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Random variables

I If the range of our random variable X is finite or countable, we call
it a discrete random variable.

I We can write the probability that the random variable X takes on a
specific value x using the probability mass function,
pX (x) = P(X = x).

I If the range of X is uncountable, and no single outcome x has
P(X = x) > 0, we call it a continuous random variable.

I Because P(X = x) = 0 for all X , we can’t use a PMF.

I However, for any range B of X – e.g. B = {x |x < 0},
B = {|3 ≤ x ≤ 4} – we have P(X ∈ B) ≥ 0.

I We can define the probability density function fX (x) as the
non-negative function such that

P(X ∈ B) =

∫
B
fX (x)dx

for all subsets B of the line.
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Cumulative distribution functions

I For a discrete random variable, to get the probability of X being in
a range B, we sum the PMF over that range:

P(X ∈ B) =
∑
x∈B

pX (x)

e.g. if X ∼Binomial(10, 0.2)

P(2 < X ≤ 5) =pX (3) + pX (4) + pX (5) =
5∑

k=3

(
10

k

)
0.2k (1− 0.2)10−k

I For a continuous random variable, to get the probability of X being
in a range B, we integrate the PDF over that range:

P(X ∈ B) =

∫
B
fX (x)dx

P(2 < X ≤ 5) =

∫ 5

2
fX (x)dx
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Cumulative distribution functions

I In both cases, we call the probability P(X ≤ x) the cumulative
distribution function (CDF) FX (x) of X
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Common discrete random variables

We have looked at four main types of discrete random variable:

I Bernoulli: We have a biased coin with probability of heads p. A
Bernoulli random variable is 1 if we get heads, 0 if we get tails.

I If X ∼ Bernoulli(p), pX (x) =

{
p if x = 1

1− p otherwise.
I Examples: Has disease, hits target.

I Binomial: We have a sequence of n biased coin flips, each with
probability of heads p – i.e. a sequence of n independent Bernoulli(p)
trials. A Binomial random variable returns the number of heads.

I If X ∼ Binomial(n, p), pX (k) =

(
n

k

)
pk(1− p)n−k

I pk because we have heads (prob. p) k times, (1− p)n−k because we
have tails (prob. 1− p) n − k times.

I Why

(
n

k

)
? Because this is the number of sequences of length n

that have exactly k heads.
I Examples: How many people will vote for a candidate, how many of

my seeds will sprout.
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Common discrete random variables

I Geometric: We have a biased coin with probability of heads p. A
geometric random variable returns the number of times we have to
throw the coin before we get heads. e.g. If our sequence is
(T ,T ,H,T , . . . ), then X = 3.

I If X ∼ Geometric(p), pX (k) = (1− p)k−1p
I Prob. of getting a sequence of k − 1 tails and then a head.
I E [X ] = 1/p (should know this) and var(X ) = (1− p)/p2 (don’t need

to know this)
I P(X > k) = 1− P(X ≤ k) = (1− p)k

I Memoryless property: P(X > k + j |X > j) = P(X > k)

I Poisson: Independent events occur, on average, λ times over a
given period/distance/area. A Poisson random variable returns the
number of times they actually happen.

I If X ∼ Poisson(λ), pX (k) =
λke−λ

k!
.

I E [X ] = λ and var(X ) = λ.

I The Poisson distribution with λ = np is a good approximation to the
Binomial(n, p) distribution, when n is large and p is small.
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Common continuous random variables
I Uniform random variable: X takes on a value between a lower bound a and

an upper bound b, with all values being equally likely.

I If X ∼ Uniform(a, b), fX (x) =


1

b − a
if a ≤ X ≤ b

0 otherwise.

I E [X ] = (a + b)/2. var(X ) = (b − a)2/12

I Normal random variable: X follows a bell-shaped curve with mean µ and
variance σ2. No upper or lower bound.

I If X ∼ Normal(µ, σ2), then fX (x) =
1√

2πσ2
e
− (x−µ)2

2σ2

I If X ∼ Normal(µ, σ2), then Z =
X − µ
σ

∼ Normal(0, 1)

I E [X ] = µ and var(X ) = σ2.

I Exponential random variable: X takes non-negative values.

I If X ∼ Exponential(λ), fX (x) =

{
λe−λx if x ≥ 0

0 otherwise.

I E [X ] = 1/λ, var(X ) = 1/λ2.
I Always remember, whenever you have an integration of the form∫ ∞

0
λx exp(−λx)dx, you should be able to go around partial integration by

using the expectation formula of an Exponential.
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The standard normal
I The pdf of a standard normal is defined as:

fZ (z) =
1√
2π

e−x
2/2.

I The CDF of the standard normal is denoted Φ:

Φ(z) = P(Z ≤ z) = P(Z < z) =
1√
(2π)

∫ z

−∞
e−t

2/2dt

I We cannot calculate this analytically.
I The standard normal table lets us look up values of Φ(y) for y ≥ 0

.00 .01 .02 0.03 0.04 · · ·
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 · · ·
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 · · ·
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 · · ·
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 · · ·

...
...

