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14.1 Robust Statistics

We are now going to talk about statistics that are suitable when the data has outliers.

14.1.1 Some Definitions

Let us define the sample median by Mn and the sample mean by: X̄. We know that: when
X1...Xn are i.i.d. random variables drawn from a symmetric distribution with bounded

variance, X → µ. and furthermore via the Central Limit Theorem,
√
n(X̄−µ)
σ

d→ N(0, 1).
As it turns out, the median also converges to the population median, which in case of

symmetric distributions is the mean. To be concrete, for the normal distribution, we have:
√
n(Mn − µ)

σ

d→ N(0, π/2)

Recall the ARE aka the asymptotic relative efficiency. It is the variance of the second
argument divided by the variance of the first. i.e. ARE(Xn,Mn) = π/2 > 1. Higher the
ARE, we know that X̄n is a better estimator than Mn for the normal, since it asymptotically
has smaller variance, albeit they are both converging to the truth.

14.1.2 Some Examples of ARE

The Cauchy Lets take a Cauchy distribution with parameters µ and σ. Recall that a
Cauchy has very heavy tails and in fact its mean and variance are undefined. So µ are σ
here are the location and scale parameters respectively. A Cauchy distribution has very
heavy tails. Suppose we have: X1, ...Xn ∼ Cauchy(µ, σ)
In the case of a Cauchy distribution, the mean does not exist. What we have are:

X̄n ∼ Cauchy(µ, σ2)

Mn ∼ N(µ, (π/4)2 ∗ σ2/n)

ARE(X̄n,Mn) = (π/4)2 ∗ 1/n→ 0
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ν ARE(X̄n,Mn)
≤ 2 0
3 0.62
4 0.89
5 1.041

Table 14.1. ARE values as the degrees of freedom increases for a t distribution

So we see that for a heavy tailed symmetric distribution Median is a better estimator of the
location parameter than the mean.

The t-distribution Lets now change our focus to the t distribution with ν degrees of
freedom. For small ν the t distribution has heavy tails whereas the number of degrees of
freedom increases, t converges to a normal distribution (see table 14.1).

14.1.3 Heuristic Approaches

We will start with some well known heuristics for estimating the location parameter when
the data has outliers.

Definition 14.1. α-trimmed mean The α trimmed mean orders the datapoints first and
then trims a proportion α from both tails and calculates mean of the remaining datapoints.

Definition 14.2. α-Winsorized mean It removes α proportion of datapoints from the
upper and lower tail and replaces them with the closest data points, i.e. the most extreme
of the remaining data points.

Lets do an example with the dataset {2, 4, 5, 10, 100}.

20% trimmed mean: (4 + 5 + 10)/3 = 6.33

20% Winsorized mean: (4 + 4 + 5 + 10 + 10)/5 = 6.6

We will now formalize the notion of robustness.

14.1.4 Local and Global measures of robustness-

Definition 14.3. The Sensitivity curve measures the effect of changing one datapoint
on a given datapoint.

SCn(x, T ) =
T (X1, ..., Xn−1, x)− T (X1, ..., Xn−1)

(1/n)

T is some sample statistic of interest, e.g., the median or mean. Intuitively, the sensitivity
curve is analogous to a derivative of the statistic w.r.t the underlying distribution.
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(A) (B) (C)

Table 14.2. In each of these figures, the midpoint of the x axis is the true location parameter. (A). Changing
any element effects the mean. The larger the x-value of the removed element, the larger impact is made on
the mean. (B). Now consider the case of the median. Adding or removing a single element shifts the median
to an adjacent element. (C). In the case of α-trimmed mean, the sensitivity curve behaves the same as the
sensitivity curve for the mean until we start removing elements that are within the αn elements at the tails
that are discarded. At that point, the curve becomes flat.

Lets work out an example. Consider the sensitivity curve of the sample mean.

