SDS 321: Introduction to Probability and Statistics
 Lecture 12: Review

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
www.cs.cmu.edu/~psarkar/teaching

Conditional Expectation

- Recall the expectation of $X . E[X]=\sum_{x} x P(X=x)$.
- The conditional expectation of random variable X given event A with $P(A)>0$ is defined as: $E[X \mid A]=\sum_{x} x P(X=x \mid A)$.
- For a function $g(X), E[g(X) \mid A]=\sum_{x} g(x) P(X=x \mid A)$.

Total expectation theorem

For a partition $\left\{A_{1}, \ldots, A_{n}\right\}$

$$
\begin{array}{r}
P(X=k)=\sum_{i}^{n} P\left(X=k \mid A_{i}\right) P\left(A_{i}\right) \\
E[X]=\sum_{i=1}^{n} E\left[X \mid A_{i}\right] P\left(A_{i}\right)
\end{array}
$$

Example

I have two coins: one fair and one biased $(p=.25)$. I pick one at random and toss it a hundred times. On an average how many heads will I see?

- $A=\{I$ pick fair coin $\}$.
- $X=\{$ Number ofheads in 100 tosses $\}$.
- $E[X]=$?

Example

I have two coins: one fair and one biased $(p=.25)$. I pick one at random and toss it a hundred times. On an average how many heads will I see?

- $A=\{I$ pick fair coin $\}$.
- $X=\{$ Number ofheads in 100 tosses $\}$.
- $E[X]=$?
- $E[X]=E[X \mid A] P(A)+E\left[X \mid A^{C}\right] P\left(A^{C}\right)=100 \times .5 \times .5+100 \times .25 \times .5=$ $25+12.5=37.5$

Example

I have two coins: one fair and one biased $(p=.25)$. I pick one at random and toss it until I see a head. On an average how long do I have to wait until I see a head?

- $A=\{$ I pick fair coin $\}$.
- $X=\{$ Number of tosses to get a head $\}$.
- $E[X]=$?

Example

I have two coins: one fair and one biased $(p=.25)$. I pick one at random and toss it until I see a head. On an average how long do I have to wait until I see a head?

- $A=\{$ I pick fair coin $\}$.
- $X=\{$ Number of tosses to get a head $\}$.
- $E[X]=$?
- $E[X]=E[X \mid A] P(A)+E\left[X \mid A^{C}\right] P\left(A^{C}\right)=1 / .5 \times .5+1 / .25 \times .5=2.5$

Example

Four buses carrying 148 students from the same school arrive at a football stadium. The buses carry, respectively, 40, 33, 25, and 50 students. One of the students is randomly selected. Let X denote the number of students that were on the bus carrying the randomly selected student. One of the 4 bus drivers is also randomly selected. Let Y denote the number of students on her bus.

Axioms of probability

Our probability law must follow three axioms:

1. Nonnegativity: $\mathbf{P}(A) \geq 0$, for every event A.
2. Additivity: If A and B are two disjoint events, then the probability of their union satisfies $P(A \cup B)=P(A)+P(B)$
This extends to the union of infinitely many disjoint events:

$$
P\left(A_{1} \cup A_{2} \cup \ldots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots
$$

3. Normalization: The probability of the entire sample space Ω is equal to 1, i.e. $P(\Omega)=1$
From these axioms, and from basic properties of sets, we can derive a number of other useful results, including:

- For any events A and $B, P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- $P\left(A^{C}\right)=1-P(A)$

Practice problem—Probability 2

A total of 28 percent of American males smoke cigarettes, 7 percent smoke cigars, and 5 percent smoke both cigars and cigarettes.

- What percentage of males smokes neither cigars nor cigarettes?
- What percentage smokes cigars but not cigarettes?

Practice problem—Probability 2

A total of 28 percent of American males smoke cigarettes, 7 percent smoke cigars, and 5 percent smoke both cigars and cigarettes.