...
...

...
...

P(Z < 0.21) = 0.5832
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CDF of a normal random variable
The pdf of a X ∼ N(µ, σ2) r.v. is defined as:

fX (x) =
1√

2πσ2
e−(x−µ)

2/2σ2

If X ∼ N(3, 4), what is P(X < 0)?

I First we need to standardize:

Z =
X − µ
σ

=
X − 3

2

I So, a value of x = 0 corresponds to a value of z = −1.5

I Now, we can translate our question into the standard normal:

P(X < 0) = P(Z < −1.5) = P(Z ≤ −1.5)

I Problem... our table only gives Φ(z) = P(Z ≤ z) for z ≥ 0.
I But, P(Z ≤ −1.5) = P(Z ≥ 1.5), due to symmetry.
I Our table only gives us “less than” values.
I But, P(Z ≥ 1.5) = 1− P(Z < 1.5) = 1− P(Z ≤ 1.5) = 1− Φ(1.5).
I And we’re done!

P(X < 0) = 1− Φ(1.5) = (look at the table...)1− 0.9332 = 0.0668 9



Multiple random variables

I We can have multiple random variables associated with the same
sample space.

I e.g. if our experiment is an infinite sequence of coin tosses, we
might have:

I X = number of heads in the first 10 coin tosses.
I Y = outcome of 3rd coin toss.
I Z = number of coin tosses until we get a head.

I e.g. if our experiment is to pick a random individual, we might have:

I X = age.
I Y = 1 if male, 0 otherwise.
I Z = height.

I We can look at the probability of outcomes of a single random
variable in isolation:

I Discrete case: The marginal PMF of X is just pX (x) = P(X = x) –
the PMF associated with X in isolation.

I Continuous case: The marginal PDF of X is the function fX (x) such

that P(X ∈ B) =

∫
B

fX (x)dx .
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Multiple random variables

I We can look at the probability of two (or more) random variables’
outcomes together.

I For example, if we are interested in P(X < 3) and P(2 < Y ≤ 5), we
might want to know P((X < 3) ∩ (2 < Y ≤ 5)) – the probability that
both events occur.

I Discrete case: The joint PMF, pX ,Y (x , y), of X and Y gives
probability that X and Y both take on specific values x and y , i.e.

pX ,Y (x , y) = P({X = x} ∩ {Y = y})

I Continuous case: The joint PDF, fX ,Y (x , y), of X and Y is the
function we integrate over to get P((X ,Y ) ∈ B), i.e.

P((X ,Y ) ∈ B) =

∫∫
x,y∈B

fX ,Y (x , y)dx dy
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Multiple random variables

I We can get from the joint PMF of X and Y to the marginal PMF
of X by summing over (marginalizing over) Y :

pX (x) =
∑
y

pX ,Y (x , y)

I We can get from the joint PDF of X and Y to the marginal PDF
of X by integrating over (marginalizing over) Y :

fX (x) =

∫ ∞
−∞

fX ,Y (x , y)dy
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Multiple random variables
I If we have two events A and B, if we know B is true, we can look at

the conditional probability of A given B, P(A|B)

I We know that P(A|B) =
P(A,B)

P(B)
=

P(B|A)P(A)

P(B)
I If we have a discrete random variable X and an event B, if we know

B is true, the conditional PMF of X given B gives the PMF of X

given B:
pX |B (x) = P({X = x}|B)

I If we have a discrete random variable X and a discrete random
variable Y , the conditional PMF of X given Y gives the PMF of X

given Y = y :
pX |Y (x |y) = P({X = x}|{Y = y})

I Since P(A|B) =
P(A ∩ B)

P(B)
=

P(B|A)P(A)

P(B)
, we know that

pX |Y (x |y) =
pX ,Y (x , y)

pY (y)
=

pY |X (y |x)pX (x)

pY (y)
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Multiple random variables

I If we have a continuous random variable X and an event B, if we
know B is true, the conditional PDF of X given B is the function
fX |B (x) such that

P(X ∈ A|B) =

∫
A
fX |B (x)dx

I If the event B corresponds to a range of outcomes of X , we have

P(X ∈ A|X ∈ B) =
P({X ∈ A} ∩ {X ∈ B})

P(X ∈ B)
=

∫
A∩B fX (x)dx

P(X ∈ B)

=

∫
A
fX |{X∈B}(x)dx

I Therefore, fX |{X∈B} =


fX (x)

P(X ∈ B)
if x ∈ B

0 otherwise
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Multiple random variables

I If the event B corresponds to the outcome y of another random
variable Y , the conditional PDF of X given Y = y is the function
fX |Y (x |y) such that

P({X ∈ A}|Y = y) =

∫
A
fX |Y (x |y)dx

I If Y is a continuous random variable, we have the relationship

fX |Y (x |y) =
fX ,Y (x , y)

fY (y)
=

fY |X (y |x)fX (x)

fY (y)

I If Y is a discrete random variable, we have the relationship

fX |Y (x |y) =
P(Y = y |X = x)fX (x)

P(Y = y)
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Expectation and Variance

I The expectation (expected value, mean) E [X ] of a random variable
X is the number we expect to get out, on average, if we repeat the
experiment infinitely many times.

