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Abstract

Hierarchies are one of the most common organizational struc-
tures observed in multi-agent systems. In this paper we study
vertical specialization as a reason for hierarchical structures.
In vertically specialized systems, more highly skilled agents
are also more costly. By using less capable agents to ini-
tially process tasks and forwarding only exceptional tasks to
more capable agents, such systems may be able to economize
on the number of highly capable agents. The result is a hi-
erarchical structure with least capable agents at the bottom.
However, such a structure increases the delay in completing
some tasks, because they must pass through multiple levels
of control. Thus, vertical specialization presents a tradeoff
between economizing on skilled agents and increasing task
completion time. We find that for a wide range of settings,
vertical specialization induces an optimal hierarchy of height
at most three. This suggests that a multi-agent system de-
signer interested in exploiting vertical specialization needs to
use at most three levels of specialization in order to reap most
of the benefits.

Introduction
Emerging, exciting applications envision using large num-
bers of robots or software agents to perform a range of dull,
dangerous or dirty tasks (Ortiz, Vincent, & Morisset 2005).
In many of these applications, the same basic task will vary
in difficulty from instance to instance, e.g., calls to a call
center or computer help desk will vary in difficulty from
routine to highly problematic, as will search or mapping
tasks for mobile robots. Vertical specialization is a tech-
nique where the overall cost of an organization is reduced
by employing many cheaper, less capable agents to handle
routine task instances and few highly capable agents for the
more problematic task instances. For robot teams or sensor
networks, higher capability may reflect additional or more
resource-intensive sensors or effectors, with corresponding
higher cost. Thus, intuitively, composing a vertically spe-
cialized multi-agent or multi-robot team will reduce deploy-
ment cost, while maintaining effectiveness.

Specialized agents are often organized so that tasks are
first attempted by less capable agents, passing to more capa-
ble agents only upon failure. The result is effectively a verti-
cal, hierarchical organization, consisting of layers of equally
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capable agents, with least capable agents at the bottom ac-
cepting all incoming tasks, passing tasks they are incapable
of completing up the hierarchy, until they are successfully
performed by a sufficiently capable agent. A variety of
multi-agent systems have been organized in this way, such
as multi-robot teams, information retrieval systems (Zhang
& Lesser 2004), manufacturing systems (S. Bussmann &
Wooldridge 2004), and distributed sensor networks (Kulka-
rni et al. 2005). Designers of such systems face a tradeoff
between two basic constraints. On the one hand, costs can
be reduced by more specialization by minimizing the capa-
bility of the agent dealing with a task of a particular level
of difficulty. On the other hand, since less capable agents
must fail before more capable agents attempt a task, greater
specialization leads to longer delays for more difficult tasks.
The key question addressed by this paper is how to opti-
mally tradeoff between the cost benefits and delay penalties
of vertical specialization, i.e., what is the optimal height of
a vertically specialized hierarchy?

The tradeoff of vertical specialization in human organi-
zations was elegantly modeled by Beggs (Beggs 2001) with
two kinds of costs. The running cost is incurred for each
agent depending on its skill, and is the cost that vertical spe-
cialization reduces. In any case where vertical specialization
might be useful, more capable agents are more expensive.
The second cost in Beggs’s model is a delay cost incurred
for each completed task depending on the time it took for the
task to be completed, and is the cost that inhibits arbitrarily
fine specialization. Building on Beggs’s model, this paper
has two main contributions. First, we apply Beggs’s model
of vertical specialization to multi-agent systems and explore
its implications. Second, we consider three additional ra-
tionales for using a hierarchical organizational structure and
investigate how these impact the tradeoff for the optimal hi-
erarchy height.

