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Abstract

Individual robots or agents will often need to form coalitions
to accomplish shared tasks, e.g.,in sensor networks or mar-
kets. Furthermore, in most real systems it is infeasible for
entities to interact with all peers. The presence of a social
network can alleviate this problem by providing a neighbor-
hood system within which entities interact with a reduced
number of peers. Previous research has shown that the topol-
ogy of the underlying social network has a dramatic effect
on the quality of coalitions formed and consequently on sys-
tem performance (Gaston & desJardins 2005a). It has also
been shown that it is feasible to develop agents which dy-
namically alter connections to improve an organization’s abil-
ity to form coalitions on the network. However those stud-
ies have not analysed the network topologies that result from
connectivity adaptation strategies. In this paper the result-
ing network topologies were analysed and it was found that
high performance and rapid convergence were attained be-
causescale free networkswere being formed. However it was
observed that organizational performance is not impacted by
limiting the number of links per agent to the total number
of skills available within the population, implying that band-
width was wasted by previous approaches. We used these
observations to inform the design of a token based algorithm
that attains higher performance using an order of magnitude
less messages for both uniform and non-uniform distributions
of skills.

Introduction
As robots and software agents become more capable, more
robust and less expensive, multi-agent systems consistingof
hundreds or thousands of agents are becoming possible(C.,
R., & B. 2005). Often, groups of agents within those sys-
tems will need to dynamically join together in acoalition
to achieve a complex task that none of them can achieve
independently. For sufficiently large, distributed organiza-
tions it can be infeasible for individuals to consider possible
coalitions with any other possible agents, due to time, com-
munication and computation constraints. One approach to
overcoming this limitation is to impose some sort of network
structure on the agents and require that agents only consider
coalitions with neighbors in that network. In such a case, it
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is clear that the nature of the network is critical to the quality
of the coalitions that will be formed.

Gaston first proposed the network approach to overcom-
ing the difficulties of coalition formation in very large or-
ganizations (Gaston & desJardins 2005a; 2005b). Critically,
he showed how simple online adaptation of the network over
time could dramatically improve the ability of the organi-
zation to form coalitions. However, Gaston did not report
on the nature of the networks which were formed, limiting
the ability to understand and improve on the results. Recent
work in a variety of disciplines have shown how networks
characteristics, such as asmall worldsor scale freeprop-
erty(Watts & Strogatz 1998), can have a major impact on
the performance of systems utilizing that network making an
understanding of the topologies key to understanding how
the algorithms work. The focus of this paper, is to under-
stand the network structures evolved by Gaston’s algorithm,
the impact on the evolved structures of key environmental
features and to use insights gained from that analysis to cre-
ate more effective adaptation algorithms.

Analysis of the networks formed following Gaston’s algo-
rithm showed thatscale-free networkswere consistently be-
ing formed. In these networks, a small number of agents, re-
ferred to ashubs, were connected to a high percentage of the
rest of the organization. These networks were intuitively ef-
fective because the hubs were very often able to form coali-
tions of themselves and a selection of the many agents they
were directly connected to. However, in some real world
systems, having agents connected to most of the rest of the
organization is either infeasible or undesirable. To simulate
such scenarios, we prevented the algorithm from exceeding
a defined maximum number of links for any agent. We ob-
served that as long as this maximum was at least equal to
the required coalition size, there were no detrimental effects,
but performance fell away quickly otherwise. Non-uniform
distributions of skill throughout the organization were also
problematic for scale free networks, because hubs were less
often required as a member of a coalition.

Gaston’s network adaptation algorithm relies on an agent
knowing the current degree of all its neighbors’ neighbors,
which either heavily utilizes a point-to-point network or re-
quires a broadcast communication medium. For many do-
mains of interest, bandwidth will be tightly limited, thus it
is of interest to determine whether it is possible to design



an algorithm utilizing less communication, but adapting the
network as effectively. Moreover, analysis of the networks
formed by Gaston’s algorithm showed that limiting the num-
ber of links an agent has, is generally a benefit to the team. A
token-based algorithm was implemented to utilize point-to-
point communication while exploiting the insights into the
effective networks. The algorithm randomly walks a token
from an agent wanting to change its links, to an agent to
which a link would potentially be beneficial. The result was
networks with a more even spread of links per agent. The
performance of the resulting networks often out-performed
Gaston’s algorithm, while using much less communication
for adaptation.

