Homework Assignment 4

Due in class, Thursday November 17

SDS 383C Statistical Modeling I

1. Robust statistics

(a) Let Y be a random variable $Y = \mu + \epsilon$ where $\epsilon \sim N(0, 1)$ and μ is a constant. In this question you will compute the elastic net estimator of μ which minimizes:

$$\frac{1}{2}(Y - \mu)^2 + \lambda|\mu| + \frac{\alpha}{2}\mu^2,$$

where $\alpha, \lambda > 0$. Calculate $\hat{\mu}$.

- (b) Calculate the Sensitivity curve for the sample median.
- (c) (Extra credit) Assume that the data is generated from iid Uniform($[0, \theta]$). Is the sensitivity curve of the median bounded? Explain your answer.

2. Expectation Maximization and k-means

- (a) Derive the E and M steps for a Gaussian Mixture Model with two components with means μ_1 , μ_2 and the same variance σ^2 . The mixture proportions are π , 1π .
- (b) Show that if σ has a known value and we take $\sigma \to 0$, the EM algorithm coincides with 2-means clustering.

3. Expectation Maximization and multinomials

Let $\mathbf{y}_{\text{obs}} = (y_1, y_2, y_3)^T = (38, 34, 125)^T$ be observed counts from a multinomial population with probabilities $(1/2 - \theta/2, \theta/4, 1/2 + \theta/4)$.

- (a) Derive the MLE of θ .
- (b) Now we will solve the same problem using EM. In order to put this in the unobserved data framework, we will pretend that the true data is $(y_1, y_2, y_3, y_4)^T$ sampled from a multinomial with probabilities $(1/2 \theta/2, \theta/4, 1/2, \theta/4)$. **y** is the augmented or complete data. Now define by $\mathbf{y}_{obs} = (y_1, y_2, y_3 + y_4)^T$. This is an incomplete data problem because $y_3 + y_4$ is observed, not y_3 or y_4 .
 - i. Derive the E and M steps.
 - ii. Plot the estimated θ_t values vs the number of iterations t. Does it converge to the MLE you calculated earlier?

4. Linear Discriminant Analysis

(a) Consider Fisher's discriminant analysis which finds $w^* := \arg \max_w \frac{(w^T(\mu_1 - \mu_2))^2}{w^T(\Sigma_1 + \Sigma_2)w}$. Now consider data generated from two Gaussians with parameters $\mu_i, \Sigma_i, \pi = 1/2$, for $i \in \{1, 2\}$. Show that the direction of the Fisher Discriminant Analysis is exactly the direction found by a Linear Bayes classifier. For this exercise you can assume that μ_i, Σ_i, π are known and $\Sigma = (\Sigma_1 + \Sigma_2)/2$.

- (b) Using the vowel data available at http://web.stanford.edu/~hastie/ElemStatLearn/ data.html, reproduce the figures 4.8, and 4.11 in the HTF book. You do not have to generate the linear class boundaries in 4.11, just the scatter plot.
- (c) (Extra credit) Also reproduce Figure 4.10.