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ABSTRACT
This paper studies scalable data delivery algorithms in mo-
bile ad hoc sensor networks with node and link failures.
Many algorithms have been developed for data delivery and
fusion in static microsensor networks, but most of them
are not appropriate for mobile sensor networks due to their
heavy traffic and long latency. In this paper we propose an
efficient and robust data delivery algorithm for distributed
data fusion in mobile ad hoc sensor networks, where each
node controls its data flows and learns routing decisions
solely based on their local knowledge. We analyze the lo-
calized algorithm in a formal model and validate our model
using simulations. The experiments indicate that controlled
data delivery processes significantly increase the probability
of relevant data being fused in the network even with lim-
ited local knowledge of each node and relatively small hops
of data delivery.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—
Distributed Artificial Intelligence

General Terms
Algorithms, Reliability, Experimentation,

Keywords
sensor data fusion, data delivery, reinforcement learning

1. INTRODUCTION
The mobile ad hoc sensor networks of the near future

are envisioned to consist of hundreds of UAVs (unmanned
aerial vehicles) or robots. These networked mobile sensors
play strong roles in military and civilian operations, e.g.,
battlefield surveillance, disaster search and rescue [9, 15, 13].
One phenomenon in mobile sensor networks is that the raw
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data from each sensor usually has low confidence. The raw
data cannot be used directly for team coordination and has
to be fused with other relevant data [11]. Various statistical
inference techniques have been studied for distributed data
fusion in mobile sensor networks, but these approaches do
not have any control on the data flows [12]. Uncontrolled
data flows may cause large amount of conflicting plans and
have severe effects on the performance of the whole network
when mobile sensors work together to conduct high-level
tasks. Thus, how to optimize communication strategies for
team coordination is an important problem for mobile ad
hoc sensor networks [18]

Many protocols have been developed for data delivery
and fusion in microsensor networks with small and battery-
powered “motes”, where a node, called a sink, attempts to
gather data from a number of data sources [22]. For exam-
ple, in directed diffusion, the sink floods a query toward the
sensor nodes in a specific area [7]. The source nodes within
the specific area then send data back to the sink along the
best path. In other words, a source node will not send any
data back to the sink until it receives the query. For this
reason, these routing protocols are called reactive protocols.

Reactive protocols are mainly designed for microsensor
networks, where the sensors are stationary after deployment.
They are not appropriate for mobile sensor networks for the
following two reasons:

• Heavy traffic: Since locations of collected data are not
correlated with existing positions of mobile sensors,
effective routing of either query or data is not feasible.
Sinks have to flood the queries to the whole network
when they need the data each time for a specific area.
This could overload one or more sinks and cause a lot
of traffic in the network.

• Long latency: Sinks usually do not know when source
nodes will have the data in mobile sensor networks. If
the source nodes follow reactive protocols, they have to
wait for the queries from sinks to send the data. This
causes long latency and cannot meet the requirements
of time-critical missions in many defense and civilian
applications for mobile sensor networks [2].

In this paper we present a scalable and reliable approach
to data delivery in mobile ad hoc sensor networks with fail-
ures. While failures could happen at either team coordina-
tion level or data communication level, our approach focuses
on communication failures for sensor data delivery among



mobile sensors [8]. We assume these mobile sensors such as
UAVs are “blind” in some sense and they cannot monitor
the activities of other sensors directly.

In our approach there is no querying process and each
node proactively forwards the data to one of its neighbors.
The constraint here is that nodes have no global knowledge
of network topology. Each node has to intelligently deliver
data solely based on the knowledge about itself and its neigh-
bors. Moreover, the data delivery processes need to be sur-
vivable to failures. The challenge is, with various decisions
made by individual sensors, how to minimize the commu-
nication overhead and maximize the probability of relevant
data being fused in the network.

