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Note: The latex template was borrowed from EECS, U.C. Berkeley.

5.1 Quick Note on MLE Existence

Two examples were provided to highlight the possibility that an MLE may not exist. Ex-
ample 1: Let X ∼ N(µ, σ2). Let θ =< µ, σ >, theta ε RxR+. The usual pdf for the normal
is used here, which is equal to

f(x, θ) =
1√

2π ∗ σ
∗ exp(−(x− µ)2

2σ2
)

log(f(x, θ)) = c− (x− u)2

2σ2
− log(σ)

So the MLE would be

0 =
−(x− µ)2

2σ̂3
− 1

σ̂
σ̂2 = (x− µ)2

But if x = µ, then σ = 0, which is not allowed. So the MLE does not exist in this case.

Example 2: Let Xi ∼ uniform(0, θ). If the interval included its boundary, then clearly
the MLE would be θ = max[Xi]. But since this interval does not include its boundary, the
MLE cannot be the maximum, and therefore an MLE does not exist.

5.2 Expounding on the Admissibility of Shrinkage Es-

timators

As was previously mentioned, it is somewhat difficult to intuitively understand why these
particular shrinkage estimators are admissible over the MLE. The below begins with the
Bayesian approach to the problem. Beginning with

XXX|θ ∼ N(θθθ, I), θ ∼ N(0, τ 2 ∗ I)
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The posterior mean from empirical bayes is just

X ∗ (1− 1

1 + τ 2
)

With that, we can aim to show that the MSE of this posterior estimator is preferable to the
MSE of the MLE. For the moment, we will assume we knew Tau exactly. This allows for
an easier proof of the MSE decreasing. In reality, we could perhaps approximate it from the
data, though the classical Bayesian approach would not allow for this, as it violates the idea
of a prior distribution.

E[(θθθpost − θθθ)T (θθθpost − θθθ)] = E[(
τ 2

1 + τ 2
X − θθθ)T ∗ (

τ 2

1 + τ 2
X − θθθ)] (5.1)

For ease of notation, let

c =
1

1 + τ 2
(5.2)

Therefore, the above becomes

= E[(XXX − θθθ − cXXX)T (XXX − θθθ − cXXX)

= E[(XXX − θθθ)T (XXX − θθθ)] + c2E[XXXTXXX]− 2cE[XXXT (XXX − θθθ)]
= MSE(XXX)− (2c− c2)E[XXXTXXX] + 2cE[XXXTθθθ]

To show that the above does indeed equal something smaller than the MSE, it is easiest to
break it up into pieces. First, recall the law of iterated expectations. Using this law,

E[XXX] = E[E[XXX|θθθ]] = E[θθθ] = 0

var[XXX] = E[var(XXX|θθθ)] + var(E[XXX|θθθ]) = E[I] + var(θθθ) = I(1 + τ 2)

As it turns out,XXX also has a normal distribution whose parameters using the above derivation
is:

XXX ∼ N(0, (1 + τ 2)I)

This is useful because it implies that
XXXTXXX

1 + τ 2

is a chi-squared distribution with degrees of freedom p. So, by properties of the chi squared
distribution,

E[XXXTXXX] = (1 + τ 2)p (5.3)

Combining this with the original definition for c shows that:

= (2c− c2)E[XXXTXXX]

= c(2− c) ∗ E[XXXTXXX]

=
1 + 2τ 2

(1 + τ 2)2
∗ p
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For the next part, the law of iterated expectation and the chi squared distributions are again
very useful. The bulk of the work comes from simply implementing the law.

E[θθθTXXX] = E[E[θθθTXXX
¯
|θ]] = E[θTE[X|θ]] = E[θT θ] =

∑
i

E[θ2i ] = τ 2p

Combining this with the original definition for c shows that:

= 2c ∗ E[θθθTXXX]

=
2τ 2

1 + τ 2
∗ p

Now, if we combine these two facts with the original definition of c, we can simplify our
original expression for the MSE.

MSE(θθθpost) = MSE(XXX)− (2c− c2)E[XXXTXXX] + 2cE[XXXTθθθ]

= MSE(XXX)− 1 + 2τ 2

1 + τ 2
∗ p+

2τ 2

1 + τ 2
∗ p

= MSE(XXX)− 1

1 + τ 2
∗ p

So, as long as we know τ , we have found a way to create a shrinkage estimator that is uni-
formaly better than MLE in terms of its MSE. Also, this posterior mean approach creates
something that is similar to the James-Stein Estimator. However, this example was not
entirely realistic. What if we did not know Tau? Would we still do better than the MLE?
It turns out that if we use some y to estimate tau, we arrive at the James Stein Estimator.