- What percentage of males smokes neither cigars nor cigarettes?
- $P\left(C_{1}\right)=.28$ and $P\left(C_{2}\right)=.07$, and $P\left(C_{1} \cap C_{2}\right)=.05$
- $P\left(C_{1}^{c} \cap C_{2}^{c}\right)=P\left(\left(C_{1} \cup C_{2}\right)^{c}\right)=1-P\left(C_{1} \cup C_{2}\right)=$

$$
1-(.28+.07-.05)=1-0.3=0.7
$$

- The last part used De-morgan's law.
- What percentage smokes cigars but not cigarettes?
- $P\left(C_{1} \cap C_{2}^{c}\right)=P\left(C_{1}\right)-P\left(C_{1} \cap C_{2}\right)=.07-.05=.02$

Counting

Find a formula for the probability that among a set of n people, at least two have their birthdays in the same month of the year (assuming the months are equally likely for birthdays). Assume $n \leq 12$ (for $n>13$ the probability is equal to 1.0). In your solution let $A=$ "at least two matching birthday months."

- Easier to think about $P\left(A^{C}\right)=1-P(A)$
- $A^{C}=\{$ No matching b-day months $\}$
- How many elements are there in A^{C} ? $\left|A^{C}\right|=$?

$$
12 \times 11 \times 10 \times \ldots(12-n+1)=(12)_{n}
$$

- The number of possible n-tuples of birthday months is 12^{n}.
- $P\left(A^{c}\right)=\frac{(12)_{n}}{12^{n}}$

Things to remember

- Probability axioms
- Conditional probability
- Independence
- Conditional independence
- Mutual vs. Pairwise independence
- Bayes rule
- Rule of total probability

Counting-Occupancy numbers (stars and bars)

- Say you want to distribute n fruits among k children so that everyone gets at least 1 .
- Say x_{i} is the number of fruits going to child i. So we are looking for number of k-tuples of positive integers such that $x_{1}+x_{2}+\cdots+x_{k}=n$.
- Writing in stars and bars, you want to place $(k-1)$ bars in ($n-1$) spaces between the stars.
- number of \mathbf{k}-tuples of positive integers such that

$$
\mathrm{x}_{1}+\mathrm{x}_{2}+\cdots+\mathrm{x}_{\mathrm{k}}=\mathrm{n} . \text { This is }\binom{\mathrm{n}-1}{\mathrm{k}-1}
$$

Occupancy numbers (stars and bars)

Now I want to divide 10 fruits among 4 children. A child may or may not get any fruit. How many ways to do this?

- We want to use our former idea, but how?
- Why not divide 14 fruits to 4 children so that everyone has at least one, and then remove one fruit from each? The fruits are indistinguishable and so it does't matter which one you take out.
- This way everyone will have zero or more fruits, and total number of fruits is 10 .
- So the answer is $\binom{13}{3}$.
- number of k-tuples of non-negative integers such that

$$
x_{1}+x_{2}+\cdots+x_{k}=n . \text { This is }\binom{n+k-1}{k-1}
$$

Occupancy problem

How many ways can we distribute 7 identical pieces of candy to 4 children?

- Same as asking for the total number of solutions to $x_{1}+x_{2}+x_{3}+x_{4}=7$, where x_{i} are non-negative integers.
- Stars and bars: $\binom{7+4-1}{4-1}=\binom{10}{3}$

How many ways can we distribute 7 identical pieces of candy to 4 children so that each has at least one candy?

- Same as asking for the total number of solutions to $x_{1}+x_{2}+x_{3}+x_{4}=7$, where x_{i} are positive integers.
- Stars and bars again: I want to put 3 bars between 7 stars. There are $7-1$ places to choose from and so the answer is $\binom{6}{3}$

Occupancy problem

How many different combinations of 5 sweaters can you buy, if you have 8 different colors?

- Let x_{i} be number of sweaters bought with the $i^{\text {th }}$ color. $i \in\{1, \ldots 8\}$.
- I want to count the number of ways I can have $\sum_{i=1}^{8} x_{i}=5$, where $x_{i} \geq 0$.
- But this is $\binom{5+8-1}{8-1}=\binom{12}{7}$

Number of permutations when you have repetitions

How many distinct arrangements are there of the word "MISSISSIPPI"?