SCn(x, X̄n) =
((n− 1)X̄n−1 + x)/n− X̄n−1

1/n
= x− X̄n−1

Definition 14.4. The Influence function is: limn→∞ SCn(x, T ). For example when Tn is
the sample mean, we have IF (x, T, F ) = x − T (F ) where T (F ) is the population mean (if
indeed the mean exists). If the influence function of a statistic is bounded, then we call it
robust.

14.1.5 Breakdown Point

So far we have been looked at local notions of robustness. Now we will consider global
notions of robustness. First we introduce the bias of a sample statistic as:

bias(m,Tn, Z) = supZ′ |Tn(Z ′)− Tn(Z)|,

where Z ′ denotes a corrupted dataset obtained by replacing m datapoints in Z by arbitrary
datapoints. Here, supZ′ can be thought of as a two player game, where you hand me m and
I give you a corrupted dataset that can make your statistic as different as possible from the
statistic computed from the uncorrupted dataset.

Definition 14.5. The Breakdown point is defined as ε∗(Tn, Z) = min{m/n|bias(m,Tn, Z) =
∞}. Intuitively, the breakdown point is how many points need to be replaced to make the
bias go to ∞.

For mean, it is asymptotically 0, for median it is 1/2, and for the α-trimmed mean it is
asymptotically α.
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14.1.6 M-estimators or maximum likelihood type estimators

Lets revisit ML estimation. We start with:

X1...Xn ∼ f(X, θ)

L(X1, . . . , Xn; θ) =
n∏
i=1

f(Xi, θ)

θ̂ ← arg min
n∑
i=1

− log(f(Xi, θ))

∂L

∂θ
=

n∑
i=1

∂

∂θ
log(f(Xi, θ̂)) = 0

On the last line we are simply setting the score function to zero and solving for θ̂. As it
turns out, M-estimators generalize MLE’s. Instead of minimizing − log f(Xi; θ) we will now
minimize a loss function ρ(Xi; θ). Now define by ψ(z) = dρ(z)/dz. This will replace the
score function. So the necessary setup for M-estimation can be described by:

θ̂ ← arg min
n∑
i=1

ρ(Xi, θ)

n∑
i=1

ψ(Xi, θ̂) = 0

ρ(z) does not have to be tied to any particular log likelihood.

Examples When θ̂ is the sample mean, this is the squared loss (Xi − θ)2 whereas for the
sample median it is the absolute loss |Xi − θ|.

ρ(X, θ) = (X − θ)2 ψ(X, θ) = 2(X − θ)→
∑
i

(Xi − θ̂) = 0→ θ̂ = X̄n

ρ(X, θ) = |X − θ| ψ(X, θ) = sign(X − θ) when X 6= θ∑
i

sign(Xi − θ̂) = 0→ θ̂ = Median of X1, . . . , Xn

How does all this tie in with what we have learned so far? It turns out that the influence
function of an M estimator is proportional to its ψ function at point x. And so, as long as
the ψ(x) function is bounded for all x, we have a robust estimator.
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14.1.7 Huber Loss

The famous Huber loss basically combines the squared loss and the absolute loss in an
adaptive way.

ρ(X, θ) =

{
1/2(X − θ)2 If |X − θ| ≤ c

c|X − θ| − c2

2
o.w

The corresponding ψ function is defined as:

ψH(X, θ) =

{
X − θ If |X − θ| ≤ c

c× sign(X − θ) o.w

Figure 14.1. Shown above is Huber’s loss function as the value of c ranges from 1 to ∞

Intuitively, when the data points are not too big, Huber’s loss function penalizes like the
squared loss, otherwise it penalizes like the absolute loss. c is a tuning parameter that is
picked based on what the data is. Huber himself liked to set c to 1.345 which leads to 95%
efficiency if X1...Xn ∼ N(µ, 1).

Up until now we have been pretending that we know the scale parameter or the variance.
But what if that has to be estimated? Outliers will affect the variance far more than
the mean, so we cannot use sample standard deviation. Instead we can use the MAD
estimator: median absolute deviation. Actually is more like MADAM, median absolute
deviation around the median.
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