STAT 383C: Statistical Modeling I Fall 2016
Lecture 1 — Aug 25

Lecturer: Purnamrita Sarkar Scribe: Xueyu Mao, Jennifer Starling

Disclaimer: These scribe notes have been slightly proofread and may have typos etc.

Note: The format of the scribe notes has been borrowed from EECS, U. C. Berkeley.

1.1 Different Types of Models

1.1.1 Parametric models

A parametric model is a set of distributions (or densities or regression functions) that can
be parameterized by a finite number of parameters. For example, linear models.

Example 1.1. (Linear models). Given inputs V), --. 2" the linear model to predict
output y is:

k
y=> B +e,
=1

where ¢ is the intercept (Gaussian noise in some applications).

1.1.2 Nonparametric models

A nonparametric model is a set of distributions (or densities or regression functions) that
can not be parameterized by a finite number of parameters.

Example 1.2. (Nonparametric density estimation). Xi,---,X, are observations
from a cdf F', we want to estimate the pdf f, assuming some smoothness of f that f €
Fpens N Fsor, where Fpeng is a set of all probability density functions, and

{7 [ (o) ar <)

The class Fsop is called a Sobolev space.

Example 1.3. (Regression). Estimate h(x) = E(Y|X = x) using k observed pairs of
data (X;,Y;), i =1,--- k. Regression model is like

L=nh(xy, - ,z) +¢ e~ Gaussianﬂ,

where h(-) is not necessarily linear and it is from a non-finite dimensional set.

!Note that while E[¢] = 0 must hold, e does not need to be Gaussian.
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1.1.3 Semiparametric models

A semi-parmetric model can be partly written as parametric model and partly as nonpara-
metric model. An example is like

L = fix1 + Poxg + h(zs, x4, 25) + €,

which is a summation of linear model and regression model.

1.2 Convergence of Random Variables

Definition 1.1. Let X, X5, --- be a sequence of random variables and let X be another
random variable. We have the following two types of convergence:

1). X, converges to X in probability, written X, i X, if Ve >0,
P(| X, — X|>¢) =0, (1.1)
asmn — oo.
2). X,, converges to X in distribution, written X, % X or X, ~ X, if

lim P(X, <t)=P(X <t), (1.2)

n—oo

Vt s.t. P(X <t) is continuous at t.

Example 1.4. (Convergence in probability). Suppose X,, ~ N (u, o), then

E [(X, — p)? X, 2
(X0 —pw)?] _ Var( ) _ % o no,

P(|X,—ul>e)=P(X,—pn)?>eH) <
{ pul >e)=P(( p)° >e’) < = =2 ne?

where the “less than or equal to” is obtained by using Markov’s inequality. You could also

just use Chebyshev’s inequality. So we have X, i 1. This is none other than our old friend
— the Weak Law of Large Numbers.

Example 1.5. (Convergence in distribution). Suppose X,, ~ N (u,0), then
V(X — 1) = N(0,1)
This is none other than our old friend — the Central Limit Theorem.

Example 1.6. Suppose X,, ~ N (0, %), also by using Markov’s inequality,
Var(X, 1

P(|X, — 0| >5)§#:—2—>0,
€ ne
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so X, 2.
Now we have a point mass at 0 (P(X =0) = 1), then
1 t>0,
P(Ogt)—l(tEO)%{O f2 0, (1.3)
Remember that /nX,, ~ N (0, 1), consider
1 t>0,
P(X, <t)=P(v/nX, <V/nt) =0(vV/nt) > ¢ 5 t=0, (1.4)
0 t<O.

Compare and , we can conclude that X, 4 0. Note that although convergence
fails at t = 0, the convergence in distribution also holds because the CDF of the limiting
random variable X (which is 0 with probability 1) is not a continuous point at 0 (as shown

in Figure|l.1)).

o—

—(> t

Figure 1.1. Jump function 1(¢ > 0).

Remark 1.1. We have the following relationship:
X, 5 X=X, X,
however, the reverse does not hold:

X, Ax»-Xx,5Xx

Example 1.7. A counter-example for the second part of Remark is X ~ N(0,1), let

X, = —X ~N(0,1), so X,, & X. However,
P(1X, — X| > &) = P(2|X,| > ¢) = P(|X,] > g) £ 0,
so X, . X does not hold.
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Remark 1.2. X,, converges in probability to a random variable X does not imply the

expectation of X,, converges to E[X].
X, 5 X,
E[X,] - E[X].

The point is that the tail is not well behaved. There is too much mass on the tail.

Example 1.8. A counter-example for Remark[1.2 is
v | 0 with probability 1 — 2,
"\ n® with probability <,
We can see X, = 0 while E[X,] =n — cc.
Theorem 1.1. (Slutsky’s theorem) Given two sequences of random variables such that
X, 4 X and Y, LN ¢, then
Xo+Y, 5 X +e,
and

X, Y, =X ¢

1.2.1 Delta Method
The Delta Method establishes the Convergence in Distribution of a transformation of a

random variable under certain conditions.

Theorem 1.2. (The Delta Method) Suppose that

Y, —
Vi = 1) 4y )
o
and that g is a differentiable function such that ¢'(u) # 0. Then

Vi(g(Yn) —g(p)) a
e VO
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