- Total number of letters? 11.
- M appears once, I and S appears 4 times, P twice.
- So number of distinct arrangements: $\frac{11!}{1!4!4!2!}$

How many distinct arrangements are there of the word "MISSISSIPPI" where the first and last letter are vowels?

- How many distinct arrangements are of (I, , , , , , , , $\mathbf{I})$? Remaining letters (MISSISSPPI) can be arranged in $10!/(3!4!2!)$ ways.

Practice problem—Combinatorics 1a

There is a bucket of 10 red and 10 blue balls. I pick 5 balls without replacement. What is the probability that there will be 3 red and 2 blue balls?

Practice problem—Combinatorics 1a

There is a bucket of 10 red and 10 blue balls. I pick 5 balls without replacement. What is the probability that there will be 3 red and 2 blue balls?

- Total number of ways to pick 5 balls: $\binom{20}{5}$

Practice problem—Combinatorics 1a

There is a bucket of 10 red and 10 blue balls. I pick 5 balls without replacement. What is the probability that there will be 3 red and 2 blue balls?

- Total number of ways to pick 5 balls: $\binom{20}{5}$
- Total number of ways to pick 3 red $\binom{10}{3}$
- Total number of ways to pick 2 blue $\binom{10}{2}$

Practice problem—Combinatorics 1a

There is a bucket of 10 red and 10 blue balls. I pick 5 balls without replacement. What is the probability that there will be 3 red and 2 blue balls?

- Total number of ways to pick 5 balls: $\binom{20}{5}$
- Total number of ways to pick 3 red $\binom{10}{3}$
- Total number of ways to pick 2 blue $\binom{10}{2}$
$-\frac{\binom{10}{3}\binom{10}{2}}{\binom{20}{5}}$

Practice problem—Probability 3

A closet contains 10 pairs of shoes. If 8 shoes are randomly selected, what is the probability that there will be

- no complete pair?
- exactly 1 complete pair?

Practice problem—Probability 3

A closet contains 10 pairs of shoes. If 8 shoes are randomly selected, what is the probability that there will be

- no complete pair?
- Total number of ways $\binom{20}{8}$.
- Choose 8 out of 10 pairs. Now look at all possible ways to choose a shoe from a pair. $\binom{10}{8} 2^{8}$
- So the probability is $\frac{\binom{10}{8} 2^{8}}{\binom{20}{8}}$
- exactly 1 complete pair?
- Pick 1 pair in 10 ways.
- Now there are 6 more to pick from remaining 9 pairs, but there can be no complete pair.
- This is $\binom{9}{6} 2^{6}$.
- So probability is $\frac{10 \times\binom{ 9}{6} 2^{6}}{\binom{20}{8}}$

Things to remember

- Permutations
- Combinations (binomial coefficients)
- Occupancy numbers (dividing indistinguishable objects among distinguishable people/bins/children)
- Counting with repetition
- Counting and probability

Cumulative distribution functions

- For a discrete random variable, to get the probability of X being in a range B, we sum the PMF over that range:
$P(X \in B)=\sum_{x \in B} p_{X}(x)$
e.g. if $X \sim \operatorname{Binomial}(10,0.2)$

$$
P(2<X \leq 5)=p_{X}(3)+p_{X}(4)+p_{X}(5)=\sum_{k=3}^{5}\binom{10}{k} 0.2^{k}(1-0.2)^{10-k}
$$

Cumulative distribution functions

- In both cases, we call the probability $P(X \leq x)$ the cumulative distribution function (CDF) $F_{X}(x)$ of X

Common discrete random variables

We have looked at four main types of discrete random variable:

- Bernoulli: We have a biased coin with probability of heads p. A Bernoulli random variable is 1 if we get heads, 0 if we get tails.
- If $X \sim \operatorname{Bernoulli}(p), p_{X}(x)= \begin{cases}p & \text { if } x=1 \\ 1-p & \text { otherwise. }\end{cases}$
- Examples: Has disease, hits target.
- Binomial: We have a sequence of n biased coin flips, each with probability of heads p-i.e. a sequence of n independent $\operatorname{Bernoulli}(p)$ trials. A Binomial random variable returns the number of heads.
- If $X \sim \operatorname{Binomial}(n, p), p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
- p^{k} because we have heads (prob. p) k times, $(1-p)^{n-k}$ because we have tails (prob. $1-p$) $n-k$ times.
- Why $\binom{n}{k}$? Because this is the number of sequences of length n that have exactly k heads.
- Examples: How many people will vote for a candidate, how many of my seeds will sprout.

Common discrete random variables

- Geometric: We have a biased coin with probability of heads p. A geometric random variable returns the number of times we have to throw the coin before we get heads. e.g. If our sequence is (T, T, H, T, \ldots), then $X=3$.
- If $X \sim \operatorname{Geometric}(p), p_{X}(k)=(1-p)^{k-1} p$
- Prob. of getting a sequence of $k-1$ tails and then a head.
- $E[X]=1 / p$ (should know this) and $\operatorname{var}(X)=(1-p) / p^{2}$ (don't need to know this)
- $P(X>k)=1-P(X \leq k)=(1-p)^{k}$
- Memoryless property: $P(X>k+j \mid X>j)=P(X>k)$
- Poisson: Independent events occur, on average, λ times over a given period/distance/area. A Poisson random variable returns the number of times they actually happen.
- If $X \sim \operatorname{Poisson}(\lambda), p_{x}(k)=\frac{\lambda^{k} e^{-\lambda}}{k!}$.
- $E[X]=\lambda$ and $\operatorname{var}(X)=\lambda$.
- The Poisson distribution with $\lambda=n p$ is a good approximation to the Binomial(n, p) distribution, when n is large and p is small.

Things to remember

- What is a PMF?
- What is a CDF?
- How to get expectation and variance
- PMF, Expectation and variance of Bernoulli, Binomial, Uniform, Geometric, Poisson
- Conditional PMF
- conditional expectation
- total expectation theorem

Practice problem—Random variables $4 a$

The suicide rate in a certain state is 1 suicide per 100,000 inhabitants per month. You can treat the number of suicides in each month as independent.

1. Find the probability that, in a city of 400,000 inhabitants within this state, there will be 8 or more suicides in a given month.

- $X \sim$ Poisson(4). We want $P(X \geq 8)$.
- $q=P(X \geq 8)=1-\sum_{k=0}^{7} \frac{e^{-4} 4^{k}}{k!}$

Practice problem—Random variables 4 b

The suicide rate in a certain state is 1 suicide per 100,000 inhabitants per month. You can treat the number of suicides in each month as independent.

1. Find the probability that, in a city of 400,000 inhabitants within this state, there will be 8 or more suicides in a given month.
2. What is the probability that there will be at least 2 months during the year that will have 8 or more suicides?

Practice problem—Random variables 4 b

The suicide rate in a certain state is 1 suicide per 100,000 inhabitants per month. You can treat the number of suicides in each month as independent.

1. Find the probability that, in a city of 400,000 inhabitants within this state, there will be 8 or more suicides in a given month.
2. What is the probability that there will be at least 2 months during the year that will have 8 or more suicides?

- Define $Y_{i}, i \in\{1, \ldots, 8\}$ as

$$
\begin{aligned}
Y_{i} & = \begin{cases}1 & \text { If } X_{i} \geq 8 \\
0 & \text { o.w. }\end{cases} \\
P\left(Y_{i}=1\right) & =P\left(X_{i} \geq 8\right)=q
\end{aligned}
$$

- Let $Z=\sum_{i} Y_{i}$. We want $P(Z \geq 2)$.
- But $Z \sim \operatorname{Bin}(12, q)$. So

$$
P(Z \geq 2)=1-P(Z=0)-P(Z=1)=1-(1-q)^{12}-12 q(1-q)^{11}
$$