Problem Statement
The following is a formal description of the problem ad-
dressed in this work. There is a population of|A| agents
represented by the setA = {a1, . . . , aN}. The agents are
connected by a network modeled by a matrixE with ele-
mentseij , whereeij = 1 indicates that an edge exists be-
tweenai andaj . Each agent is assigned a single skill given
by σi ∈ [1, σ] whereσ is the number of available skills.

Agents must form coalitions on connected sub-graphs,
to complete tasks introduced to the population. Tasks are
globally advertised and introduced at fixed intervalsµ. Each
taskTk has a size requirement|Tk| and a vector of required
skills RTk

of size |Tk|. Skills are chosen uniformly from
[1, σ]. Tasks are advertised forγ time steps. Any agents
committed to a task are freed if the full compliment of
skills does not become available in the time window during
which the task is advertised. Tasks takeα time steps to
complete. For agentaj to join a coalitionMk there must
exist an edgeeij = 1 such thatai ∈ Mk. The perfor-
mance metric used throughout the remainder of this paper is:

Performancet =
tasks completed on the interval[t − 1000, t]

tasks completed on the interval[0, 2000]

where time is measured in discrete dimensionless units.

Coalition Formation
This section describes the algorithm used in (Gaston & des-
Jardins 2005a) to form coalitions on a network. The pseu-
docode for this algorithm is given by Algorithm 1. The
model of coalition formation is used in this paper is very
simple, however, we are primarily interested in investigating
alternatives to Gaston’s network adaptation strategies and
need to use the same model of coalition formation to make
a fair comparison.

On each iteration of the coalition formation algorithm
each agent has the opportunity to adapt its local connec-
tivity. Each agent chooses to adapt with probability1/|A|
where|A| is the total number of agents.

Agents can be in one of three states, ACTIVE, COM-
MITTED, OR, UNCOMMITTED. An agent in the ACTIVE
state is executing a task. An agent in the UNCOMMITTED
state has not been assigned a task and an agent in the COM-
MITTED state has been assigned a task but the full com-

pliment of skills needed to accomplish the task are not yet
available (complete coalition has not been formed).

If an agent elects not to adapt its local connectivity and
it is in the UNCOMMITTED state, it has two options. The
agent can initiate a coalition to fulfill a task that no other
agent has committed to (lines 4-7 of Algorithm 1), or an
agent can commit to a coalition if it is connected by a link to
an agent already in that coalition and has a skill required by
that coalition (lines 8-11 of Algorithm 1).

The probability that an agent will initiate a coalition is
proportional to the number of its immediate neighbors in the
UNCOMMITTED state. Formally:

IPi =

∑
aj∈A eijI(si, UNCOMMITTED)

∑
aj∈A eij

whereI(x, y) = 1 whenx = y and0 otherwise.

Algorithm 1: Algorithm used by an agent to initiate or join
a coalition.
JOINTEAM()
(1) foreach Tk ∈ T in random order
(2) if |Mk| = 0 andsi = UNCOMMITTED
(3) r ← UNIFORMRANDOM([0, 1])
(4) if r < IPi

(5) if ∃r ∈ RTk
: r = σi

(6) Mk ←Mk

⋃
{ai}

(7) si ← COMMITTED
(8) else if ∃aj : eij = 1, aj ∈ Mk and si =

UNCOMMITTED
(9) if ∃r ∈ RTk

: r = σi and r is unfilled
(10) Mk ←Mk

⋃
{ai}

(11) si← COMMITTED

Local Broadcast Algorithm
Given the above coalition formation algorithm, the underly-
ing network structure is clearly critical. The primary con-
tribution of Gaston’s work was a network adaptation algo-
rithm that improves the orginizations ability to form coali-
tions. We briefly review that algorithm here, before analyz-
ing the networks that result. Subsequently we refer to this as
the local broadcast algorithm.

