Disclaimer: These scribe notes have been slightly proofread and may have typos etc.
Note: The format of the scribe notes has been borrowed from EECS, U. C. Berkeley.

1.1 Different Types of Models

1.1.1 Parametric models

A parametric model is a set of distributions (or densities or regression functions) that can be parameterized by a finite number of parameters. For example, linear models.

Example 1.1. (Linear models). Given inputs $x^{(1)}, \cdots, x^{(k)}$, the linear model to predict output y is:

$$
y=\sum_{i=1}^{k} \beta_{i} x^{(i)}+\varepsilon
$$

where ε is the intercept (Gaussian noise in some applications).

1.1.2 Nonparametric models

A nonparametric model is a set of distributions (or densities or regression functions) that can not be parameterized by a finite number of parameters.

Example 1.2. (Nonparametric density estimation). X_{1}, \cdots, X_{n} are observations from a cdf F, we want to estimate the pdf f, assuming some smoothness of f that $f \in$ $\mathcal{F}_{\text {DENS }} \cap \mathcal{F}_{S O B}$, where $\mathcal{F}_{\text {DENS }}$ is a set of all probability density functions, and

$$
\mathcal{F}_{S O B}=\left\{f: \int\left(f^{\prime \prime}(x)\right)^{2} d x<\infty\right\} .
$$

The class $\mathcal{F}_{S O B}$ is called a Sobolev space.
Example 1.3. (Regression). Estimate $h(x)=\mathrm{E}(Y \mid X=x)$ using k observed pairs of data $\left(X_{i}, Y_{i}\right), i=1, \cdots, k$. Regression model is like

$$
\mathcal{L}=h\left(x_{1}, \cdots, x_{k}\right)+\varepsilon, \varepsilon \sim \text { Gaussian }^{1}
$$

where $h(\cdot)$ is not necessarily linear and it is from a non-finite dimensional set.

[^0]
1.1.3 Semiparametric models

A semi-parmetric model can be partly written as parametric model and partly as nonparametric model. An example is like

$$
\mathcal{L}=\beta_{1} x_{1}+\beta_{2} x_{2}+h\left(x_{3}, x_{4}, x_{5}\right)+\varepsilon,
$$

which is a summation of linear model and regression model.

1.2 Convergence of Random Variables

Definition 1.1. Let X_{1}, X_{2}, \cdots be a sequence of random variables and let X be another random variable. We have the following two types of convergence:
1). X_{n} converges to X in probability, written $X_{n} \xrightarrow{P} X$, if $\forall \varepsilon>0$,

$$
\begin{equation*}
\mathrm{P}\left(\left|X_{n}-X\right|>\varepsilon\right) \rightarrow 0, \tag{1.1}
\end{equation*}
$$

as $n \rightarrow \infty$.
2). X_{n} converges to X in distribution, written $X_{n} \xrightarrow{d} X$ or $X_{n} \rightsquigarrow X$, if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathrm{P}\left(X_{n} \leq t\right)=\mathrm{P}(X \leq t) \tag{1.2}
\end{equation*}
$$

$\forall t$ s.t. $P(X \leq t)$ is continuous at t.

Example 1.4. (Convergence in probability). Suppose $X_{n} \sim \mathcal{N}(\mu, \sigma)$, then

$$
\mathrm{P}\left(\left|\overline{X_{n}}-\mu\right|>\varepsilon\right)=\mathrm{P}\left(\left(\overline{X_{n}}-\mu\right)^{2}>\varepsilon^{2}\right) \leq \frac{\mathrm{E}\left[\left(\overline{X_{n}}-\mu\right)^{2}\right]}{\varepsilon^{2}}=\frac{\operatorname{Var}\left(\overline{X_{n}}\right)}{\varepsilon^{2}}=\frac{\sigma^{2}}{n \varepsilon^{2}} \rightarrow 0, n \rightarrow 0
$$

where the "less than or equal to" is obtained by using Markov's inequality. You could also just use Chebyshev's inequality. So we have $\overline{X_{n}} \xrightarrow{P} \mu$. This is none other than our old friend - the Weak Law of Large Numbers.