To apply Beggs’s model to multi-agent systems, two sim-
plifying assumptions are relaxed. We relax the assumption
that the number of agents at a particular skill level may be
non-integral. Second, we relax the assumption that the cost
of delay is linearly increasing. In many environments, the
cost of delay is highly non-linear; e.g., as a building fire
spreads, the cost for additional delay in locating trapped vic-
tims increases dramatically. Numerical analysis of the re-
sulting model across a wide range of running cost and delay



cost functions shows that overwhelmingly, no more than two
or three specialization levels provides an optimal tradeoff.
This is very surprising, because many human organizations
have much finer specialization. Thus, influences other than
running cost and delay cost must be responsible for the taller
hierarchies observed in human organizations. If those addi-
tional influences are not relevant to agent organizations, it
is possible for multi-agent system designers to focus exclu-
sively on at most three levels of specialization.

We investigated a number of factors that influence the
size of human hierarchies and that may also influence agent
or robot vertical specialization. First, we considered agent
failures, where failed agents must be replaced through pro-
motion of existing agents or the introduction of new agents,
both of which impose replacement costs on the organization.
Second, we considered agents that learn, thereby becoming
more skillful at handling incoming tasks. Third, we general-
ized the nature of hierarchical interactions to accommodate
cases where agents higher in the hierarchy exert some form
of supervision over their subordinates.

Numerical analysis of a model including these additional
factors again showed that there is little or no value to more
than three specializations or hierarchy levels. This finding
is robust even when the system size is scaled to hundreds
of agents and holds across a wide range of cost functions.
While the reported findings assume a continuous tradeoff
between capability and cost, these results are applicable to
embodied systems where agent capabilities are often limited
to a discrete set based on available hardware. This is simply
because drawing from the entire continuum of agent capa-
bilities constitutes an upper bound on the optimal number of
layers in any hierarchy based on vertical specialization.

Problem Statement

In Beggs’s model, an organization is modeled as an open
queueing network, where each agent can process a single
task at a time and has a FIFO queue for buffering pending
tasks. The organization incurs costs to successfully com-
plete tasks of varying difficulties that arise dynamically. If
the average task completion rate exceeds the average task
arrival rate at each agent, the distribution of tasks in the or-
ganization will converge to a single invariant steady state
distribution. The organizational performance is measured by
the expected cost incurred per unit time in this steady-state
equilibrium, which provides a robust measure of long-term
performance independent of initial conditions.

Formally, an organization O = 〈L, λ, µ,K, φ〉, where

• L = {L1, . . . , Ln} the set of n layers that partitions the
agents. Each layer Li = 〈Ni, xi〉 has Ni > 0 agents, each
with skill xi ∈ [0, 1].

• λ the Poisson arrival rate of tasks to the organization.

• µ the exponential service rate of agents performing tasks.

• K : [0, 1] → R
+ the running cost function. For each

agent with skill x, the organization incurs a cost per unit
time of K(x).

• φ : R
+ → R

+ the delay cost function. For each suc-
cessfully completed task, the organization incurs a cost

Figure 1: Tasks arrive at the bottom of the hierarchy to the least

skilled agents. At each level, some of the tasks are successfully

completed, while the remaining tasks are passed to the next layer,

distributing the load evenly. The narrowing black arrows indi-

cate the reduction in flow of tasks as the height in the hierarchy

grows. The top layer is required to complete all remaining unfin-

ished tasks.

of φ(t), where t is the amount of time since the task first
arrived to the organization.

The agents are organized into layers of successively
greater skill. Tasks arrive at the bottom layer (L1), with each
task characterized by a difficulty d ∈ [0, 1] drawn indepen-
dently and uniformly at random. An agent must have skill
xi ≥ d to successfully complete a task of difficulty d. If an
agent fails to successfully complete a task, the task (with no
partial results) is routed to an agent in the next layer.

The organization must be able to process all incoming
tasks in finite time. This imposes the following constraints:

• xn = 1. The top-most layer must be able to process all
remaining tasks.

• λi < Niµ for all 1 ≤ i ≤ n, where λi is the arrival rate to
layer i defined by

λi =

{

λ if i = 1

λ(1 − xi−1) if 1 < i ≤ n
(1)

This is a stability condition, guaranteeing that no agent’s
queue grows unboundedly.