We propose an efficient and failure-resistant localized al-
gorithm over mobile ad hoc networks, where each node learns
routing decisions from its history of data delivery via Q-
learning. We study the process of neighbors selection for
each sensor node and the emergence of a spanning tree in
the network for reliable data delivery. Moreover, we analyze
the probability of relevant data being fused in a random net-
work in a formal model and validate our model using sim-
ulations. The experiments show that controlled data flows
significantly increase the probability of relevant data being
fused, where the probability is improved by two to five times
for the same hop of data propagation.

The rest of this paper is organized as follows. Section 2
summarizes the relevant literature. Section 3 briefly de-
scribes the background of mobile ad hoc sensor networks.
Section 4 investigates the design of protocols and localized
algorithms for data delivery and fusion. Section 5 provides a
formal analysis of the data delivery algorithm in mobile sen-
sor networks. Section 6 presents some experimental results
for the algorithms. Section 7 discusses the main themes and
some directions for future research.

2. RELATED WORK
Mobile sensor networks have been studied by Howard et

al. [6], but their work focuses on the coverage problem of
a multi-robot system, and does not consider the effective
data delivery for fusion. Q-learning and ants algorithms
have been studied by [1, 19] for network routing problem.
Routing problem is different from ours since the sensor data
does not have explicit destination during the data delivery
processes. Moreover, we need not consider alternative paths
for surplus sensor data. The data propagation paths are
deterministic in our approach, while paths in ants algorithms
are probabilistic.

Multisensor data fusion has been studied for a long time,
where both the data fusion and control algorithms are cen-
tralized [4]. We will not discuss the literature on multisensor
data fusion since they fall outside of the scope of this paper.

Distributed data fusion in sensor networks has been fo-
cused on statistical inference techniques. For example, Niu
et al. investigate an optimum local fusion detection thresh-
old for binary hypothesis testing by local sensors [14]; Rosen-
crantz et al. present a Bayesian technique for decentral-
ized state estimation using particle filters [16]; and Durrant-
Whyte et al. consider distributed data fusion as a state
estimation problem using information filter (a variant of
Kalman filter) [11, 12]. These approaches focus on detection
and tracking performance of distributed sensor networks.
They do not have any control on the data flows in the net-
work. In this paper we propose an efficient data delivery

algorithm for distributed data fusion. Moreover, we study
the tradeoff of the efficiency and fusion probability in a net-
work with node and link failures.

3. BACKGROUND
This section provides some background on mobile ad hoc

sensor networks.
We assume mobile sensors communicate on a point-to-

point basis [17]. A network of these mobile sensors is mod-
eled as a connected undirected graph G = (V, E), where
V = {a, b, . . .} is a set of sensor nodes and E consists of
edges between any two nodes a and b that can communi-
cate directly. N(a) is the set of a’s neighbors and b ∈ N(a)
is any neighbor of node a. Note that neighbors in mobile
sensor networks need not be in the proximity and they are
neighbors only in the logical sense.

There are two types of communication failures in a mobile
ad hoc sensor network: node failure (the loss of sensor nodes)
and link failure (unreliable communication channels). Link
failure is temporary and is modelled as a fixed probability
for any two nodes in our scenario. Node failure is permanent
and cannot be recovered once the node is dead. Following
[5], we model the reliability Ra(t) of a node a as a Poisson
distribution

Ra(t) = e−λat (1)

where λa is the failure rate of the sensor node and t is the
time period. Ra(t) captures the probability of not having
a failure within the time interval (0, t). 1− Ra(t) describes
the probability of a node failure. The higher the failure rate
λi, the lower the reliability of a sensor node.

Specifically, we consider a UAVs network for target detec-
tion, tracking, and classification in the battlefield. We as-
sume there are multiple stationary or moving targets T1, T2,
. . . , TM on the ground. A target TK may be detected by mul-
tiple UAVs at the same time, but each UAV cannot initialize
its plans based on its own raw sensor data about the target,
e.g., engagement of its missile with a target. The reason
is that the raw sensor data from a UAV is uncertain and
noisy. Sometimes, a UAV with SAR (Synthetic Aperture
Radar) may even confuse friendly targets (T80 tanks) with
enemy targets (M1 tanks). Hence, the low quality sensor
data cannot be used directly for high-level plans and has to
be delivered to other nodes for fusion in the network [4].

