
STAT 383C: Statistical Modeling I Fall 2015

Lecture 14 — October 13

Lecturer: Purnamrita Sarkar Scribe: Mingzhang Yin, Can Gokalp

Disclaimer: These scribe notes have been slightly proofread and may have typos etc.

Note: The latex template was borrowed from EECS, U.C. Berkeley.

14.1 Conditional Independence

Definition 14.1. For data point i; Xi1, Xi2, ..., Xip conditionally independent given Yi = yi

P (Y = y|Xi1 = x1, Xi2 = x2, ..., Xip = xp) ∝P (Xi1 = x1, Xi2 = x2, ..., Xip|Y = y)P (Y = y)

∝
p∏
i=1

P (Xij = xj|Y = y)P (Y = y)

Now each parameter

θjy = P (Xij = 1|Y = y) =

∑n
i=1 1(Xij=1,yi=y)∑n

i=1 1(yi=y)

P (Xi1, Xi2|Y = y) =θ1yθ2y

The problem we have here is that if we don’t have that observation for any of the θjy’s,
that is to say if

∑n
i=1 1(Xij=1,yi=y) = 0 for a θjy then we would have P (Xi1, Xi2|Y = y) =

θ1yθ2y = 0. Therefore we add a smoothing term to θjy. Now each parameter would be;

θjy = P (Xij = 1|Y = y) =

∑n
i=1 1(Xij=1,yi=y) + 1∑n

i=1 1(yi=y) + 2

14.2 Logistic Regression vs. Naive Bayes

Both models perform classification into two classes. Both models have features, X, and
classes Y=1 or Y=0. Naive Bayes (generative model) estimates a joint a probability for
p(x,y) equal to p(y)× p(x|y) from the training data, and uses Bayes Rule to predict p(y|x)
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for new test cases. Gaussian Naive Bayes (GNB) uses a multivariate Gaussian for the
probability of the features. In contrast, logistic regression models logitp(y|x) directly as a
linear function (discriminative). Let us compare these two methods using some pictures first.
But before that we will need some definitions.

Gaussian Naive Bayes We will consider two types of GNB. Note that in GNB we model:

X|Y = 1 ∼ N(µ1,Σ1)

X|Y = 0 ∼ N(µ0,Σ0)

Note that by assumption, Σ1 and Σ0 are diagonal.

Definition 14.2. We will denote by GNB1 a Naive Bayes model with Σ0 6= Σ1. Recall
from the last lecture that this leads to a quadratic decision boundary.

are diagonal and the decision boundary is quadratic.

Definition 14.3. We denote by GNB2, the case with Σ0 = Σ1. Here the decision boundary
is linear.

Several questions are considered when comparing Gaussian Naive Bayes (GNB) or Logistic
Regression (LR) for classification. Questions consider the comparison of GNB2 models and
LR. For example, which is a preferred model to use– logistic regression or naive bayes? For
any GNB2 model, can there be a logistic regression decision boundary? When does the LR
fit everything but the GNB2 does not? When comparing GNB1 and LR, is one a model a
strict subset of the other?

GNB vs LR GNB-1 can learn quadratic decision boundaries, but LR cannot. On the
other hand, LR can learn the following which GNB-1 or GNB-2 cannot.

On the other hand whatever decision boundary GNB-2 learns is linear and hence can
be learned by Logistic Regression. So Logistic Regression is strictly a better classifier than
GNB-2, since any classifier learned by GNB-2 can be learned by LR as well, but not the
opposite.

In real life, we would not have the parameters at hand and so we would use the decision
boundary after plugging in the MLE of each of the models parameters π, µ1,Σ1, µ0 and Σ0.
Below are some examples of linear and quadratic decision boundaries.