The total number of agents must be at least ⌈ρ⌉, where ρ =
λ/µ is the loading ratio. This follows immediately from the
fact that the lowest layer in the organization must contain at
least ⌈ρ⌉ agents to satisfy the stability requirement.

The total per unit time cost in steady-state equilibrium is

C = λEt[φ(t)] +

n
∑

i=1

NiK(xi) (2)

where Et[φ(t)] is the expected value of φ(t).
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Figure 2: Number of layers in the optimal hierarchy for varying

cost functions. Delay costs increase along the y-axis, and run-

ning costs increase along the x-axis. Diamonds, squares, triangles,

and circles indicate optimal organizations with one, two, three, and

four layers, respectively.

The vertically specialized hierarchical design problem is
to choose the number of layers n and the sizes and skills of
the layers Ni and xi for 1 ≤ i ≤ n such that the system is
stable and C is minimized. Generally it is not possible to
find analytic solutions because calculating the expected de-
lay cost for non-linear φ requires higher moments of the task
delay distribution, a notoriously difficult problem in queue-
ing networks. The problem is further complicated by the
requirement for integral Ni.

Organization Evaluation and Design

Expected organizational costs cannot be determined analyti-
cally in the adapted model. We evaluated costs using Monte
Carlo simulation, with the steady-state empirical average as
an approximation of the expected value. Organizations were
simulated through a warmup period in which 20,000 tasks
were completed to reach the steady-state, then the costs were
averaged over the next 50,000 tasks completed. The average
over 10 repetitions was used to approximate performance,
with standard deviations well below 0.1%.

To solve the vertically specialized design problem, we
used a genetic algorithm that searches the space of possi-
ble organizations for a fixed number of layers. We ran the
genetic algorithm for n = 1, . . . , 5 layers, finding the best
organization for each number of layers. The genetic algo-
rithm took as input the number of layers n, the running cost
K and delay cost φ functions, and the arrival and service rate
parameters λ and µ.

Experimental Results

We conducted a large number of experiments over a wide
range of organization parameter settings. Due to space con-
straints we present only a representative subset of those re-
sults here. The results presented here were obtained with
a loading factor of ρ = 266.67, so that each organization
contained at least 267 members. These results are similar to
those obtained for larger and smaller values of ρ.
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Figure 3: Relative marginal cost savings in increasing the height

of the hierarchy. Unshaded bars indicate worse performance,

shaded bars indicate better performance. (a) Savings of 2 layers

over 1 layer. (b) Savings of 3 layers over 2 layers. (c) Savings of 4

layers over 3 layers.

For most running cost and delay cost functions, we found
that the optimal hierarchy had a height of no more than three.
Figure 2 is a scatter-plot showing the number of layers in the
optimal hierarchies for different K and φ. In the Figure, K
increases from linear to exponential on the x-axis and φ in-
creases from linear to cubic on the y-axis. The border of
diamonds along the left shows that one-layer organizations
are optimal when K is linear. The diamonds along the top
show that one-layer organizations are also optimal when φ
grows quickly, as in quadratic or cubic φ, because the high
delay cost penalizes taller hierarchies. Aside from the ex-
treme top and left of the Figure, most of the points indicate
that the optimal organization has two or three layers.

While the optimal number of layers was varied and some-
times three or even four layers was optimal, the additional
reduction in cost is very small. An example of this is the
lone optimal hierarchy with four layers, which had L =
{〈279, 0.239〉, 〈205, 0.685〉, 〈84, 0.997〉, 〈1, 1.0〉}. In com-
parison, the best three-layered hierarchy for the same K and
φ had L = {〈273, 0.510〉, 〈131, 0.996〉, 〈1, 1.0〉}, and cost
only 0.1% more than the optimal four layer hierarchy.