If sensor a detects a target TK , it will generate an event ei

about target TK . An event ei about TK can be denoted as
a tuple 〈sender, identity, location, TTL, pedigree〉, where

• sender is the ID of the sensor that detects the target.

• identity is the decision about the target from the sen-
sor. For example, the target could be classified as
〈T80, 0.4〉, where T80 is the possible vehicle type and
0.4 is the confidence level.

• location is the location of the target TK being detected.

• TTL (time-to-live) is the maximal number of hops al-
lowed for the event propagation in the network.

• pedigree is the list of nodes event ei has been visited,
denoted as L. Note that pedigree is used to avoid
cycles during event propagation.



The processes of sensor data delivery can be described as
follows. When sensor a receives or generates an event ei

about TK , it first tries to fuse ei with its previous events
about target TK using statistical inference techniques. 1

If the confidence of fused events meets a threshold, sensor
node a will stop the propagation of event ei and become a
sink node for relevant events of TK . Otherwise, sensor a will
choose one of its neighbors to continue the delivery unless its
TTL is zero. Note that, sensor a will create an information
token about target TK when it becomes a sink for target
TK . Information tokens are then used for high-level team
coordination [18].

4. ALGORITHMS
Obviously, an event does not need to visit all sensor nodes

to meet with other relevant events. However, visiting too
few sensors can lead to low probability of relevant events
being fused. Here two events ei and ej are relevant if and
only if they are referring to the same target, denoted as
rel(ei, ej) = true. The key is how to minimize communica-
tion overload and maximize the probability of relevant data
being fused. In this section, we discuss the efficiency and
robustness of three algorithms: random walks, path rein-
forcement algorithm and path learning algorithm.

Random walks are a simple data delivery technique in
mobile sensor networks. In random walks, sensor node a
with event ei first decides if it will stop the propagation
of ei. If not, sensor node a just forwards the event ei to
one randomly chosen neighbor b ∈ N(a). Once the neighbor
receives the data, it repeats the same process until the event
is successfully fused with other relevant events or the TTL
of the event reaches zero.

Obviously, random walks are not efficient for data deliv-
ery, since they do not consider the relationships of events
and just pass events randomly in the network. Hence, we
design other two algorithms — path reinforcement algorithm
and path learning algorithm.

4.1 Path Reinforcement Algorithm
The intuition behind path reinforcement algorithm is that

relevant events are likely to be fused earlier if they will follow
the same path after they meet. Specifically, if sensor node a
has sent an event ei to one of its neighbors b before, it will
send b any events ej if rel(ei, ej) = true.

Figure 1 shows an example of data flows in the network
using path reinforcement algorithm. The solid lines corre-
spond to directed communication channels between sensor
nodes. The arrows in dashed lines represent information
flows of relevant events ei, ej , and ek. Event ei and ej meet
at node b and then they follow the same path (event ej re-
inforces the path 〈b, c〉). As shown in Figure 1, the three
events are fused at node c.

From the figure it is easy to understand why path rein-
forcement algorithm is more efficient than random walks for
data delivery. For example, if event ei and ej meet at node
b and they continue to walk randomly in the network, there
will be a very small chance that they can meet again and be
fused with event ek at node c.

1Commonly used frameworks for processing uncertain
sensor data fusion are Bayesian inference method and
Dempster-Shafer theory, but the details are outside of the
scope of this paper. Readers may refer to [3] for more infor-
mation.
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Figure 1: An example of data flows in the network
using path reinforcement algorithm, where ei, ej,
and ek are three relevant events.

