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22.1 Latent Dirichlet Application: Gibbs Sampling
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Recall that for the LDA:
πd ∼ Dir(α1, ..., αK), d = 1, ...N
βk ∼ Dir(λ1, ..., λV ), k = 1, ..., K
Zid ∼ πd, i = 1...Nd, d = 1...N

Furthermore, once we know the topic d, we have wid|zid = k ∼ βk

22.1.1 Gibbs Sampling for LDA

We begin by looking at:
πd ∼ P (πd|{Zd}, {Wd}, {βk};α, λ)

As {Z\d} and {W\d} are not in the Markov Blanket of πd, we get:

πd ∼ P (πd|Zd;α) = Dir(n1d + α1, ..., nkd + αk) (22.1)

where Zd is a vector for document d, and nid = |{i : Zid = 1}|
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Next,

βk ∼ P (βk|{πd}, {Zd}, {Wd}, {β\k};α, λ) = Dir(m1k + λ1, ...,mV k + λV ) (22.2)

where mik = |{(i, d)|zid = k, wid = 1}|

This situation is the analogue of the Naive Bayes version, except that every document now
has multiple topics, and every word is associated with a topic. The formula is derived from
Bayes’ rule in the same way as in the derivations shown in previous classes. The differ-
ence is that for every document, we look at the distribution πd, whereas in the Naive Bayes
document model we had only a single distribution π for all documents. We look at πd as
a probability vector that is unique for each document, that gives each document its own
characteristics.

Finally, we look at Zid ∼ P (Zid = k|{Z\id}, {wd}, {βk}, π;α, λ) The Markov Blanket here
consists of πd, Wid, and βk. Thus, we can knock off the other Z’s and the other W ’s:

Zid ∼ P (Zid = k|Wid, {βk}, π;α, λ)

∝ P (Wid = w|Zid = k, {βk}, π;α, λ) · P (Zid = k|{βk}, π;α, λ)

P (Zid = k|Wid = w, βk) ∼
βkwπk∑
i βiwπi

Note that the proportionality between (22.3) and (22.4) comes from Bayes’ Rule. Also
note that the final expression in (22.5) is very similar to what we saw in Naive Bayes:
(
∏

w∈Wd
βkw)πk. In Naive Bayes, the words are all coming from the document topic d, and

we must look at every probability. Now, each word is coming from its own topic, so we
simply need to look at our specific word’s topic, βkw.

22.1.2 Discussion

One issue is that we will need to sample a very large number of parameters:
πd for d = 1..N
βk for k = 1..K
Zid for d = 1...N, i = 1...Nd

Consequently, our sample space will be huge. Since in Gibbs Sampling we’re sampling a
parameter in each step by conditioning on every other parameter, and then using the result
to move one step in the underlying Markov Chain, this will take ”forever” to converge.
Thus, we can feel the need for collapsing

There are a few ways to get around large sample spaces. As an example, given every paper
at a conference, we can pre-process by eliminating all the most common words (ie
prepositions) and all the most uncommon words (ie typos). However, the vocabulary will
still be huge.
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As another example, we can take advantage of sparse vectors by storing them compactly.
For example, if we have a vector with a length of a million that only has a thousand data
points, we can simply store the non-zero entries along with their positions in the vector.

Nevertheless, Gibbs Sampling may still take ”forever!” So we may need to collapse the
problem. Either the π’s, the β’s, or both can be collapsed. See the posted: ”Primer to
Gibbs for the Uninitiated” posted in the lecture notes on 09/10 for more information.

22.2 Collapsed Gibbs Sampling for LDA

As we saw last class, in the collapsed model:

Zid ∼ P (Zid = k|{Z\id}, {Wid};α, λ) (22.3)

We also recall that integrating out π makes all the Z’s dependent on each other. This
makes the gibbs sampling steps more dependent on each other, and sometimes Collapsed
Gibbs may actually take longer. Thus this is really a tradeoff between smaller sample space
and longer mixing time.

We note that the first thing we should do when we something bad is to re-write the
problem in a new way so that we know how to do the likelihood, i.e., use Bayes’ Rule!

Zid ∝ P ({Wid}|Zid = k, {Z\id};α, λ)︸ ︷︷ ︸
A

·P (Zid = k|{Z\id};α, λ)︸ ︷︷ ︸
B

(22.4)

Now we look at A, and we use Bayes’ Rule again:

A ∝ P (Wid = w|Zid = k, {W\id}, {Z\id};α, λ)︸ ︷︷ ︸
A1

·P ({W\id}|Zid = k, {Z\id};α, λ)︸ ︷︷ ︸
A2

(22.5)

Now we look at A1. If we hadn’t collapsed out the βk’s, we could write:

A1 =

∫
βk

P (Wid = w, βk|Zid = k, {W\id}, {Z\id};α, λ)dβk

=

∫
βk

P (Wid = w|βk, Zid = k, {W\id}, {Z\id};α, λ) · P (βk|Zid = k, {W\id}, {Z\id};α, λ)dβk

By using the Markov Blanket and D-Separation, we simplify to:∫
βk

P (Wid = w|βk, Zid = k;α, λ) · P (βk|{W\id}, {Z\id};α, λ)dβk (22.6)

Now we note, as we saw last class, that this is not simply one integral, but rather multiple
integrals, one for each element of the vector βk. However, if we look only at the integral over
βkw, then the rest becomes a Dirichlet, and we get:∫

βk

βkw ·Dir(λ1 +m−id1k , ..., λv +m−idvk )dβk (22.7)

22-3



STAT 383C Lecture 22 — November 12 Fall 2015

Here, as we saw last time, m−idjk is our original count values mjk, with the single word id
omitted. Now, by using the technique we saw last class and on the first homework assignment,
we get: ∫

βkw

βkw ·Beta(m−idwk + λw1,
∑
j 6=w

m−idjk + λj)dβw (22.8)

Finally, we note that this expression is simply the expected value of a Beta, so we conclude
that:

A1 =
m−idwk + λw∑V
j=1m

−id
jk + λj

(22.9)

We return to A2. This expression looks at every word other than the idth word. If we
correctly use the β’s and integrate them out, this expression will not depend on the zid!
Thus, the entire A2 will be absorbed into the proportionality constant. We conclude that:

A ∝ A1 · A2 ∝ A1 (22.10)

Now we return to B = P (Zid = k|{Z\id};α, λ). As there are no words in this expression, we
have no need to work with the β’s, so we only use the π’s. Thus, using the same techniques
as before, we get:

B =

∫
πd

P (Zid = k|πd, {Z\id};α, λ) · P (πd|{Z\id};α, λ)dπd (22.11)

As the Z’s become independent with the π’s:

=

∫
πd

P (Zid = k|πd;α, λ) · P (πd|{Z\id};α, λ)dπd (22.12)

And, as before:

=

∫
πd

πdk ·Dir(n−id1d + α1, ..., n
−id
kd + αk)dπd (22.13)

B =
n−idkd + αk∑K
j=1 n

−id
jd + αj

(22.14)

Thus, to tie it all back together,

Zid ∼ P (Zid = k|{Z\id}, {Wid};α, λ) (22.15)

∝ A1 ·B (22.16)

=

(
m−idwk + λw∑V
j=1m

−id
jk + λj

)(
n−idkd + αk∑K
j=1 n

−id
jd + αj

)
(22.17)
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