Figure 3 shows the relative marginal cost savings obtained
by increasing the height of the hierarchy from one layer to
two layers (Fig. 3(a)), two layers to three layers (Fig. 3(b)),
and three layers to four layers (Fig. 3(c)), for the cost func-
tions in Figure 2. Intuitively, positive values show the frac-
tion of cost that can be saved by adding a layer, while neg-
ative values show the fraction of cost that can be saved by
removing a layer. Figure 3(a) clearly shows that the differ-
ence in performance is most significant between one layer
and two layers, with the direction of change primarily de-
pendent on the delay function. In comparison, Figure 3(b) is
mostly flat, indicating that two and three layered hierarchies
tend to perform very similarly. Figure 3(c) is also mostly flat
but with a greater number of negative values, reflecting the
finding that organizations with four layers tend to perform
worse than those with three layers.

From Figures 2 and 3 it is apparent that φ has the great-
est impact on the height of the optimal hierarchy. The rate
of growth of linear φ is strongly correlated with flatter op-
timal hierarchies (r = −0.8342 for quadratic and cubic
K), because high delay costs penalize tall hierarchies. For
quadratic and cubic K, there is also a weaker trend for
faster-growing K to favor taller hierarchies (r = 0.1764
for linear φ), because faster-growing K provide more op-
portunity for vertical specialization to reduce running costs.
However, the smaller magnitude of correlation between the
optimal height and K compared to the magnitude of corre-
lation between optimal height and φ suggests that the cost
savings that can be obtained through vertical specialization
is limited, even for linear φ.

Extensions

Because cost savings due to vertical specialization are not
sufficient reason to design systems with many specialization
levels, we explored other reasons inspired by human orga-
nizations. If these factors were responsible for taller hierar-
chies in human organizations, then they may affect the opti-
mal specialization hierarchy in multi-agent systems as well.
The three extensions described in this section, agent failure,
agent learning, and agent supervision, are representative of
the many extensions we tried.

Agent Failure

One possible reason for taller hierarchies in human organi-
zations is that they allow workers to be promoted to higher
positions, which reduces the frequency of resignations and
reduces turnover costs. Agent failures in multi-agent sys-
tems play a similar role to worker resignations, as failed
agents must be replaced at some cost. If reducing turnover is
a reason for tall human hierarchies, reducing agent failures
may also affect optimal agent specialization.

We extend the model to include a probability of an agent
failing that is dependent on the length of time it has spent
in its current layer, which indicates the length of time that
an agent is using its current capabilities in its current role;
e.g., hardware wear-and-tear starts only when the agent is
outfitted with the new hardware. We assume that agents fail
according to a Weibull distribution with scale parameter α >
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Figure 4: Number of layers in the optimal hierarchy with agent

failure.

0 and shape parameter β > 0. Weibull distributions are
commonly used to model failure rates that increase (β > 1),
decrease (β < 1), or stay constant with time (β = 1). The
results presented here used an increasing failure rate β = 2
(e.g., wear-and-tear on robots) with α = 30, so that for each
agent, the mean time before failure was 26.6, where µ = 1.

Replacing a failed agent is achieved by promoting an
agent from a lower layer. The replacement must be trained
from a starting skill x to the skill y of the agent being re-
placed, which imposes a training cost given by the function
T (y, x), e.g., the cost of acquiring a new robot or upgrad-
ing an existing sensor. If the failed agent was in the bottom
layer, an agent is brought in from outside of the organization,
and is assumed to have a starting skill of x = 0.

Figure 4 shows the number of layers in the optimal hi-
erarchy under agent failure with α = 30, β = 2, and
T (y, x) = 10(y − x)2. Even with agent failure, hierarchies
with three or fewer layers predominate. The addition of the
training cost diminishes the relative weights of the running
and delay costs to the total cost. This is reflected in a reduced
correlation between φ and optimal height (r = −0.262 for
quadratic and cubic K) and between K and optimal height
(r = 0.052 for quadratic and cubic K).