4.2 Path Learning Algorithm
Path reinforcement algorithm is quite efficient when there

is no failure in the network. One phenomenon in path re-
inforcement algorithm is that a sensor never checks if its
neighbor has successfully received the data. This will cause
severe data loss problem and decrease the probability of rel-
evant data being fused when node or link failures happen.

To remedy to the problem we can allow each node to re-
transmit the data to another neighbor when a failure is de-
tected. Path reinforcement algorithm with retransmission
is robust, but it is not efficient when failures happen. The
reason is that sensor a may choose a failed neighbor again
when a selects its neighbor randomly. Hence, the key is how
to model the reliability of each neighbor, so we can reduce
the number of retransmission. Here we describe another al-
gorithm, called path learning algorithm, where each node
keeps track of statistics on which neighbor leading to suc-
cessful data delivery.

Formally, the probability of successfully passing events to
a neighbor b ∈ N(a) at time t is defined as Qt(a, b) and
0 < Qt(a, b) < 1. For any neighbor b ∈ N(a), Qt(a, b) is
initialized as 0.5 when t = 0. Given an event ei, node a will
send ei to a neighbor b ∈ N(a) with maximal Q value. Node
a will randomly choose a neighbor for ei if there are any two
neighbors b, c ∈ N(a) and both have maximal Q value at
time t, e.g., Qt(a, b) = Qt(a, c).

After node a sends out an event ei to b, a waits for a
feedback from b in a period of T . The feedback from b can
be defined as

feedback =





1 if b is a sink node for ei

0 if no feedback

maxz∈N(b)Q
t−1(b, z) otherwise

where Qt−1(b, z) is the feedback from b and z has the
maximal probability from the point of b at time t− 1. Here
a sink node means b successfully fuses ei with other relevant
events.

The probability to deliver event ei is updated as

Qt(a, b) = (1− α)Qt−1(a, b) + α ∗ feedback (2)

where α is the learning rate and α = 0.5 in this paper if not
specified otherwise. In the case of no response, node a will
decrease the value of Qt(a, b) and choose another neighbor



Algorithms Efficiency Robustness
Random walks bad bad
Path reinforcement algorithm without retransmission good bad
Path reinforcement algorithm with retransmission average good
Path learning algorithm above average good

Table 1: The comparison of four data delivery algorithms.

to resend the event. The adjusted possibility reduces the
chance of choosing b in the future.

Algorithm 1 presents the path learning algorithm, where
ei is an event for target TK from either node a or other
nodes and Θa(TK) is the set of events about TK that node
a has. Other parameters include: L the pedigree of event ei

and N(a) the set of neighbors of sensor a. The algorithm
has two basic parts: (1) deciding if node a will stop prop-
agating event ei (line 1-3); (2) choosing a reliable neighbor
z ∈ N(a) to deliver ei and z is not in ei’s pedigree L (line
5-18). Finally, sensor a updates its Q value about neighbor
z if feedback 6= 0 (line 23).

Algorithm 1 The path learning algorithm

1: Θa(TK) = Θa(TK) ∪ ei

2: if Θa(TK) has high confidence then
3: Return success
4: else
5: repeat
6: Choose z ∈ N(a) with maximal Qt(a, z) and z /∈ L
7: TTL = TTL− 1
8: L = L ∪ {z}
9: Send event ei to neighbor z

10: if No response from z within time T then
11: Qt(a, z) = (1− α)Qt−1(a, z)
12: if Qt(a, z) < ε then
13: N(a) = N(a)− z
14: end if
15: TTL = TTL− 1
16: L = L− {z}
17: end if
18: until feedback 6= 0 or |N(a)| = φ
19: end if
20: if |N(a)| = φ then
21: Return fail
22: else
23: Qt(a, z) = (1− α)Qt−1(a, b) + α ∗ feedback
24: Return success
25: end if

Path learning algorithm also helps to maintain the topol-
ogy of the network when node failures happen. Node a will
remove the dead node z from its neighbors when Qt

z∈N(a)(a, z)
< ε = 0.1 (line 12-13). Intuitively, node a cannot locally dis-
tinguish a link failure from a node failure for one time data
loss, but it can recognize a neighbor b as a dead node if
sensor b continuously fails to deliver data for several times.
Also, in order to avoid network partition, node a needs to
pass a request in the network when N(a) is small. Any node
with small number of neighbors can accept the request and
become a neighbor of node a.