When an agent elects to adapt its local connectivity, it
probabilistically selects from its neighbor’s neighbors for
candidates to form links to biased by the network degree
of the candidates and it will choose uniformly at random
from its existing links for a link to drop. Agenta′

is neigh-
bor’s neighbors are given byN2

i = {am : eij = 1, ejm =
1, eim = 0, m 6= i}. Whenai adapts, it selects an agent
aj ∈ N2

i to establish a link to using the following probabil-
ity distribution:

P (ai → aj) =
number of linksaj∑

al∈N2

i
number of linksal

The results reported in (Gaston & desJardins 2005a)
showed that a simple algorithm could be used to adapt a



wide variety of initial network topologies producing a net-
work structure on average100% more efficient than the
starting network.

Network Analysis
Our first objective in this investigation was to understand
both the structure of the networks formed by the local broad-
cast algorithm and the relationship between the resulting
network structure and the rate of task completion by coali-
tions formed on the network.

For our initial network topology, following Gaston, we
constructed a variation of the random geometric graph. This
is accomplished by randomly distributing|A| points, one for
each agent, in the unit square. Links are made between
agents whose corresponding points have a euclidean dis-
tance between them that is less thand.

Each graph presented through the remainder of the paper
shows data points that are averaged over50 trials for a pop-
ulation of 500 agents. The following parameter values are
common to all trials:α = γ = σ = |T | = 10, µ = 2.

For each trial the agents were allowed to complete tasks
without network adaptation for2000 iterations to establish a
task completion baseline. Past2000 iterations network adap-
tation was turned on.

To gain an understanding of the network structure formed
by the local broadcast algorithm we conducted an experi-
ment. Figure 1 shows a histogram of the links per agent, for
the resulting network topology after the local broadcast net-
work adaptation algorithm is run for 28000 iterations. The
large number of agents with relatively few links trailing off
to a very small number of agents with relatively large degree
is a signature of a scale free network. The fact that the local
broadcast algorithm is forming scale free networks explains
the high performance of the algorithm. The small number of
agents with high degree connect most of the other agents to-
gether making it possible to form connected subgraphs with
all required skills to complete a task with high probabil-
ity. From an effectiveness standpoint, scale-free networks
are fine, however, there are various reasons to prefer not to
have scale-free networks. This undesirability stems from the
concentration of links and hence communication and effort
at the hub. Thus it is desirable to see whether these hubs are
necessary. Figure 2 shows the effect of limiting the maxi-
mum allowable number of links per agent on the local broad-
cast algorithm. The graph shows that a maximum number of
links greater than10 has no impact on the network adapta-
tion performance of the local broadcast algorithm. However,
below 10 maximum links per agent, performance drops sig-
nificantly. This is because there were a total of10 possi-
ble skills uniformly distributed within the agent population.
With a population of500 agents this gives an expected num-
ber of50 agents with each skill. This means that any degree
greater than10 gives an agent forming a coalition a high
probability of having links to all of the necessary skills. This
is important because it means that the hubs with high degree
formed by the local broadcast algorithm waste bandwidth by
communicating along many unecessary links.

In the previous experiment we noticed that there was a
large amount of variance in the results (not shown). The
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Figure 1: The histogram of links per agent after 28000 it-
erations of the local broadcast algorithm, averaged over 50
trials.
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Figure 2: Effect of limiting the max links/agent on perfor-
mance of local broadcast.
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Figure 3: Change in network adaptation performance of the
local broadcast algorithm asd is varied.

hypothesis for this was that performance was sensitive to
link density. Figure 3 shows the effect of the initial net-
work link density on the performance of the local broadcast
algorithm. The average link density increases with increas-
ing d. Recall that initial networks are formed by randomly
distributing agents within a unit square and connecting any
two agents whose Euclidean separation is less thand. No-
tice, that even for a fixed value ofd there is still significant
variance, this is because the agents are distributed randomly,
therefore the relationship betweend and link density is not a
direct proportion. Note that for larged performance is good
because the initial networks formed already complete a large
number of tasks per iteration. This means that there is only
little room for improvement.

Figure 3 shows that as link density is increased (asd is in-
creased) the performance of the local broadcast algorithm
increases dramatically. Halvingd results in a4.5 times
greater performance. However, a greater number of links re-
sults in higher bandwidth requirements for individual agents
since they must communicate with all neighbors. In addi-
tion, this explains why the results of experiments in which
performance is averaged over different values ofd have a
large amount of variance.