Agent Learning

Human organizations often reduce their training costs by
promoting experienced workers who have already learned
some of the skills necessary to conduct their new job. A sim-
ilar process can work in multi-agent systems, if agents learn
as they process tasks. This is most common with software
learning, but is applicable for both software and embodied
agents: while robots will not “learn” new hardware, most
sensors and effectors require online calibration before they
can be used to full effect.

In the second extension to the basic model, agents learn as
they process jobs. This extension is used in conjunction with
the first extension. In addition to its skill x, every agent is
also assigned a potential skill, denoted χ, which is initially
equal to x, and increases with time. Each agent performs
tasks at its actual skill x and the organization incurs running
costs dependent on x, but χ is used when determining train-
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Figure 5: Number of layers in the optimal hierarchy with agent

learning.

ing costs. Intuitively, this extension may lead to taller op-
timal hierarchies by reducing training costs, because agents
can gain “free training” through learning.

For the results presented here we assume that χ increases
linearly with time from the skill of the agent’s current layer
to the skill of the next layer. This is captured by the formula

χt = xi + min{γt(xi+1 − xi), xi+1 − xi}, (3)

where t is the time the agent has spent at layer i and γ ≥ 0 is
the learning rate. After 1/γ time, the agent’s potential skill
will be equal to the skill of the next layer in the hierarchy.

Figure 5 shows the number of layers in optimal hierar-
chies with agent learning and γ = 0.0333. Optimal hierar-
chies predominantly have at most 3 layers, and even when 4
layers are optimal, there is very little cost saved by using a
fourth layer. The greatest cost savings of a four-layered opti-
mal hierarchy over a three-layered hierarchy is only 1.225%.

Agent Supervision

One primary reason hierarchies exist in human organizations
is to provide supervision, thus maintaining the productivity
of subordinates. The effectiveness of supervision is depen-
dent on how much attention the supervisor can devote to his
or her subordinates. In agent organizations, more capable
agents may monitor less capable agents. For example, a
robot with stereo cameras may provide visual assistance to
a robot with only a laser range-finder, helping to speed up a
search task of the less capable agent, or a matchmaker agent
may monitor requests to an information agent and direct it to
a correct information source. We abstractly model the many
ways one agent could supervise another by modulating the
task processing rate of the subordinate. If supervision has a
major effect on the height of human hierarchies, we might
expect it to have a similar effect on agent hierarchies.

In the third extension to the basic model, we assume that
superiors not only process exceptional tasks from their sub-
ordinates, they also interact with subordinates in other ways
that directly affect the rate at which subordinates process
tasks. The supervision factor σ describes whether the effect
is positive, negative, or neutral. A positive effect (σ > 0) in-
creases the service rate of the subordinate and can be used to

model beneficial high-level guidance or control that is tradi-
tionally associated with hierarchical structures. A negative
effect (σ < 0) slows the service rate of the subordinate and
can reflect additional overhead that the subordinate suffers,
e.g., when a camera-less robot must wait for visual confir-
mation. A neutral effect (σ = 0) has no impact on the ser-
vice rate and is equivalent to the basic model.

We assume that each agent has a fixed and limited amount
of attentional capacity to devote to all of its subordinates,
and that it splits this capacity evenly among all subordinates.
We denote the sets of superiors and subordinates of an agent
a by Superiors(a) and Subordinates(a). The total amount of
attention that an agent a receives from all of its superiors is
termed the oversight of a, and is defined as the sum of the
attention that it receives from each of its superiors. This in
turn has an effect on the agent’s service rate, given by

µa = µ + σ
∑

s∈Superiors(a)

1

|Subordinates(s)|
(4)

where µ is the base service rate. Positive σ values tend to de-
crease the span of control (to provide each subordinate with
greater oversight) and increase the height of the hierarchy.
Negative σ values tend to increase the span of control and
decrease the height of the hierarchy.