4.3 Spanning Tree

From the local view of node a, the feedback from b seems
only reinforces the path 〈a, b〉. But, if we look at the data
delivery processes in the whole network, we can find that
data flows generate multiple trees, where each tree repre-
sents a successful data delivery process for a set of relevant
events. The probability Qt(a, b) serves as the gradient of the
path 〈a, b〉 and controls the direction of data flows.

Once we have multiple trees in the network, there will be
two cases for sensor a to deliver an event: (1) if node a is on
a tree and is not the root node, it just forwards the event
according to the gradient of the path; (2) otherwise, node a
just chooses a neighbor with maximal Q value to pass the
event. The latter may extend the existing tree or connect
the tree with another one.

An important question is how to avoid cycles when a tree
connects with another one. A simple way is to check the
pedigree of each event before it was sent out. For example,
if node x attempts to send event ei to node a and a already
appears in the pedigree of event ei, x will first reset the
gradient between them to 0.5, e.g., Qt(x, a) = 0.5 and then
pass ei to another neighbor y with the highest Q value,
where y ∈ N(z) and y 6= a.

Multiple trees will evolve and merge with each other and
finally one spanning tree may emerge in the network. The
advantage of a spanning tree is that the tree keeps track of
the node and link failures and connects most of nodes for
reliable data delivery. Note that, in mobile sensor networks,
any node on the spanning tree can fuse relevant events and
stop the data delivery processes. Hence, our approach is dif-
ferent from other work on building spanning trees in static
microsensor networks, e.g., [10], in which nodes on the span-
ning tree transmit all data to a single sink node and only
the sink node has the fusion function.

Table 1 summarizes the properties of four algorithms in
terms of efficiency and robustness. Here efficiency denotes
the number of messages for data delivery, including both
data and feedbacks. The efficiency of path reinforcement al-
gorithm with retransmission is worse than that of path learn-
ing algorithm since the former randomly chooses a neighbor,
which may be found as a dead node before. Robustness de-
notes the data loss rates when failures happen. Both random
walks and path reinforcement algorithm are vulnerable since
they do not have retransmission mechanisms. They do not
check if a neighbor has received the data or not.

In the experiments we will evaluate only three of them:
random walks, path reinforcement algorithm (without re-
transmission) and path learning algorithm (only for the span-
ning tree).

5. ANALYSIS OF FUSION PROBABILITY
In this section we analyze the probability of relevant events

being fused in a random network using random walks.
For simplicity, we do not consider link and node failures



in the formal model. We assume there are some relevant
events e1, e2, . . ., eF generated by multiple sensors at the
same time. For any sensor node a, the probability that node
a knows ei at hop 0 is Pa(ei, 0), where 1 ≤ i ≤ F .

The probability that sensor node a knows event ei at hop
h as Pa(ei, h) → [0, 1]. In a random network with homoge-
neous sensor nodes, we can model the probability that any
sensor node a knows event ei at hop 0 is

Pa(ei, 0) = 1/|V | (3)

where a ∈ V and |V | is the total number of sensor nodes.
Given the relevant events e1, e2, . . ., eF , the probability that
sensor node a has all these events at hop h is