Token Algorithm
We used the insights gained through our study of the net-
work topologies resulting from the local broadcast algo-
rithm, to develop a more efficient token-based connectiv-
ity adaptation strategy. Specifically, we leverage two ob-
servations. The first is that the local broadcast algorithm
was achieving good performance by forming networks with
a relatively small number of agents that act as hubs and link
most of the agents together. The second observation is that
organization performance is not improved when the average
number of links per agents is greater than the total number
of available skills.

Consequently, we designed our algorithm to use a param-
eterMAX DEGREE which limits the maximum number
of links that an agent can have. Furthermore, we chose a to-
ken algorithm because token algorithms have been shown to
collect as much information as broadcast algorithms while
using much less bandwidth (Xuet al. 2005).

The pseudocode for the token algorithm is given by
Algorithm 2 The token algorithm adapts local connectivity
as follows: When an agent decides to form a new link it will
break an existing link uniformly at random and instantiate
a token. The token contains a running sum of the total
number of links of each agent that has held the token thus
far. The initiating agent passes the token to a neighbor using
the PassBiased(token) method given in line3 of Algorithm
2. This method is described below. Upon receiving a token
an agentaj will generate a random real numberr ∈ [0, 1]
and compare this toRv where :

Rv =
number of linksaj∑

number of linksai
ai ∈ Avisited

whereAvisited is the set of agents visited by the token thus
far. If r < Rv the agent currently holding the token will de-
stroy the token and form a new link to the agent that initiated
the token. Otherwise the agent will pass the token on. The
pseudocode for this approach is given by Algorithm2.

Algorithm 2:
FINDTEAMMATETOKEN()
(1) foreach t ∈ tokenList
(2) if Avisited = ∅
(3) PASSBIASED(t)
(4) else if t.TTL 6= 0
(5) t.TTL← t.TTL− 1
(6) r ← UNIFORMRANDOM([0, 1])
(7) t.totalDegree ← t.totalDegree +

this.degree
(8) if r < (Rv = degree

t.totalDegree
) and

this.degree < MAX DEGREE
(9) DROPEDGE(t.creator, randomEdge)
(10) CREATEEDGE(t.creator, this)
(11) else
(12) PASSBIASED(t)

The algorithm passBiased(token) used in lines4 and12 of
Algorithm2 is given by Algorithm3. This algorithm is used
by an agent to select a neighbor to pass a token to biased by
the network degree of its neighbors.

Performance Analysis
We ran experiments to compare the performance of the local
broadcast algorithm to the performance of the token algo-
rithm under a variety of conditions. Figures4,5,6 show a
subset of the results of this investigation. Many others were
omitted due to space constraints, however these results are
representative.

Figure 4 was produced using a uniform distribution of
skills within the agent population, a maximum of 5 links
per agent and value ofd = 0.05. The graph shows that



Algorithm 3: Algorithm used by agents to pass a token to a
neighbor biased by agent degree.
PASSBIASED(token)
(1) totalDegree← 0
(2) while true
(3) n← GETRANDOMNEIGHBORUNIFORM()
(4) totalDegree← totalDegree + n.degree
(5) r ← UNIFORMRANDOM([0, 1])

(6) if r < n.degree

totalDegree

(7) PASSTOKEN(token, n)
(8) break
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Figure 4: With a uniform distribution of skills and max of
5 links/agent local broadcast is outperformed for TTLs of
10,15, token algo uses an order of magnitude fewer mes-
sages.

the biased token algorithm outperforms the local broadcast
algorithm for TTLs of10 and15. For a TTL of15 the net-
works after adaptation complete an average of60% more
tasks, with respect to the starting network configurations,
than the local broadcast algorithm does. The biased token al-
gorithm with TTL 15 and the local broadcast algorithm both
use about2x10

5 messages. This is to be expected because
the maximum number of neighbors that a link can have is
close to the expected number of neighbors considered by
the token algorithm. The difference in performance can be
explained by the relatively small maximum number of links
allowed with respect to the total number of skills required to
complete a task,5 and10 respectively.

