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Part I: Short questions (14 points)

1. (4 points) Generate (Z1, X1), . . . , (Zn, Xn) as follows:

Zi =

{
“blue” with probability θ

“red” with probability 1− θ
Xi ∼

{
Poisson(1) If Zi =“blue”

Poisson(4) If Zi =“red”

You are only given the Xi’s. Find a consistent estimator of θ that avoids using
EM. Argue why your estimator is consistent.

Solution:

Calculate E[Xi] = E[E[Xi|Zi]] = θ1 + (1− θ)4 = 4− 3θ. By law of large numbers∑
iXi/n

P→ E[Xi] = E[X]. So set θ̂ = (4− X̄)/3

2. (3 points) Suppose we run a ridge regression with parameter λ on p variables

X1, . . . , Xp. The coefficient I estimate for X1 (β̂ridge(1)) is a. Now m−1 additional
copies of variable X1, i.e. X∗

1 = X∗
2 = · · · = X∗

m−1 = X1 are included and the
ridge regression is refit. How are the new coefficients of the identical copies related
to a ? Prove your answer. Solution: Since the X∗’s are identical copies of Xi’s
and everything else are held fixed, in the alternate problem we are looking for:

arg min
β1,...,βm

∑
i

β2
i

s.t.
∑
i

βi = a.

This is minimized when β1 = · · · = βm = a/m,
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3. (1 point) In n-fold cross-validation each data point belongs to exactly one test fold,
so the test folds are independent. Are the error estimates of the separate folds
also independent? So, given that the data in test folds i and j are independent,
are ei and ej , the error estimates on test folds i and j, also independent? Explain
briefly. Solution: No. The models are dependent since they use the same data

to train.

4. (1 points) (True/False) MAP estimates are more prone to overfitting than MLE.
Explain. Solution: No. MAP estimates smoothes the MLE estimates and in
fact prevent overfitting.

5. (1.5 points) Write down 3 examples of estimators you have seen in the class which
reduce the overall MSE at the expense of introducing a little bias. Solution:
James Stein, Ridge, Lasso.
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6. (1+2.5) Your evil twin gives you a dataset Y1, . . . , Yn. He tells you the points are
drawn i.i.d from a normal distribution, but he will not divulge the mean µ and
variance σ2.

(a) Write down a consistent estimator of σ. (No explanation needed). Solu-
tion: Sample variance (unbiased version)

(b) We will call your answer from the last part Tn. Your evil twin asks you to
estimate the variance of Tn. Name a procedure you have learned in class
to do that. Briefly write down the steps to do it. Hint: your twin is not
evil enough to want you to write long equations. Solution: Parametric
bootstrap
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Part II: Long questions

1. CLUSTERING (8 points)

(a) (3 points) You have 7 datapoints −41,−2,−1, 0, 3, 4, 5. Run k-means with
k = 2 and initial centers at −1 and 4. Use the following figures to show the
successive clusters and cluster centers you get. Solution: All of you got
this right. So, I will skip.
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(b) (1 points) You now have reason to believe that your data has outliers.
How will you change your k-means algorithm to be robust towards outliers?
Throwing away data-points is not an option. Solution: Use median of the
points instead of mean!

(c) (3 points) Now show the steps of your new algorithm over the same dataset
with the same initialization.
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(d) (1 point) You are doing a summer project with Prof. Sarkar. She has a set
of microarray data with a million genes, and 98 patients, with continuous
outcome (survival time) for each patient. There are no missing data. Your
fast computer has broken and would not be ready until the end of summer.
Since you are stuck with a slow computer, Professor Sarkar asks you to first
select the 1000 genes whose absolute correlation with the outcome is largest
and then you apply k-means (with k=2) clustering to the dataset with 98
patients and the 1000 selected genes. You find that the clustering produces
two groups which have very different survival times using a t-test. Professor
Sarkar is delighted and ready to publish. Comment. Solution: You are
using the data twice! Of course the clusters will have different survival rates!

7



2. CLASSIFICATION (8 points)

In class we considered logistic regression and Gaussian Naive Bayes. In particular,
we considered the following types of Gaussian Naive Bayes. We will denote by
GNB-1 the Gaussian Naive Bayes model with two gaussians with means µ1, µ2,
proportion π, and covariance matrices Σ1 6= Σ2. We will also denote by GNB-2
the Gaussian Naive Bayes with means µ1, µ2 and Σ1 = Σ2. Because these are
Naive Bayes models, Σ1,Σ2 are diagonal.

We will denote standard Logistic Regression by LR. We will also consider another
variant of Logistic Regression LR-q where we add featuresXiXj for 1 ≤ i ≤ j ≤ p.
Essentially,

log
P (Y = 1|X, β)

P (Y = 0|X, β)
= β0 + β1X1 + · · ·+ βpXp +

p∑
i=1

p∑
j=i

βijXiXj

Note that where LR estimates a p+1 dimensional weight vector (β), LR-q esti-
mates a vector of length (p+ 1)(p+ 2)/2.

You will need to use the fact that for data generated from two Gaussians with
means µi and full covariance matrices Σ1 6= Σ2, the decision boundary is quadratic.

(a) (1+1+2+1 points) Consider the following datasets generated from different
sets of pairs of Gaussian distributions. Which models (LR, LR-q, GNB-1,
GNB-2) will you use to learn the decision boundaries in each figure? If none
of these can do it write “none”. (No explanation necessary).

Solution: LR-q, GNB-1 Solution: all of them
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Solution: LR-q Solution: LR, LR-q

(b) (3 points) Now consider the following dataset. Write down which models
(LR, LR-q, GNB-1, GNB-2) can be used to correctly classify the data. If
none of these can do it write “none”. Are your findings in line with what
you learned in class, i.e. LR dominates GNB-2? Explain.

Solution: LR-q, GNB-1. Neither LR not GNB-2 can do it since not linear
decision boundary. This does not violate what we saw. The problem is
difficult for both these methods.
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