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16.1 Gaussian Mixture Models

Let us suppose that, unlike in LDA, we now observe only the features of each data point xi
and not the corresponding class label, which we will denote as zi. We assume that the data,
given the clustering allocation, follow the model

Xi|Zi = 1 ∼ N (µ1,Σ1)

Xi|Zi = 0 ∼ N (µ2,Σ2)

P (Zi = 1) = π

The parameters of interest are θ = {µ1,µ2,Σ1,Σ2, π}. The observed data likelihood
function L(x;θ) is given by

L(x;θ) =
n∏
i=1

f(xi;θ)

=
n∏
i=1

∑
zi

f(xi, zi;θ)

=
n∏
i=1

∑
zi

f(xi|zi;θ)P (Zi = zi)

=
n∏
i=1

{φ1(x1)π + φ2(x2)(1− π)}

l(x;θ) =
n∑
i=1

log[φ1(x1)π + φ2(x2)(1− π)]

Note that:
• φ1 = density of N(µ1,Σ1)
• φ2 = density of N(µ2,Σ2)
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This is a hard and non-convex problem, which leads to many local optima. It is easier
to think of the augmented data likelihood.

L(x, z;θ) =
n∏
i=1

{f(xi|zi;θ)p(zi;θ)}

=
n∏
i=1

{
φ1(xi)

ziφ2(xi)
1−ziπzi(1− π)1−zi

}
l(x, z;θ) =

n∑
i=1

{zi log φ1(xi) + (1− zi) log φ2(xi) + zi log(π) + (1− zi) log(1− π)}

If we knew the latent variables zi we would be in the exact framework of LDA. We can in this
case replace the zi’s with their expected values, say γi. This iterative approach is divided in
two steps, which are collectively called the E-M Algorithm.

• E-Step (Expectation Step):
This step calculates the γi’s, which are the expected value of the zi’s given the data
and the current iteration’s θ estimates.

γ
(m+1)
i = E[zi = 1|xi; θ(m)] = P (zi = 1|xi; θ(m))

=
f(xi|zi = 1; θ(m))P (zi = 1; θ(m))

f(xi; θ(m))

=
φ̂
(t)
1 (xi)π̂

(t)

φ̂
(t)
1 (xi)π̂(t) + φ̂

(t)
2 (xi)(1− π̂(t))

• M-Step (Maximization Step):
We can now compute the estimates of all of the parameters using γi instead of zi by
solving the following maximization problem

argmaxθEZ∼P (Z|x;θ)[l(x, z, ; θ)].

This is the maximization of an averaged version of the log-likelihood when Z simP (Z|x;θ).
The resulting estimates are:

π̂ =

∑n
i=1 γi
n

µ̂1 =

∑n
i=1 γixi∑n
i=1 γi

; µ̂2 =

∑n
i=1(1− γi)xi∑n
i=1(1− γi)

Σ̂1 =

∑n
i=1(xi − µ̂1)(xi − µ̂1)

Tγi∑n
i=1 γi

; Σ̂2 =

∑n
i=1(xi − µ̂2)(xi − µ̂2)

T (1− γi)∑n
i=1(1− γi)

.
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Figure 16.1. Illustration of the Expectation Maximization algorithm.

16.2 Explaining the inner math of the E-M algorithm

16.2.1 Optimization Strategy

It is very difficult to maximize the likelihood l(x;θ) when the model is a mixture. So the
strategy here (see Figure 16.1) is to find a function F (x;θ(t)) that is a lower bound for the
observed data likelihood, and that assumes the same value in θ(t) but that can be easily
maximized.

Its maximum will be the next θ(t+1). To see that the iteration process really works,
consider

l(x;θ(t+1)) > F (x;θ(t+1)) > F (x;θ(t)) = l(x;θ(t)).

This proves that at each step we are increasing the log-likelihood (but we may be moving
toward a local maximum).

16.2.2 How to find the lower bound

First recall that by Jensen’s inequality log[E[·]] ≥ E[log(·)]. Then a candidate function which
is bounded by the likelihood can be:

l(x;θ(t)) = log(f(x;θ(t))) = log
∑
Z

f(x, Z;θ(t)) = log
∑
Z

P (Z)
f(x, Z;θ(t))

P (Z)

≥
∑
Z

P (Z) log
f(x, Z;θ(t))

P (Z)
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As we see now, we can get many different lower bounds for different choices of P (Z). All
we need is for P (Z) to be a valid distribution on the latent variable Z. We will now show
that if we pick P (Z) = P (Z|x;θ(t)) the lower bound is optimal:

F (x;θ(t)) =
∑
Z

P (Z) log
f(x, Z;θ(t))

P (Z)

=
∑
Z

P (Z) log
P (Z|x;θ(t))f(x;θ(t))

P (Z)

=
∑
Z

P (Z) log f(x;θ(t))−
∑
Z

P (Z) log
P (Z)

P (Z|x;θ(t))

= log f(x,θ(t))−DKL(P (Z), P (Z|x;θ(t)))

= log f(x,θ(t)) if P (Z) = P (Z|x;θ(t)).

Here DKL(P (Z), P (Z|x;θ(t))) is the Kullback-Leibler divergence between the distribu-
tions P (Z) and P (Z|x;θ(t)). You can think of this as a asymmetric distance measure between
two distributions which is minimized at 0 when the distributions are identical.

Therefore, the choice of P (Z) = P (Z|x;θ(t) is optimal and the value of the lower bound
is the log-likelihood evaluated at the current point θ(t).

To sum up, the EM algorithm can be summarized by the following iterative procedure:

θ(t+1) ← argmaxθEZ∼P (Z|x;θ(t))[log f(x, Z;θ)].

16.3 How to Choose Starting Parameter Values

The E-M algorithm can get stuck in local maxima, and is a bit sensitive to the choice of
starting guesses for θ = {µ1,µ2,Σ1,Σ2, π}.

Hastie and Tibshirani (Elements of Statistical Learning, pg. 293) recommend construct-
ing initial guesses as follows:
• For µ̂1 and µ̂2, randomly select two yi values.

• For Σ̂2
1 and Σ̂2

2, set both equal to the overall sample variance
∑n

i=1(yi − ȳ)(yi − ȳ)T/n.
• For π̂, begin at 0.50.

In practice, the E-M algorithm is often run using several different combinations of starting
parameter estimates. This prevents relying on one set of starting parameters that may get
stuck in a local max.
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