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7.1 Model Selection

7.1.1 F-Test

While the z-test, tests the significance of individual parameters, it does not simultaneously
test the significance of parameters in our linear model. To do this we can use the F-test.
The null hypothesis for the F-test is that a subset of parameters are zero and the alternative
is that at least one of them is non-zero.

Following is the expression for the F-statistic for a linear model, where RSS is the residual
sum of squares and k is the number of dropped features in the reduced model.

Fk,n−p−1 ∼
(RSS (p)−RSS (p+ k)) /k

RSS (p+ k) / (n− p− k − 1)

If the F-statistic is too high then we will reject the null hypothesis. Which means that
not all dropped features are redundant.

7.1.2 Model building advice

Remember you cannot use the data twice, once for doing model selection and then again
for calculating prediction error. As we keep increasing the model complexity, the training
error keeps decreasing and after some point the test error increases. This is the point beyond
which all you are doing is fitting the noise in your training data, i.e. over-fitting. This is
useless because what you really care about is having an estimation procedure that predicts
unseen data well, i.e. generalizes well.

When selecting which model to use, you may split the data into three parts, training
data, validation data, and test data. You can fit many different models on the training data,
choose a model by determining which gives the smallest error on the validation data, and
then test prediction performance on the test data.

Bottom line–your test data should be in a VAULT to be taken out only once
for reporting the error!
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7.1.3 Model selection criteria

p is the number of predictors in our model, ln(L) is the log-likelihood of the of the data
evaluated at the MLE.

1. Mallows Cp = R̂tr + 2pσ̂2. Here we replace the Rtr by the training error calculated
over data.

2. AIC (Akaike Information Criterion) = −2ln(L) + 2p.

3. BIC (Bayes Information Criterion) = −2ln(L) + log(n)p. BIC is more conservative.

7.1.4 Similarity between AIC and Mallow’s Cp

We know that our residuals are normal and iid, ε ∼ N (0, σ2I). Hence their likelihood and
log-likelihood can be written is

L
(
ε|σ̂2

)
= 1

(2π)n/2 exp
{
− 1

2σ̂2
ε>ε
}

= 1

(2π)n/2 exp

{
− 1

2σ̂2

(
y −Xβ̂ββ

)> (
y −Xβ̂ββ

)}

ln (L) = C −

(
y −Xβ̂ββ

)> (
y −Xβ̂ββ

)
2σ̂2

= C − R̂tr

2σ̂2

Now we can simplify the formula for AIC

AIC = −2 log (L) + 2p ≈ R̂tr

σ̂2
+ 2p = σ̂2

(
R̂tr + 2p

)
7.1.5 The optimism of training error

We will show that the training error is always strictly smaller than the test error, known as
the “optimism of training error.”

Typically we would consider the following Gaussian model:

yyytr ∼ N(XXX trβββ, σ2I) yyytest ∼ N(XXX testβββ, σ2I).

Then we define

Rtr = Eytr

[
n∑
i=1

(ytri − (xxxtri )T β̂ββ)2

]

Rtest = EytrEytest

[
n∑
i=1

(ytesti − (xxxtesti )T β̂ββ)2

]
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The test error really is Eytr
[
Eytest

[∑n
i=1(y

test
i − (xxxtesti )T β̂ββ)2|ytr

]]
. We will drop the condi-

tional notation for simplicity. Note that β̂ββ̂βββ̂βββ depends on the training data and is in fact a
linear function of yyytr.

In order to show this we will use some new setup just because that helps the analysis.
We will fix the independent variables at xxx1,xxx2, . . . ,xxxn. We will observe two sets of response
variables from these, one training set ytr1 , ..., y

tr
n on which we will calculate the estimate of βββ

and a test set and ytest1 , ..., ytestn , where will we check how well the β̂ββ̂βββ̂βββ performs in terms of the
RSS. In this case the test error is coined “in sample error”.

Rtr −Rtest =
n∑
i=1

Eytr((y
tr
i )2 + (xxxTi β̂ββ)2 − 2ytri (xxxTi β̂ββ))

−
n∑
i=1

EytrEytest(y
test2

i + (xxxtiβ̂ββ)2 − 2ytesti (xxxTi β̂ββ))

= −2
n∑
i=1

E
[
yi(xxx

T
i β̂ββ)− EyiE(xxxTi β̂ββ)

]
= −2

n∑
i=1

Cov(yi,xxx
T
i βββ)

The third line is true because EytrEytest(y
test2

i ) = Eytest(y
test2

i ) = Eytr(y
tr2

i ) since ytri and

ytesti are identically distributed. The fourth line uses the fact that β̂ββ̂βββ̂βββ and yyytest are independent!
This is crucial here.

Why is the covariance positive? Well, your best linear fit is designed to have positive
covariance with the data yi! In fact, this is intuitively telling us how training error underes-
timates the test error by looking at the data twice. Furthermore observe that:

n∑
i=1

Cov(yi, ŷi) = E

n∑
i=1

(yi − xxxTi βββ)(ŷi − xxxTi βββ)

= E
n∑
i=1

(yi − xxxTi βββ)(xxxTi (XXXTXXX)−1XXXTy − xxxTi βββ)

= E

n∑
i=1

(yi − xxxTi βββ)xxxTi (XXXTXXX)−1XXXT (y −XXXβββ)

= E((yyy −XXXβββ)XXX(XXXTXXX)−1XXXT (yyy −XXXβββ))

The above is equivalent to σ2E(zzzTHzzz), where zzz ∼ N(0, I) and H = XXX(XXXTXXX)−1XXXT .
Using the fact that tr(H) = tr(XXX(XXXTXXX)−1XXXT = tr((XXXTXXX)−1XXXTXXX) = tr(Ik×k) = k,
we arrive at Rtr −Rtest = −2σ2k, where k is the number of coavriates of our data.
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So,
Rtest = Rtr + 2σ2k = Lack of fit + model complexity.
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