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Disclaimer: These scribe notes have been slightly proofread and may have typos etc.

12.1 How collinearity effect ridge and lasso

Let us us assume that we have m copies of the same feature (similar to add m− 1 copies).

12.1.1 Ridge

min
[
(y −Xβ)T (y −Xβ) + λβTβ

]
β̂ =

(
XTX + λI

)
a =

XTy

XTX + λ

(12.1)

The same for m copies.

β̂′ =
(
xTx · J + λI

)−1
xTy (12.2)

Using
XTX = (xTx)J

XTy = (xTy)1m
(12.3)

Eq. ?? becomes
β̂′ = (xTy)(cJ + λI)−11m (12.4)

Now, using the following expressions

J = 1m · 1Tm = (m, 1m)

cJ = (cm, 1m)

cJ + λI = (cm+ λ, 1m)

(12.5)

Eq. ?? becomes

β̂′ = (xTy)
1m

cm+ λ
(12.6)

Therefore

β̂′ = ax
c+ λ

cm+ λ
= ax

1 + λ
XTX

m+ λ
XTX

≈ a

m
(12.7)
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The last equality holds for small λ.
Now let’s solve the HW question.

xi1 = xi2 = xi3 = ... = xim = x (12.8)

Then

∑
i

yi − xiβ1 −∑
j 6=i

Xijβj

2

+ λ
∑
j

β2
j

=
∑
i

yi −∑
j

Xi1

(
β′11 + β′12 + ...+ β′1m

)
−
∑
j

Xijβ1

2

+ λ
m∑
j=1

(
β′1j

)2
+

p∑
j=2

(
β′j

)2

=


∑
i

yi −∑
j

Xi1

(
β′11 + β′12 + ...+ β′1m

)
−
∑
j

Xijβ1

2

+ λ

p∑
j=1

(
β′j

)2+
m∑
j=1

(
β′j1

)2
− β′21

(12.9)
When n is large, the first part of the optimization dominates, and so we can make the
following approximate argument. Say we keep the first part pinned at its original optimal
value,

β′11 + β′12 + ...+ β′1m = a (12.10)

Minimizing

min
m∑
k=1

(
β′ij

)2
(12.11)

Consequently, all β′ij should be the same, such that∑
j

β′ij = a (12.12)

12.2 Logistic regression

12.2.1 Multiclass logistic regression

b for every class.

P
(
y = k|xj

)
∝ eβ

T
mxi =

eβ
T
k x∑

i e
βT
i xi

(12.13)

Assuming
β′k = 0p (12.14)

and applying the transformation

β′j = βj − βk, j 6= k (12.15)
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Eq. ?? becomes

P
(
y = k|xj

)
=

1∑
c e

(βc−βk)T xi
(12.16)

Discriminative, because does not care about x distribution (generated). It cares only about
how

(
Y |x

)
was generated.

12.2.2 Generative analogued (Linear discriminant analysis)

Xi|yi = K ∼ N(µk,Σk), (12.17)

where µ and Σ are known. how to decide which class involves any particular points (Point
classification).

P (yi = k) = πk (12.18)

P
(
Y = 1|xξ

)
∝ P

(
x|Y = 1

)
P (Y = 1)

=
1

(2π)p/2 |Σ|
exp

(
−(x− µ1)

TΣ−11 (x− µ1)

2

)
π1

(12.19)

Decision rule. Classify as 1 if

P
(
yi = 1|x

)
≥ P

(
Y = 0|x

)
(12.20)

Similarly,
logP

(
yi = 1|x

)
≥ logP

(
Y = 0|x

)
(12.21)

− 1

2
log |Σ1| −

(x− µ1)
TΣ−11 (x− µ1)

2
+ log π1 ≥

− 1

2
log |Σ2| −

(x− µ2)
TΣ−12 (x− µ2)

2
+ log π2

(12.22)

If
Σ1 = Σ2, (12.23)

then we get a linear decision boundary.

− (x− µ1)
TΣ−1(x− µ1) + (x− µ2)

TΣ−1(x− µ2)

2
≥ log

π2
π1

(12.24)

2µT1 Σ−1(x− µ1)− 2µT2 Σ−1(x− µ2) +
µT1 Σ−1µ1 − µT2 Σ−1µ2

2
≥ log

π2
π1

(12.25)

−
(
x− µ1 + µ2

2

)T
Σ−1(µ2 − µ1) ≥ log

π2
π1

(12.26)
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