
STAT 383C: Statistical Modeling I Fall 2016

Lecture 1 — Aug 25

Lecturer: Purnamrita Sarkar Scribe: Xueyu Mao, Jennifer Starling

Disclaimer: These scribe notes have been slightly proofread and may have typos etc.

Note: The format of the scribe notes has been borrowed from EECS, U. C. Berkeley.

1.1 Different Types of Models

1.1.1 Parametric models

A parametric model is a set of distributions (or densities or regression functions) that can
be parameterized by a finite number of parameters. For example, linear models.

Example 1.1. (Linear models). Given inputs x(1), · · · , x(k), the linear model to predict
output y is:

y =
k∑

i=1

βix
(i) + ε,

where ε is the intercept (Gaussian noise in some applications).

1.1.2 Nonparametric models

A nonparametric model is a set of distributions (or densities or regression functions) that
can not be parameterized by a finite number of parameters.

Example 1.2. (Nonparametric density estimation). X1, · · · , Xn are observations
from a cdf F , we want to estimate the pdf f , assuming some smoothness of f that f ∈
FDENS ∩ FSOB, where FDENS is a set of all probability density functions, and

FSOB =

{
f :

∫ (
f

′′
(x)
)2
dx <∞

}
.

The class FSOB is called a Sobolev space.

Example 1.3. (Regression). Estimate h(x) = E(Y |X = x) using k observed pairs of
data (Xi, Yi), i = 1, · · · , k. Regression model is like

L = h(x1, · · · , xk) + ε, ε ∼ Gaussian1,

where h(·) is not necessarily linear and it is from a non-finite dimensional set.

1Note that while E[ε] = 0 must hold, ε does not need to be Gaussian.
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1.1.3 Semiparametric models

A semi-parmetric model can be partly written as parametric model and partly as nonpara-
metric model. An example is like

L = β1x1 + β2x2 + h(x3, x4, x5) + ε,

which is a summation of linear model and regression model.

1.2 Convergence of Random Variables

Definition 1.1. Let X1, X2, · · · be a sequence of random variables and let X be another
random variable. We have the following two types of convergence:

1). Xn converges to X in probability, written Xn
P−→ X, if ∀ε > 0,

P(|Xn −X| > ε)→ 0, (1.1)

as n→∞.

2). Xn converges to X in distribution, written Xn
d−→ X or Xn  X, if

lim
n→∞

P(Xn ≤ t) = P(X ≤ t), (1.2)

∀t s.t. P (X ≤ t) is continuous at t.

Example 1.4. (Convergence in probability). Suppose Xn ∼ N (µ, σ), then

P(
∣∣Xn − µ

∣∣ > ε) = P((Xn − µ)2 > ε2) ≤
E
[
(Xn − µ)2

]
ε2

=
V ar(Xn)

ε2
=

σ2

nε2
→ 0, n→ 0,

where the “less than or equal to” is obtained by using Markov’s inequality. You could also

just use Chebyshev’s inequality. So we have Xn
P−→ µ. This is none other than our old friend

– the Weak Law of Large Numbers.

Example 1.5. (Convergence in distribution). Suppose Xn ∼ N (µ, σ), then

√
n(Xn − µ)→ N(0, 1)

This is none other than our old friend – the Central Limit Theorem.

Example 1.6. Suppose Xn ∼ N (0, 1
n
), also by using Markov’s inequality,

P(|Xn − 0| > ε) ≤ V ar(Xn)

ε2
=

1

nε2
→ 0,
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so Xn
P−→ 0.

Now we have a point mass at 0 (P(X = 0) = 1), then

P (0 ≤ t) = 1(t ≥ 0)→
{

1 t ≥ 0,
0 t < 0.

(1.3)

Remember that
√
nXn ∼ N (0, 1), consider

P(Xn ≤ t) = P(
√
nXn ≤

√
nt) = Φ(

√
nt)→


1 t > 0,
1
2

t = 0,
0 t < 0.

(1.4)

Compare (1.3) and (1.4), we can conclude that Xn
d−→ 0. Note that although convergence

fails at t = 0, the convergence in distribution also holds because the CDF of the limiting
random variable X (which is 0 with probability 1) is not a continuous point at 0 (as shown
in Figure 1.1).

Figure 1.1. Jump function 1(t ≥ 0).

Remark 1.1. We have the following relationship:

Xn
P−→ X ⇒ Xn

d−→ X,

however, the reverse does not hold:

Xn
d−→ X ; Xn

P−→ X.

Example 1.7. A counter-example for the second part of Remark 1.1 is X ∼ N (0, 1), let

Xn = −X ∼ N (0, 1), so Xn
d−→ X. However,

P(|Xn −X| > ε) = P(2 |Xn| > ε) = P(|Xn| >
ε

2
) 6= 0,

so Xn
P−→ X does not hold.
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Remark 1.2. Xn converges in probability to a random variable X does not imply the
expectation of Xn converges to E[X].

Xn
P−→ X,

E[Xn] 9 E[X].

The point is that the tail is not well behaved. There is too much mass on the tail.

Example 1.8. A counter-example for Remark 1.2 is

Xn =

{
0 with probability 1− 1

n
,

n2 with probability 1
n
,

We can see Xn
P−→ 0 while E[Xn] = n→∞.

Theorem 1.1. (Slutsky’s theorem) Given two sequences of random variables such that

Xn
d−→ X and Yn

d−→ c, then

Xn + Yn
d−→ X + c,

and

Xn · Yn
d−→ X · c,

1.2.1 Delta Method

The Delta Method establishes the Convergence in Distribution of a transformation of a
random variable under certain conditions.

Theorem 1.2. (The Delta Method) Suppose that

√
n(Yn − µ)

σ

d−→ N(0, 1)

and that g is a differentiable function such that g′(µ) 6= 0. Then

√
n(g(Yn)− g(µ))

|g′(µ)|σ
d−→ N(0, 1)
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