Pa(∆, h) = Pa(e1, h)Pa(e2, h) . . . Pa(eF , h) (4)

where ∆ is the fused result of events e1, e2, . . ., and eF .
The probability of all relevant events being fused by any

member of the network V is,

PV (∆, h) = 1− ((1− Pa(∆, h))(1− Pb(∆, h)) . . .) (5)

where V = {a, b, . . . , }. PV (∆, h) is called the probability
of fusion. We assume the condition Pa(∆, h) = Pb(∆, h) =
. . . holds in a homogeneous logical network, and we can
rewrite the probability that the team can do the fusion at
hop h as,

PV (∆, h) = 1− (1− Pa(∆, h))|V | (6)

 

Pa(ei, h) Pa(∆, h) PV(∆, h) 

Figure 2: The relationships of three probabilities in
the formal model

Figure 2 gives relationships among three probabilities in
the formal model: Pa(ei, h), Pa(∆, h), and PV (∆, h). From
Equation 4 and Equation 6, we can find that the computa-
tion of the probability of fusion PV (∆, h) is trivial once we
have the value of Pa(ei, h). Next we will describe how to
compute the probability Pa(ei, h) for random walks.

Initially we have Pa(ei, 0) = 1/|V | for any sensor a. Its
probability of knowing event ei at hop 1, Pa(ei, 1), depends
on the follows,

• Its probability of knowing event ei at hop 0, Pa(ei, 0),

• The probability of being told ei from its neighbors at
hop h = 1.

The latter depends on two parts: (1) the probability of
knowing ei for one of its neighbors b at hop zero (h = 0),
Pb(ei, 0); and (2) the probability of whether sensor a can get
ei from any neighbor b, denoted as δ(a, h).

The challenge is how to estimate δ(a, h) for random walks.
Intuitively, random walks can be viewed as a random walker
moving around in the network. If the walker’s position is
on node b, then it has 1/m probability to visit one of its
neighbor. If not, sensor b cannot pass ei to sensor a even
when b knows ei. Figure 3 shows an example of random
walks for event ei in the network, where the random walker
visits node c, b, j, and g and its existing position is at g.
In this case, b cannot pass event ei to a, although a is b’s
neighbor and b knows event ei.

a

c

d
e

b

j

g

fh

i

Figure 3: A example of random walks in the net-
work, where the random walker visits node c, b, j,
and g.

In other words, the event can be propagated from b to one
of its neighbors a only and if only the walker’s position is on
b. For a random walk of ei with h− 1 hops, b is one of the
nodes that ei visits, then we have δ(a, h) = 1/h for a h− 1
hops random walk.

Now let’s estimate the probability being told ei from its
neighbors at hop h. Obviously, we simply have δ(a, 1) =
1 when h = 1. Assume b has m neighbors, where m is
the average degree of the network. The probability that
b will forward ei to a at hop one is δ(a, 1) ∗ 1/m. The
probability of being told ei by one of the neighbor at hop one
is Pb(ei, 0)∗ δ(a, 1)∗1/m. If sensor node a has m neighbors,
the probability a knows ei from any of its neighbors is

Pb(ei, 0) ∗ δ(a, 1) ∗ 1/m ∗m = Pb(ei, 0)

Similarly, the probability a knows ei from its neighbors at
hop h is Pb(ei, h− 1) ∗ δ(a, h), where δ(a, h) = 1/h refers to
the probability of the random walker on node b.

The probability a knows ei at h is

Pa(ei, h) = Pa(ei, h− 1) + (1− Pa(ei, h− 1))Pb(ei, h− 1)/h
(7)

Up to now we consider to fuse all of the relevant events
in the network. Fusing all relevant events is infeasible since,
sometimes, we may only the range of F for a given target and
we do not know the exact number of F . It is also unnecessary
when the confidence of fused data is already high. Therefore,
we may only need to fuse a subset of the events if the number
of relevant events F is big,, e.g., f out of F events and f ≤ F .
We will try to stop the propagation of the rest of relevant
events in the network. As illustrated in Figure 4, sensor a
will stop propagating event e4 if it already fused other three
relevant events e1, e2, and e3.

