreach 20000
(7) n← plist.removeF irst()
(8) n.priority ← ComputePriority(n)
(9) plist.insert(n)
(10) foreach 10
(11) n′ ← Expand(n)
(12) n′.prev = n
(13) n′.cost = Cost(n, CostMaps)
(14) n′.priority ← ComputePriority(n′)
(15) plist.insert(n′)
(16) if n′.cost < best.cost
(17) best← n
(18) Return best

The planning process plans several kilometers and takes less then 0.5s on
a standard desktop machine, even with other proxy processes continuing in
parallel.
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Using the Planner If the UAV only plans a short distance ahead, it can
fail to find plans that lead it to high value areas that are a long distance away.
However, if the UAV plans long paths, it loses reactivity to new information
(both sensor readings and plans of others). Our approach is to allow the UAV
to plan long paths, but only use the first small piece of the path. In this way,
the UAV will reach high value, distant areas by repeatedly creating plans to
that area and executing part of the plan, but it can also react quickly to new
information.

6 Experiments

In this section, we present empirical simulation results of the approach described
above. The approach is implemented with the Machinetta proxy [10] framework
integrated with either the Sanjaya UAV simulation environment or with an
OPNET simulation environment. The signal model is derived from real data
from an RSSI sensor flown on a real UAV. The code used is exactly the same code
as being used in an ongoing flight test, with the exception of the code between
the proxy and the autopilot. Unless otherwise noted, the simulated environment
is 50km by 50km and there were four RF emitters in the environment. The
results below represent several hundred hours of simulated flying time, with each
data point an average of five runs. The simulator and proxies are spread out over
up to 15 desktop computers and communication is via multi-cast UDP resulting
in around 3% message loss. These experiments are conducted in simulation
due to the practical difficulty of conducting experiments with large numbers of
physical UAVs. This approach was validated at L-3 Communications Integrated
Systems in a series of live flight tests in late 2006 involving up to four Class I
UAVs under autonomous control by the Machinetta proxies.

Information Sharing Experiments In the first experiment, we looked at
the three different information sharing heuristics. Figure 7 shows the average
KL-divergence from the ground truth over time. Ground truth is modeled as
tight 1

r2 probability around the real emitter location. The figure shows that all
the information sharing algorithms were effective at determining the location of
the emitters, but that H LOCAL KL was substantially better than the other
heuristics. Interestingly, sending random sensor readings, H RAND, around
the team was clearly better than H TEAM KL, sending readings according
to a model of the team. Figure 8 gives one possible reason for this, i.e., that
H TEAM KL sent very few readings around. H LOCAL KL gives a low
number of messages along with its good KL-divergence, showing it to be clearly
the best heuristic.

Number of UAVs and Number of Emitters The second experiment var-
ied both the number of emitters and number of UAVs in the environment. Figure
9 shows that more UAVs led to a faster decrease in the KL-divergence, show-
ing that the additional UAVs were useful. Interestingly, more UAVs actually
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Figure 7: The KL-divergence over time for three different information sharing
algorithms.

made reducing the KL-divergence faster. We hypothesize that this was because
the UAVs were able to use the additional signals in the environment to quickly
identify RF emitter locations.

Intermittent Signals The next experiment varied how often the RF emitters
were giving off a signal that could be detected, see Figure 10. The four emitters
had periods ranging from 5 seconds to 30 minutes, then the percentage of that
period that they were on for was varied from 25% to 100%. Curiously, the
KL-divergence appears better when the emitter is off more. However, this is
only due to a quirky interaction between the KL-divergence measurement and
the very noisy sensors. Specifically, the noisy sensors do not allow the UAVs to
very precisely locate the emitters, so believing that they were not there at all
could actually lower the KL-divergence. Figure 11 shows an oscillation in the
number of messages sent between UAVs as emitters turn on and off.