Figure 5 was produced using a normal distribution of
skills within the agent population, a maximum of 20 links
per agent and with a value ofd = 0.15. The graph
shows that the biased token algorithm performs about the
same as the local broadcast algorithm does.However, the
biased token algorithm uses 1.8x10

5 messages for a
TTL of 15, while the local broadcast algorithm uses
1.6x10

6 messages an order of magnitude more.
Figure 6 was produced by picking one skill to be ’rare’.
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Figure 5: With a normal distribution of skills and a max
of 20 links/agent, local broadcast is matched by the token
algorithm for all TTLs using an order of magnitude fewer
messages.

That is a single skill was distributed such that the expected
number of agents in the population to have the rare skill was
2. A maximum of 20 links per agent was allowed andd
was varied. The graph shows that the biased token algo-
rithm outperforms the local broadcast algorithm for TTLs of
5, 10 and15. For a TTL of15 the networks after adaptation
on averagedouble in performance with respect to the lo-
cal broadcast algorithm. Moreover, the token algorithm uses
an order of magnitude fewer messages. For a TTL of 15
the token algorithm uses 1.3x10

5 messages while the lo-
cal broadcast algorithm uses 1.0x10

6 messages.This dra-
matic increase in performance is due to the fact that the to-
kens allow an agent to search much deeper into the network
for new agents to make connections with. This increases the
probability of encountering agents with rare skills neededto
complete tasks.

Figure 7 gives the histograms of links per agent of the
final network topologies that correspond with the perfor-
mance graphs of Figure6. These graphs suggest that the
more uniform distributions of links per agent, produced by
the token algorithm, are responsible for the better perfor-
mance. This makes sense in light of Figure 2, which showed
that increasing the number of links beyond 10 (the number
of skills) does not improve performance.

Related Work
Many authors have looked at coalition formation in multi-
agent systems (Sandholm & Lesser 1995; Liet al. 2003;
Shehory, Sycara, & Jha 1997). While some work, like the
Gaston work built on here, focuses on protocols for effi-
cient coalition formation (Gaston & desJardins 2005a), other
work looks at properties of the coalitions formed or puts
bounds on algorithm performance. For example, Sandholm
shows the properties of coalitions formed when agent’s ra-
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Figure 6: With some extremely rare skills and a max of 20
links/agent, variabled, local broadcast is outpeformed for
all TTLs of the token algorithm.

tionality is bounded (Sandholm & Lesser 1995). However,
most coalition formation work does not consider any under-
lying structure between agents.

Recently there has been significant interest in social net-
works (Watts & Strogatz 1998; Barabasi & Bonabeau 2003)
and the impact of those networks on performance of a group.
For example, Xu looked at the impact of networks on coor-
dination algorithms (Xuet al. 2004; 2005), Kleinberg has
looked at networks for search (Kleinberg 2006) and Boyd
has looked at networks forgossip-based information dissem-
ination (Boydet al. 2006).

Conclusion and Future Work
We determined that Gaston’s local broadcast network adap-
tation algorithm attains high performance and rapid conver-
gence because it forms scale free networks, which are often
impractical in real systems, because of the bandwidth burden
on high degree hubs. However, we discovered that organiza-
tional performance is not impacted by thresholding the max-
imum number of links per agent to be at most equal to the
number of skills available within the population. We used
these observations to inform the design of a token based al-
gorithm that attains higher performance using an order of
magnitude less bandwidth than local broadcast. Further-
more, the token algorithm outperforms local broadcast for
non-uniform distributions of skills, which is more typicalin
real systems. The network adaptation algorithms used here
focused only on structure since Gaston found this to be the
highly dominant feature. However, with non-uniform skill
distributions, adaptations taking into account who has what
skill may be useful.

The results presented here point to some interesting ques-
tions for the future. In this work a simple model of coalition
formation was used, as well as a simple notion of coalition.
More complex coalition types, e.g., super additive, or more
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Figure 7: Histogram of network topology after 30000 itera-
tions for the local broadcast algorithm and the biased token
algorithm for TTLs of 5,10,15

sophisticated coalition formation protocols may prefer alter-
native network topologies. Our ongoing efforts are looking
at these questions.
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