STAT 383C: Statistical Modeling I Fall 2016

Lecture 16 — October 27

Scribe: Giorgio Paulon and Jennifer Starling

Lecturer: Purnamrita Sarkar

’ Disclaimer: These scribe notes have been slightly proofread and may have typos etc. ‘

’ Note: The latex template was borrowed from EECS, U.C. Berkeley. ‘

16.1 Gaussian Mixture Models

Let us suppose that, unlike in LDA, we now observe only the features of each data point x;
and not the corresponding class label, which we will denote as z;. We assume that the data,

given the clustering allocation, follow the model

Xi’Zi =1 NN(,UQ,EQ
X1|ZZ =0 NN(HQ,EQ)

The parameters of interest are @ = {1, p2, X1, X9, 7}. The observed data likelihood
function L(x; @) is given by

L(z;0) = Hf(mi;m

= HZf(iBZ,Z“O)

=1 2z

— HZf(mAzi;O)P(Zi = %)

— H {1(x1)m + Po(x2)(1 — )}

l(x;0) = Z log[g1 (1) + ga(a2) (1 — 7)]

Note that:
e ¢; = density of N(pu1,>1)
e ¢, = density of N(usg,>s)
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This is a hard and non-convex problem, which leads to many local optima. It is easier
to think of the augmented data likelihood.

L(x, z;0) H{f xi|2;0)p(2;0)}

=Ilwm%ywx%fﬁw”u—wfﬁ%

I(z, 2 0) E:&ﬂ%¢1%) (1 — z;)log ¢o(x;) + 2 log(m) + (1 — z) log(1 — m)}

If we knew the latent variables z; we would be in the exact framework of LDA. We can in this
case replace the z;’s with their expected values, say ~;. This iterative approach is divided in
two steps, which are collectively called the E-M Algorithm.

e E-Step (Expectation Step):
This step calculates the ~;’s, which are the expected value of the z;’s given the data
and the current iteration’s 6 estimates.

W = Blz = 1)@ 0] = Pz = 1|z 0™)
B fl@s;00m)
A(ﬂ( )ﬁ( )
o ()70 + 6 () (1 - 7))
e M-Step (Maximization Step):

We can now compute the estimates of all of the parameters using ; instead of z; by
solving the following maximization problem

argmaxy Bz pzjz0) (T, 2,;0)].

This is the maximization of an averaged version of the log-likelihood when Z simP(Z|x; 0).
The resulting estimates are:

_ Z?:1 Vi

n

=B

L= ZLl Yii fi = Z?:l(l - %‘)mi
S Do (=)

=

S = 2oy (®i — ) (i — 1) i S, = 2oia(®i — fuo) (i — fa2)" (1 — i)
i1 i ’ > i (1 =) .
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Figure 16.1. Illustration of the Expectation Maximization algorithm.

16.2 Explaining the inner math of the E-M algorithm

16.2.1 Optimization Strategy

It is very difficult to maximize the likelihood I(x; @) when the model is a mixture. So the
strategy here (see Figure 16.1) is to find a function F(x;0®) that is a lower bound for the
observed data likelihood, and that assumes the same value in %) but that can be easily
maximized.

Its maximum will be the next #*D.  To see that the iteration process really works,

consider
I(x;0Y)) > F(x;0)) > F(x;00) = [(x;0D).

This proves that at each step we are increasing the log-likelihood (but we may be moving
toward a local maximum).

16.2.2 How to find the lower bound

First recall that by Jensen’s inequality log[E[-]] > E[log(-)]. Then a candidate function which
is bounded by the likelihood can be:

x. 700

[(z:00) = log(f(x:0)) =log Y f(z, Z;01) =log y_ p(z)/®:2:67) ];(Zéf’ )
f(z,Z;00)
> EZ P(Z) logw
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As we see now, we can get many different lower bounds for different choices of P(Z). All
we need is for P(Z) to be a valid distribution on the latent variable Z. We will now show
that if we pick P(Z) = P(Z|x;0") the lower bound is optimal:

B [z, Z;0)
= Z P(Z)log NN

B P(Z|a;0Y) f (a; 01)
ZP ) log PZ)

= log f(x,09) — D (P(Z), P(Z|2;6Y))
= log f(x,0")  if P(Z) = P(Z|x;0).

Here Dy (P(Z), P(Z|x;0)) is the Kullback-Leibler divergence between the distribu-
tions P(Z) and P(Z|z;0®). You can think of this as a asymmetric distance measure between
two distributions which is minimized at 0 when the distributions are identical.

Therefore, the choice of P(Z) = P(Z|x; 0" is optimal and the value of the lower bound
is the log-likelihood evaluated at the current point 8.

To sum up, the EM algorithm can be summarized by the following iterative procedure:

QU+ argmaxe L, p(zm0mllog f(x, Z;0)].

16.3 How to Choose Starting Parameter Values

The E-M algorithm can get stuck in local maxima, and is a bit sensitive to the choice of
starting guesses for @ = {py, pa, X1, X9, 7}

Hastie and Tibshirani (Elements of Statistical Learning, pg. 293) recommend construct-
ing initial guesses as follows:
e For yiy and fiz, randomly select two y; values.
e For ¥? and Y3, set both equal to the overall sample variance >\, (y; — §)(vi — ) /n.
e For 7, begin at 0.50.

In practice, the E-M algorithm is often run using several different combinations of starting

parameter estimates. This prevents relying on one set of starting parameters that may get
stuck in a local max.
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