Recall the following: θ̂post = (1− 1
1+τ2

) ∗XXX.
If we don’t know τ , we must estimate it. Consider a random variable Y s.t.

E[Y ] =
1

1 + τ 2

Now, let V = XXXTXXX
1+τ2

. By definition, V is a chi-squared distribution, as it is equal to Σ( X√
1+τ2

)2.

Now, take 1
V

. This has the inverse chi squared distribution. By properties of the inverse chi

squared, E[ 1
V

] = 1
p−2 = E[ 1+τ

2

XXXTXXX
]. Now, notice the following:

E[
p− 2

XXXTXXX
] = (p− 2)E[

1

XXXTXXX
] = (p− 2)(

1

(p− 2)(1 + τ 2)
) =

1

1 + τ 2

Therefore, since this yields the desired expectation, Y = p−2
XXXTXXX

. Now, using this value of
y as an estimator for 1 − 1

1+τ2
yields the following, which is equivalent to the James Stein

Estimator:

θ̂empirical bayes = (1− p− 2

XXXTXXX
) ∗XXX

We call this “empirical bayes” since here we used a Bayesian model and then played
frequentist by estimating the hyperparameter using the data.
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5.3 Linear Regression

5.3.1 Model and MLE

Here is a linear model for linear regression. Lets first do it for one pair of data points (x, y).

y = β0 + β1 · x1 + ......+ βp · xp + ε, ε ∼ N(0, σ2)

Now, for n data-points (xi, yi), where xi = (xi1, xi2, . . . , xip) we can write it in matrix notation
as follows:

We can write this in matrix form by stacking the datapoints as the rows of a matrix XXX
so that xij is the j-th feature of the i-th datapoint. Then writing Y , β and ε as column
vectors, we can write the matrix form of the linear regression model as:

yyy = XXXβββ + εεε

where:

yyy =


Y1
Y2
...
Yn

 , εεε =


ε1
ε2
...
εn

 ,βββ =


β0
β1
β2
...
βp

 , and XXX =


1 x12 . . . x1p
1 x22 . . . x2p
...

...
. . .

...
1 xn2 . . . xnp


Assume that εi is normally distributed with variance σ2. And so ε. We will now calculate
the MLE β̂ of β.

We are using the notation where smaller case bold letters denote vectors, capital bold
dentotes matrices.

f(yyy,βββ) ∝ exp(
−(yyy −XXXβββ)T (yyy −XXXβββ)

2σ2
)

Take Log, we can get:
−(yyy −XXXβββ)T (yyy −XXXβββ)

2σ2
(5.4)

Same drill– differentiate and set it to zero.

−XXXT (yyy −XXXβ̂ββ) = 0→XXXTXXXβ̂ββ = XXXTyyy → β̂ββ = (XXXTXXX)−1XXXTyyy

5.3.2 Relation to least squares

Lets say I wanted to calculate an estimate that minimized the residual sum of squares (RSS).

βββLS = min
βββ′

RSS(βββ′) := min
β′

∑
i

(yi − xxxTi βββ′)2

As it turns out, RSS(βββ′) is none other than (yyy − XXXβββ′)T (yyy − XXXβββ′). But remember,
because the noises are all independently drawn from the same mean zero normal distribution,
maximizing log likelihood boils down to minimizing the RSS. And in this special case, the
least squares estimate is identical to the MLE.
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5.3.3 Expectation and Variance of β̂̂β̂β

Now, we want to find the E[β̂], V ar[β̂]. Lets put down some ground rules for taking expecta-
tions of vector valued random variables. Say zzz = Ayyy where A is a fixed matrix. E[zzz] = AE[yyy]
and var(zzz) = Avar(zzz)AT . Recall that E[yyy] = XXXβββ and var(yyy) = σ2III

E[β̂̂β̂β] = (XXXTXXX)−1XXXTE[yyy] = (XXXTXXX)−1XXXTXXXβββ

var[β̂̂β̂β] = (XXXTXXX)−1XXXTvar[yyy]XXX(XXXTXXX)−1 = σ2(XXXTXXX)−1

Conclusion: β̂̂β̂β ∼ N(βββ, σ2(XXXTXXX)−1). Note: this is not approximate, but exact!
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