 

e4 

e2 

e3 

e1 

a 

Figure 4: A subset of relevant events in the network



For similar sensors with fixed probabilities of false alarms,
Thomopoulos et al. have proved that the probability of
detection for fused results is maximized if the number of
sensors is equal to or greater than three [20]. For the rest of
this paper, we choose f = 3 and Pa(e, h) as the probability
of fusing three events at hops h. If F = f = 3, we need to
fuse all three of them and it can be described as f/F = 3/3.
If F > 3 and f = 3, we may only fuse any three of them
together.

Now we try to derive the relationship between Pa(e, h)
and Pa(∆, h). The probability of fusion for 3/4 case is

Pa(e, h)+(1−Pa(e, h))Pa(e, h)+ . . .+(1−Pa(e, h))3Pa(e, h)
(8)

When F > f = 3, the equation can be generalized as

Pa(e, h)(1 + (1− Pa(e, h)) + . . . + (1− Pa(e, h))c1−1) (9)

where c1 = Cf
F . We can find that Pa(e, h) is still very

small when we increase h to 10, e.g., Pa(e, 10) = 0.001.
Hence, we have

1 + (1− Pa(e, h)) + . . . + (1− Pa(e, h))c1−1 ≈ Cf
F

The probability of fusing any three of them can be esti-
mated as

Pa(∆′, h) = c1Pa(e, h)

where c1 = Cf
F .

The probability of fusion for F > f = 3 can be estimated
as

PV (∆′, h) = 1− (1− Pa(∆′, h))|V |

Obviously, we have PV (∆′, h) ≥ PV (∆, h) when we only
need to a subset of relevant events.
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P V ( ∆ ̀, h) 

Hops h 

Algorithm 

Figure 5: The inputs and outputs of the formal
model

Figure 5 describes the inputs and outputs of our formal
model. Given the size of networks |V |, two values F and f ,
we can easily compute the probability of fusion for random
walks at hop h.

Figure 6 visualizes the outputs of the formal model — the
probability of fusion PV (∆′, h) — for a network with 100
nodes, where f = 3. While we may not use random walks
in practice, the results here provide a baseline to test our
proposed algorithms and estimate the low bound of TTL for
a given network and the number of relevant events F .

6. EXPERIMENTAL RESULTS
In this section, we empirically study the data delivery

algorithms. We use a random network of 100 nodes and
each of them has, on average, four neighbors. Nodes are
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Figure 6: Probability of fusion for random walks for
a network with 100 nodes (f = 3).

randomly chosen as the source of relevant events and they
propagate the events according to different algorithms.

The experiments here serve as two purposes in this pa-
per. First, we would like to validate our formal model for
random walks using simulation results. For example, in the
formal model, we assume each node has the same probabil-
ity of knowing event ei at hop h, which is not always true
in practice. Second, we would like to study the robustness
and efficiency of our algorithms.

6.1 Probability of Fusion
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Figure 7: Probability of fusion for random walks,
path reinforcement algorithm, and spanning tree
(3/3 case).

We first study the probability of fusion for random walks,
path reinforcement algorithm (without retransmission) and
spanning tree when there is no failure. The probabilities of
fusion from simulations are averaged over 1000 experiments.

Figure 7 and Figure 8 compare the probabilities of fusion
for 3/3 and 3/5 cases using our formal model (only for ran-
dom walks) and simulations. We can find that the results
for random walks are consistent with those from the formal
model. Also, random walks are quite easy to beat since they
do not consider the relevance between events. For both 3/3
and 3/5 cases, path reinforcement algorithm perform better



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  2  3  4  5  6

pr
ob

ab
ili

ty

hops

random walks using model
random walks using simulation

path reinforcement using simulation
spanning tree using simulation

Figure 8: Probability of fusion for random walks,
path reinforcement algorithm and spanning tree
(3/5 case).

than random walks.
We also study the effects of spanning tree for data delivery

and fusion in the network. We use the first eight sets of rel-
evant events to train the spanning tree and then we test the
probability of fusion for the spanning tree. The results indi-
cate that learning is quite effective for sensor data delivery.
For the 3/5 case, the local learning scheme at least doubles
the probability of fusion for path reinforcement algorithm
when the hop of events is greater than three. The probabil-
ity of fusion for 3/5 is guaranteed to be high if we allow the
set of events to be propagated 6 hops in the network with
100 nodes.