Example 1.5. (Convergence in distribution). Suppose $X_{n} \sim \mathcal{N}(\mu, \sigma)$, then

$$
\sqrt{n}\left(\overline{X_{n}}-\mu\right) \rightarrow N(0,1)
$$

This is none other than our old friend - the Central Limit Theorem.
Example 1.6. Suppose $X_{n} \sim \mathcal{N}\left(0, \frac{1}{n}\right)$, also by using Markov's inequality,

$$
\mathrm{P}\left(\left|X_{n}-0\right|>\varepsilon\right) \leq \frac{\operatorname{Var}\left(X_{n}\right)}{\varepsilon^{2}}=\frac{1}{n \varepsilon^{2}} \rightarrow 0
$$

so $X_{n} \xrightarrow{P} 0$.
Now we have a point mass at $0(\mathrm{P}(X=0)=1)$, then

$$
P(0 \leq t)=\mathbf{1}(t \geq 0) \rightarrow \begin{cases}1 & t \geq 0 \tag{1.3}\\ 0 & t<0\end{cases}
$$

Remember that $\sqrt{n} X_{n} \sim \mathcal{N}(0,1)$, consider

$$
\mathrm{P}\left(X_{n} \leq t\right)=\mathrm{P}\left(\sqrt{n} X_{n} \leq \sqrt{n} t\right)=\Phi(\sqrt{n} t) \rightarrow\left\{\begin{array}{cc}
1 & t>0 \tag{1.4}\\
\frac{1}{2} & t=0 \\
0 & t<0
\end{array}\right.
$$

Compare (1.3) and (1.4), we can conclude that $X_{n} \xrightarrow{d} 0$. Note that although convergence fails at $t=0$, the convergence in distribution also holds because the CDF of the limiting random variable X (which is 0 with probability 1) is not a continuous point at 0 (as shown in Figure 1.1).

Figure 1.1. Jump function $\mathbf{1}(t \geq 0)$.

Remark 1.1. We have the following relationship:

$$
X_{n} \xrightarrow{P} X \Rightarrow X_{n} \xrightarrow{d} X,
$$

however, the reverse does not hold:

$$
X_{n} \xrightarrow{d} X \nRightarrow X_{n} \xrightarrow{P} X .
$$

Example 1.7. A counter-example for the second part of Remark 1.1 is $X \sim \mathcal{N}(0,1)$, let $X_{n}=-X \sim \mathcal{N}(0,1)$, so $X_{n} \xrightarrow{d} X$. However,

$$
\mathrm{P}\left(\left|X_{n}-X\right|>\varepsilon\right)=\mathrm{P}\left(2\left|X_{n}\right|>\varepsilon\right)=\mathrm{P}\left(\left|X_{n}\right|>\frac{\varepsilon}{2}\right) \neq 0
$$

so $X_{n} \xrightarrow{P} X$ does not hold.

Remark 1.2. X_{n} converges in probability to a random variable X does not imply the expectation of X_{n} converges to $E[X]$.

$$
\begin{aligned}
X_{n} & \xrightarrow{P} X, \\
\mathrm{E}\left[X_{n}\right] & \rightarrow E[X] .
\end{aligned}
$$

The point is that the tail is not well behaved. There is too much mass on the tail.
Example 1.8. A counter-example for Remark 1.2 is

$$
X_{n}= \begin{cases}0 & \text { with probability } 1-\frac{1}{n} \\ n^{2} & \text { with probability } \frac{1}{n}\end{cases}
$$

We can see $X_{n} \xrightarrow{P} 0$ while $\mathrm{E}\left[X_{n}\right]=n \rightarrow \infty$.
Theorem 1.1. (Slutsky's theorem) Given two sequences of random variables such that $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{d} c$, then

$$
X_{n}+Y_{n} \xrightarrow{d} X+c,
$$

and

$$
X_{n} \cdot Y_{n} \xrightarrow{d} X \cdot c,
$$

1.2.1 Delta Method

The Delta Method establishes the Convergence in Distribution of a transformation of a random variable under certain conditions.

Theorem 1.2. (The Delta Method) Suppose that

$$
\frac{\sqrt{n}\left(Y_{n}-\mu\right)}{\sigma} \xrightarrow{d} N(0,1)
$$

and that g is a differentiable function such that $g^{\prime}(\mu) \neq 0$. Then

$$
\frac{\sqrt{n}\left(g\left(Y_{n}\right)-g(\mu)\right)}{\left|g^{\prime}(\mu)\right| \sigma} \stackrel{d}{\rightarrow} N(0,1)
$$

References

[1] Wasserman, Larry. All of statistics: a concise course in statistical inference. Springer Science \& Business Media, 2013.

[^0]: ${ }^{1}$ Note that while $\mathrm{E}[\varepsilon]=0$ must hold, ε does not need to be Gaussian.