If Σ0 6= Σ1 then we have a quadratic decision boundary as in figure ??:

µ̂0 =

∑n
1 Xi1(Yi = 0)∑n
1 1(Yi = 0)

(14.1)
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Figure 14.1: Linear decision boundary with equal class proportions

Figure 14.2: Quadratic decision boundary with equal class proportions

Also, for j = p,

σ̂0j
2 =

∑n
1 (Xij − µ̂0j)

2
1(Yi = 0)∑n

1 1(Yi = 0)
(14.2)

For an unbiased estimate we would normalize by
∑n

1 1(Yi = 0)− 1. If we get the posterior
distribution of Y, the question is how to make predictions with a given X? Actually, if
P (Y = 1|X) > P (Y = 0|X), we would label Y as 1. This classification criterion can be
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expressed as

log
P (Y = 1|x)

P (Y = 0|x)
= log

f(X|Y = 1)p(Y = 1)

f(X|Y = 1)p(Y = 1)

= −(x− µ1)
TΣ−1

1 (x− µ1)

2
+

(x− µ0)
TΣ−1

0 (x− µ0)

2
+ log

π

1− π
> 0

(14.3)

Here π = P (Y = 1). If we further assume Σ1 = Σ0 = Σ, then we would get a linear decision
boundary

(µ1 − µ0)
TΣ−1(x− µ0 + µ1

2
) + log

π

1− π
> 0 (14.4)

Whenever we get data x, we can plug in the left side of the inequality and label y as 0 if it
is bigger than 0.

Asymptotic behavior For linear classifiers, it is generally believed that LR is preferable
over GNB-2, since it makes no assumption about conditional independence and hence can
estimate a richer class of linear models for classification. However Ng and Jordan showed
in their very nice paper [1] that this is only part of the story. Since GNB-2 makes sim-
plifying assumptions about the model it needs far fewer data-points to reach its (possibly
worse) asymptotic error rate than LR. More concretely they showed that if the data is in k
dimensions, then LR needs O(k) data-points to converge to its asymptotic error rate (which
is lower than that of GNB-2), whereas GNB-2 needs only O(log k) samples.

14.3 Generalized linear models

14.3.1 Logistic regression of categorical data

In previous lecture we introduce logistic regression and IRLS (iteratively reweighed least
squares), but the data we are dealing with is listed by “subject number”, which is corre-
sponding to each observation. A simple example is shown in Table 14.1a. However, as we
can see, several observations may share the same covariate vector, like in the Table 14.1a,
Xi indexed with subject No. 1, 3, 5 share the same covariate vector < 1, 1 >, we say they
are in the same covariate class. It would be more reasonable and more efficient if we list the
data by the covariate class, a simple example is in Table 14.1b. βββAn easy example is:

Now consider implementing logistic regression with this kind of categorical data. Denote
mi as the number of observations in class Xi, yi ∼ Bin(mi, πi). Then link function is

g(πi) = log
πi

1− πi
= XT

i βββ.
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Now let us do the maximum likelihood estimation for logistic regression, the conditional
likelihood and the conditional log likelihood are

L =
n∏
i=1

(
mi

yi

)
πyii (1− πi)mi−yi =

n∏
i=1

(
mi

yi

)
(

πi
1− πi

)yi(1− πi)mi ,

` =
n∑
i=1

(
yiX

T
i βββ −mi log

(
1 + exp(XT

i βββ)
))

+ const,

respectively.
Take the derivative of conditional log likelihood ` and set to 0, we can get:

∂`

∂βr
=

n∑
i=1

yiXir −
n∑
i=1

mi
exp(XT

i βββ)

1 + exp(XT
i βββ)︸ ︷︷ ︸

πi

Xir

=
n∑
i=1

(yi −miπi)Xir = 0,

∂`

∂βββ
= XXXT (yyy − µµµ) = 0,

where µi = miπi.
Note that there is not closed form solution as πi is a non-linear function of βββ. So we need

to compute βββ iteratively using Newton-Raphson method, with update rule:

βββt+1 = βββt −H−1 ∂`

∂βββ
|βββ=βββt ,

which require us to compute the Hessian. An important intermediate step to get Hessian is:

dπi
dβs

=
d

dβs

(
exp(XT

i βββ)

1 + exp(XT
i βββ)

)
=

exp(XT
i βββ)

(1 + exp(−XT
i βββ))

2Xis

= Xisπi(1− πi).