Probability of Collision One of the issues that must be addressed in any
practical autonomous UAV system is the possibility of collision. In this ex-
periment, we examine how the probability of intra-system collision (collision
between UAVs within the autonomous UAV system) varies with the number of
UAVs. We note that our path planning approach will naturally tend to avoid
collisions because of the tendency for the UAVs to spread out in order to maxi-
mize entropy gain as they coordinate their path planning. Nonetheless, because
of software time delay, communications bandwidth, wind, navigation error, etc.,
the probability of collision is non-zero, especially if a large number of UAVs is
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Figure 8: The number of messages sent between UAVs for three different infor-
mation sharing algorithms.

covering the same region. For the simulation illustrated in Figure 12, the search
area is 1 square kilometer, the UAVs are all flying at the same altitude, and
simulated wind is 5 m/sec, with wind gust standard deviation of 2 m/sec. For
the purposes of this simulation, a collision is defined to occur anytime the dis-
tance between a pair of UAVs is less than 5 meters. The time interval for the
probability of collision metric is from the start of the mission until the entropy
map is 80

Live Flight Experiments Live flight experiments with teams of up to 4
UAVs demonstrate the validity of the overall approach. The RSSI sensor, shown
in Figure 13 and weighing only a few ounces, was selected to be suitable for
integration on a lightweight Class I UAV, such as the Procerus UAV shown in
Figure 14. In the experiments, the Procerus UAVs are hand launched, then once
all are in the air, the control is handed over to the Machinetta proxies. The
proxy software is hosted on a ground station rather than the on-board processor
in order to minimize on-board processing requirements for the experimental
system. As discussed earlier, the simulations and live flight tests use the same
proxy software. This joint simulation / live flight development environment not
only minimizes simulation artifacts, but also accelerates the overall development
by allowing a rapid cycle of algorithm and code development, simulation, live
flight tests, post-mission analysis, and back to algorithm and code development.
Figure 15 illustrates some of the preliminary live flight results in a side-by-side
comparison with simulation results for a 1 square kilometer region with three
UAVs. The bottom half of Figure 15 shows the entropy map (left-hand side)
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Figure 9: The impact on KL-divergence of changing the number of UAVs and
the number of RF emitters.

and BBGF resulting from a live flight test at roughly the 20 minute point. The
top half of Figure 15 shows the corresponding simulation results. From this, we
can see that the emitter localization (shown in light green in the BBGFs on the
right hand side) is, not surprisingly, somewhat better for the simulation than
for the live flight test. Analysis of a series of live flight tests and simulations
indicate that one significant factor is sporadic loss of communications during
the live flights. The UAV autopilot is programmed to circle anytime during
loss of communications in order to allow for quick visual identification of data
link problems and to provide for taking manual control of the UAV if necessary.
Upon restoration of communications, the autopilot automatically goes back to
control of its proxy.

7 Related Work

The application presented in this chapter builds on a large body of previous
work spanning a range of areas.

In [9] a method for distributed probabilistic state estimation is presented.
In this work agents share local beliefs with neighbors through a query-answer
protocol. There are several difficulties with this approach for our application.
Firstly, for a UAV team the concept of a neighbor is problematic, since UAVs
move so quickly neighbors change often and simply keeping up with who a UAVs
neighbors are can be expensive. Secondly, information exchanges are strictly
between pairs. This fact, in combination with the KL-divergence criteria for
determining the importance of information to be shared, puts excessive respon-
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Figure 10: The KL-divergence over time for four different percentages of time
the RF emitters emit.

sibility on local agents to determine the importance of local information to the
team. Furthermore, each shared reading is only shared with a single neighbor.
This limits the potential of shared readings to contribute to the entire team and
therefore limits team search optimization. In contrast, our approach enables
readings with high utility to the team to propagate to the entire team. Con-
sider for example if a UAV flies directly over an emitter, clearly such a reading
should be shared with the entire team.

In [12, 13] the locations of sources are detected using information theoretic
techniques. This work depends on a fixed array of receivers and as such does
not contend with the added complexity of incorporating moving sensors into the
formulation or proactive path planning for sensors to improve source localiza-
tion.

In [4] a multiple UAV team is used to localize a group of emitters. In that
work, a single UAV broadcasts all sensor readings to teammates. To ameliorate
the exponential cost of this sharing paradigm, UAVs form sub-teams which each
maintain a separate subteam posterior. The main drawback of this approach is
that it is not possible to optimize search paths over the entire team. In fact,
with this approach all optimization occurs within small sub-teams.

8 Conclusions

This chapter presented an integrated approach to finding RF emitters with a
large team of UAVs. Simulation and live flight experiments show the approach to
be effective, light-weight and robust. The key to the scalability and robustness

18



Figure 11: The number of messages over time, for different levels of intermit-
tency.

was to find algorithms that can exploit information provided by the team but not
rely on it. The most critical aspect of this was to design algorithms where local
knowledge was exploited to make coordination decisions. While local knowledge
was not always accurate, many local decisions make for good overall behavior
because on average local decisions are good.
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