Of all the extensions tried, only agent supervision suc-
ceeded in significantly increasing the heights of optimal hi-
erarchies. However, extreme values of σ were required to
do this. Figure 6 shows the height of the optimal hierarchies
for different values of the supervision factor σ. For suffi-
ciently large positive values, the organization can overcome
increased delay costs as tasks move upward through the hier-
archy, because the lower layers process tasks so quickly that
there is very little delay even when a task must pass through
all the levels of the hierarchy. However, the optimal height
does not increase beyond 3 layers except for very large val-
ues of σ; when σ = 10, every agent increases the service
rate of its subordinates by at least 10/N1 (e.g, 3.7% when
N1 = 267), and possibly much more. Eventually, there is a
limit to the increase in optimal height because running costs
limit the number of supervisors an agent can have and the
top layer does not get any supervision bonus. For supervi-
sion factors beyond those indicated in Figure 6, the height
of the optimal hierarchy did not increase beyond four.

When the supervision factor is a sufficiently large neg-
ative value, the increased delay costs offset any benefits of
vertical specialization, resulting in an optimal hierarchy con-
sisting of one layer. It is worth noting that the gains provided
by vertical specialization were substantial enough that a very
large negative supervision factor was required to offset it.
With σ = −20, each agent slows the service rates of its sub-
ordinates by at least 20/N1 (e.g, 7.5% when N1 = 267), and
possibly much more. This demonstrates that while vertical
specialization may not induce very tall optimal hierarchies,
the shallow hierarchies it does induce exploit a substantial
and robust cost savings.

Related Work
Organizational design for multi-agent systems has received
considerable attention in recent years. It is now well-
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established that the organizational design can have signifi-
cant effects on the performance of the system (So & Durfee
1996; Horling & Lesser 2004). However, the majority of or-
ganizational design in multi-agent systems relies on explicit
decompositions in the task environment in order to structure
the organization (Tambe 1997; Giampapa & Sycara 2002;
Lesser et al. 2004). Often the resulting hierarchies closely
mimic the structure of the problem decomposition. While
these techniques are extremely effective, they give no insight
into the usefulness of hierarchical structure in other domains
that lack this explicit decomposition.

Explanations for the prevalence of hierarchies in human
organizations have been extensively studied in economics
and organizational theory. Most of these have focused on
horizontal parallelization, managerial attention (Geanakop-
los & Milgrom 1991), and simplifying coordination (Gar-
icano 2000), all of which are well known to also apply to
multi-agent systems. In comparison, vertical specialization
has received little attention.

A vertically specialized distributed sensor network was
described in (Kulkarni et al. 2005), in which the sensor net-
work had to perform four kinds of tasks: object detection,
object localization, object recognition, and object tracking.
It was found that a three-layered organization substantially
reduced power consumption (running costs) compared to
a single-layered sensor network, without substantially in-
creasing the delay. This work provided a clear example
of vertical specialization, but did not explore the extent to
which vertical specialization could be employed.

Conclusions and Future Work

In this paper we examined the extent to which vertical spe-
cialization can improve performance and found that in many
circumstances it leads to a significant reduction in costs. A
surprising finding was that that two or three levels of spe-
cialization are often optimal or very close to optimal. More-
over, this result is robust to a wide range of organization and
task settings. This suggests that multi-agent system design-
ers need only introduce a small amount of hierarchy in order
to enjoy the benefits of vertical specialization.

While this is a significant advance, there are a number

of issues that require further work. One key issue is multi-
dimensional task complexity, where there are multiple types
of tasks and agent capabilities. This may lead to other orga-
nizational strategies besides vertical specialization, such as
layers including heterogeneous agents, and horizontal spe-
cialization of agents into different capabilities. In some
cases, tasks may require multiple capabilities, which can ne-
cessitate multiple agents working on the same task if they do
not have the requisite capabilities individually. It would be
especially interesting to see if similar results on degrees of
specialization hold for horizontal specialization, where cost
reductions by agents specializing for specific types of tasks
trade off with increased coordination costs for tasks that re-
quire multiple types of capabilities.
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