6.2 Robustness
In this section and next section, we study if our localized

algorithm is robust to failures in the network. We choose
a random number between 0 and 0.01 as failure rate λa for
any sensor a. We introduce a random number between 0
and 0.01 as link failure rate between a node and any of its
neighbors.

Figure 9 describes the fusion probability and percentages
of active nodes in the tree and the network when F = 5. The
dead nodes are detected after every 100 time periods. The
figure tells us that trees evolve and merge and quickly one
spanning tree covers most of the sensor nodes. Moreover,
the tree always connects the nodes in the remained network.
Another result is the probability of fusion decreases when
the size of the network decreases. The reason is that the
number of relevant events for fusion F becomes small, e.g.,
F < 5.

We consider the worst case of a mobile sensor network,
where more than 50% nodes are destroyed after 500 time
periods. In the hostile environments like this, e.g., a bat-
tlefield, we probably need to reduce the necessary number
of events for fusion f . For example, if we reduce f from
3 to 2 (F = 5 on the network of 100 nodes), we can still
reach the fusion probability of 70% after 500 time periods
(Figure 10). Another solution is to incrementally deploy
more sensor nodes to the sensor networks, as suggested by
[6]. Figure 10 shows that, if we add 5 nodes to the network
after every 100 time periods, we can still keep pretty high
probability of fusion.

One concern of node failures is whether fused events can
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Figure 9: The fusion probability, percentages of ac-
tive nodes in the tree and in the network (the line
for #nodes in the tree is overlaid by the line for
#nodes in the network).
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Figure 10: The fusion probability in the network
when adding more nodes.

be lost when the fusion node happens to be destroyed. We
study the fusion process and find this is not a problem when
F is relatively big. For example, there are multiple copies of
fused events at different nodes for 3/5 case when each event
is propagated to 6 hops. The redundancy of fused events
increases the survivability of the information and success
rates of coordinating plans and actions for the network.

6.3 Efficiency
One question we did not answer in the formal model is if

path learning algorithm is more efficient than path reinforce-
ment algorithm. Since a node using path learning algorithm
needs the feedback from its neighbors to learn their reliabil-
ities. This will at least double the traffic in the network.

From Figure 11 we can find that if the events are allowed
to propagate longer in the path reinforcement algorithm,
both algorithms have very high probability of fusion. How-
ever, path reinforcement algorithm is vulnerable to node and
link failures. Its probability of fusion becomes low when
node failures happen. One reason is that the events are
lost during information delivery in path reinforcement algo-
rithm. In path learning algorithm we maintain the reliable
data delivery of events through a retransmission mechanism,
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Figure 11: Probability of fusion and efficiency for
path reinforcement algorithm and spanning tree.

where an event is delivered to another neighbor if a node or
link failure is found.

7. CONCLUSION
This paper studies localized data delivery algorithms for

mobile ad hoc sensor networks with failures. The empirical
results show that our path learning algorithm significantly
increases the probability of fusion in the network with node
and link failures.

In future work we will develop methods for tuning system
parameters, such as learning rate α in path learning algo-
rithm, for different numbers of relevant events F , and node
and link failure rates. Moreover, we have previously shown
that small-world networks are more efficient than random
networks for passing tokens in large teams [21, 18]. We plan
to study the effects of different network topologies on prob-
abilities of fusion for our path learning algorithm, especially
when both node and link failures happen in the network.
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