
STAT 383C: Statistical Modeling I Fall 2015

Lecture 23 — November 22

Lecturer: Purnamrita Sarkar Scribe: Mariia Shovkun

Disclaimer: These scribe notes have been slightly proofread and may have typos etc.

Note: The latex template was borrowed from EECS, U.C. Berkeley. Also these set
of notes closely followed some of Larry Wasserman’s class notes from CMU.

23.1 Non-Parametric bootstrap - new

Let us assume that we have n data points. X1...Xn are i.i.d. X1...Xn ∼ F , where F is a set
of cell distributions. F is a set of all cdf’s.

T: F → R
θ =T(F) which is a sophistical function

F is

{
discrete, pmf, p(x)

continuous, pdf, f(x)

We also define: ∫
g(x)dF (x) =

{∑
g(xj)p(xj), discrete∫
g(x)f(x), continuous

(23.1)

Example: Mean, variance, and median are all functionals of the population cdf F :

µ :=

∫
xdF (x) (23.2)

σ2 :=

∫
(x− µ)2dF (x) =

∫
x2dF (x)−

(∫
xdF (x)

)2

(23.3)

Population median := F−1(
1

2
) (23.4)

More complicated examples would include the largest eigenvalue of the covariance matrix.
Now, why are we doing all this? As it turns out, most estimators can be written as

substituting the F by F̂n, where F̂n is empirical C.D.F; it puts 1
n

mass on each data point.

F (t) = P (x ≤ t) F̂n(t) =

∑n
i=1 1(xi ≤ t)

n
(23.5)

If θ = T (F ), then the estimator is:

θ̂n = T (F̂n)
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We will now put down more groundwork by introducing a linear statistical functional. T (F )
is a linear functional, if

T (F ) =

∫
a(x)dF (x).

The “plug-in” estimator is given by:

T (F̂n) =

∫
a(x)dFn(x) =

∑n
i=1 a(xi)

n

More examples of “plug-in” estimators: µ =
∫
xdF (x)

µ̂ =

∑n
i=1 xi
n

(23.6)

σ̂2 =

∑
x2i
n
−
(∑

xi
n

)2

(23.7)

Estimator for the median = F̂−1n (1/2) (23.8)

The plugin estimator of skewness κ = E(x−µ)3
σ3 , is given by:

κ̂ =

∑
i(xi − x̄)3/n

σ̂3

Well, bootstrap mainly comes into play when you want to calculate the variance of an
estimator, or a confidence interval. Lets start this by first calculating a non-parametric CI
for the median.

Non-parametric confidence interval for the median of F Let Y1...Yn ∼ F . We
want t1, t2 such that,

p(t1 ≤ θ ≤ t− 2) ≥ 1− α

where θ is the median.
Define:

Zi =
sign(Yi − θ) + 1

2
=

{
1, if Yi > θ

0, if Yi < θ

Since Zi ∼ Bernoulli(1/2), then

T =
n∑
i=1

Zi ∼ Binomial(n,
1

2
)

Lets find k1,, k2, such that
P (k1 ≤ T ≤ k2) ≥ 1− α

{T ≥ k1} = {#{i : Yi > θ} ≥ k1} ⇐⇒ θ < Y(n−k1+1)
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Using the same approach

{T ≤ k2} = {#{i : Yi < θ} ≤ k2} ⇐⇒ θ > Y(n−k2)

Here Y(i) is the ith order statistic.

P (Y(n−k2)) < θ < T(n−k1+1) ≥ 1− α

So t1 = Y(n−k2) and T = Y(n−k1+1)). How to define k1 and k2? For the large n (T −
n/2)/

√
n/4 → N(0, 1). So we can read it from the normal table. Can get k1, k2 from

Normal table because
T − n/2√

n/4
→ N(0, 1)

How about the variance of the median? Let θ̂n be the meadian of X1, . . . , Xn ∼ F ,
which is a symmetric distribution with pdf f and location parameter θ and scale parameter
σ2 = 1.

√
n(θ̂n − θ)

d−→ N

(
0,

1

4f(θ)2

)
Note that in order to get the asymptotic variance, we will need to know the density f .

This is where Bootstrap comes into play. Its a blackbox which estimates the variance of
most estimators, as long as F is “well behaved”. Lets start by writing the variance of the
following estimator.

θ̂n = g(X1, ...Xn)

Assuming that X1...Xn are iid, X1...Xn ∼ F , and that F is known:

V ar(θ̂n) =

∫ (
θ̂n − Eθ̂n

)2
dF =

∫
θ̂n

2
dF −

(∫
θndF

)2

Approximate the variance using sampling:
Pick the sample from X1...Xn ∼ F . Calculate

θ̂n
(i)

= g(X
(i)
1 , X

(i)
2 , ...X(i)

n )

Let us do B datasets. Then the

V̂ar(θ̂n) =

∑
θ
(i)2
n

B
−

(∑
θ
(i)
n

B

)2

At this step F is unknown. Plug in with the empirical distribution X
(1)
1 ...X

(1)
n ∼ F̂n

Draw the samples from empirical distribution. This is essentially drawing n samples with
replacement from the data. Let’s draw B such sampled datasets.
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X
(1)
1 ... X

(1)
n θ

∗(1)
n

................ ....

X
(B)
1 ... X

(B)
n θ

∗(B)
n

S∗2 = Var{θ̂n
∗(1)

, θ̂n
∗(B)
}

Now there are two steps in approximation/error for non-parametric bootstrap.
We assume

VarF (θ̂n) ≈ Var(θ̂n|X1, . . . , Xn) ≈ S∗2

The first approximation is the bottleneck here, since in some cases, F̂n is not a good proxy
for F . The second approximation can be made very small with large B. Larry Wasserman
suggests take B = 10, 000.

Remember Parametric bootstrap? F is known, parameter is unknown X
(1)
1 ...X

(1)
n ∼ Fθ̂

Now when does Bootstrap not work? Typically when the test statistic (suitably scaled
and centered) has a normal limit, Bootstrap works. Here is an example you have seen before.

Example.
X1, ...Xn ≈ U([0; θ])

θ̂ = max(X1, ... Xn)

It converges into exponential:

n
(
θ − θ̂n

)
d−→ Exp(θ)

Next week we will talk about subsampling. The main idea is to take smaller size b samples
without replacement.

θ̂b
′(1)
← {X(1)

1 ... X
(1)
b }

.... ..................

θ̂b
′(B)
← {X(B)

1 ... X
(B)
b }

The idea is to take b → ∞ and b
n
→ 0. Now we again calculate the variance of the

θ̂b
′(1)
, . . . , θ̂b

′(B)′s. But since the sizes are different from n we will need to rescale. More later.
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