No. Xi yi
1 < 1, 1 > 1
2 < 1, 2 > 0
3 < 1, 1 > 1
4 < 2, 1 > 1
5 < 1, 1 > 0

(a) Data listed by subject No.

Xi mi yi

< 1, 1 > 3 2
< 1, 2 > 1 0
< 2, 1 > 1 1

(b) Data listed by covariate class

Table 14.1: Alternative ways of presenting the same data.
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Then Hessian is

Hrs =
∂2`

∂βr∂βs
= −

n∑
i=1

miXir

(
d

dβs
πi

)
= −

n∑
i=1

miXirXisπi(1− πi),

H = −XXXTWXXX,

where W is a diagonal matrix with Wii = miπi(1− πi), which can be seen as the variance of
yi (note that yi is from binomial distribution).

Plugging the Hessian to the update rule of βββ, we get the IRLS for this problem:

βββt+1 = βββt + (XXXTWXXX)−1XXXT (yyy − µµµ)|βββ=βββt

= (XXXTWXXX)−1XXXTW
(
XXXβββt +W−1(yyy − µµµ)

)︸ ︷︷ ︸
zt

,

Note thatW here is actuallyW t, which changes every iteration, and that is where “reweighed”
comes from. The stop criterion should be something like

|βββt+1 − βββt|
|βββt|

< 10−c,

where c > 0 can be chosen by the user. This is in case that |βββt| is very small and may be in
same order as 10−c.

Analogy 14.1. (Estimation of yyy: LS and IRLS.)

1. Least squares is to minimize squared error

(yyy −XXXβββ)T (yyy −XXXβββ),

where the model is
yyy ∼ N (XXXβββ, σ2III);

2. IRLS is to minimize weighed squared error

(yyy −XXXβββ)TΣ−1(yyy −XXXβββ),

, which arises from MLE estimation for the heteroskedastic model

yyy ∼ N (XXXβββ,Σ).
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14.3.2 Logistic regression of count data

Now we have applied logistic regression to categorical data, what about count data? The
procedures are very similar, we use Poisson distribution, which is widely used to model count
data, as an example here.

Suppose yi ∼ Pois(λi), where λi = exp(XT
i βββ).

First write out the conditional likelihood L and conditional log likelihood `, get the
derivative of ` and set to 0:

L =
n∏
i=1

exp(−λi)λyii
yi!

,

` =
n∑
i=1

(
−λi + yiX

T
i βββ
)

+ const,

∂`

∂βr
=

n∑
i=1

(yiXir − λiXir) =
n∑
i=1

(yi − λi)Xir = 0,

∂`

∂βββ
= XXXT (yyy − µµµ),

where µi = λi.
There is also no closed form solution as λi is not invariant to βββ. And use Newton-Raphson

method too:

βββt+1 = βββt −H−1 ∂`

∂βββ
|βββ=βββt ,

Hrs =
∂2`

∂βr∂βs
= − d

dβs

n∑
i=1

λiXir = −
n∑
i=1

λiXisXir,

H = −XXXTWXXX,

where W is a diagonal matrix with Wii = λi, which can be seen as the variance of yi (note
that yi is from Poisson distribution).

The IRLS steps are exactly the same as what we have when discussing logistic regression
for categorical data.

Note that a fan fact is that diagonal of W are variance of yi for both categorical data
and count data, this leads to an analogy with least squares.

Analogy 14.2. (Estimation of βββ: LS and LR)

1. Least squares estimates βββ as

β̂ββls ∼ N
(
βββ, (XXXTXXX)−1σ2

)
;
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2. Logistic regression estimates βββ as

β̂ββlogistic
d−→ N

(
βββ, (XXXTWXXX)−1

)
.

So we get

E
[
β̂ββ
]
→ βββ,

cov(β̂ββ) → (XXXTWXXX)−1.
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