I The variance of a random variable is the expected value of
(X − E [X ])2. It is a measure of how far away from our expectation
we expect to be.

I If we know the PMF or PDF of a random variable, we can calculate
its mean and variance.

Discrete:

E [X ] =
∑
x

xpX (x)

var(X ) =
∑
x

(x − E [X ])2pX (x)

=E [X2]− E [X ]2

Continuous:

E [X ] =

∫ ∞
−∞

xfX (x)dx

var(X ) =

∫ ∞
−∞

(x − E [X ])2fX (x)dx

=E [X2]− E [X ]2
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Expectation and Variance

I A random variable is a mapping from our sample space to the real line.

I So, any function of a random variable is itself a random variable.

I So, we can calculate its mean and expectation!

Discrete:

E [g(X )] =
∑
x

g(x)pX (x)

e.g. E [X 2] =
∑
x

x2pX (x)

var(g(X )) =
∑
x

(g(x)− E [g(X )])2pX (x)

=E [g(X )2]− E [g(X )]2

Continuous:

E [g(X )] =

∫ ∞
−∞

g(x)fX (x)dx

e.g. E [X 2] =

∫ ∞
−∞

x2fX (x)dx

var(g(X )) =

∫ ∞
−∞

(g(x)− E [g(X )])2fX (x)dx

=E [g(X )2]− E [g(X )]2

I If g(X ) = aX + b, then we have:

Discrete:

E [aX + b] =aE [X ] + b

var(aX + b) =a2var(X )

Continuous:

E [aX + b] =aE [X ] + b

var(aX + b) =a2var(X )
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Expectation and Variance
I If X and Y are two random variables, any function of X and Y is

also a random variable.

I So, we can look at the expectation and variance of g(X ,Y )

Discrete:

E [g(X ,Y )] =
∑
x

∑
y

g(x , y)pX ,Y (x , y)

var(g(X ,Y )) =
∑
x

∑
y

(g(x , y)− E [g(X ,Y )])2pX ,Y (x , y)

=E [g(X ,Y )2]− E [g(X ,Y )]2

Continuous:

E [g(X ,Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x , y)fX ,Y (x , y)dx dy

var(g(X ,Y )) =

∫ ∞
−∞

∫ ∞
−∞

(g(x , y)− E [g(X ,Y )])2fX ,Y (x , y)dx dy

=E [g(X ,Y )2]− E [g(X ,Y )]2
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Linearity of expectation

I If g(X ,Y ) = aX + bY + c, we observe linearity of expectation:

E [aX + bY + c] = aE [X ] + bE [Y ] + c

E [aX2 + bY 2 + c] = aE [X2] + bE [Y 2] + c

I var(aX + bY + c) = a2var(X ) + b2var(Y ) Only if X and Y are
independent!

I When X and Y are dependent, then there are covariance terms. See
probability review after the midterm.

I Adding a constant never changes the variance.

I If you have the mean and the variance, you can easily calculate
E [X2] by using the formula

var(X ) = E [X2]− E [X ]2
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Conditional expectation
I We can also look at the conditional expectation of X , given some

event Y .
I This is just the expectation of the appropriate conditional

distribution!

Discrete:

E [X |A] =
∑
x

xpX |A(x)

Continuous:

E [X |A] =

∫ ∞
−∞

xfX |A(x)dx

E [X |Y = y ] =

∫ ∞
−∞

xfX |Y (x |y)dx

I If B1,B2, . . . ,Bn is a partition of Ω, we can use the total
expectation theorem to get E [X ] from the conditional expectations
E [X |Bi ]:

E [X ] =
n∑

i=1

E [X |Bi ]P(Bi )

I For a continuous random variable, if we know the conditional
expectations E [X |Y = y ], we have

E [X ] =

∫ ∞
−∞

E [X |Y = y ]fY (y)dy
20



Independent events

I We say two events A and B are independent if
P(A ∩ B) = P(A)P(B).

I If P(B) > 0, this implies P(A|B) = P(A) – i.e. knowing B tells us
nothing about A.

I We say more than two events A1,A2, . . . ,An are independent if, for

any subset S of {1, 2, . . . , n}, P

⋂
i∈S

Ai

 =
∏
i∈S

P(Ai )

I We say more than two events A1,A2, . . . ,An are pairwise
independent if, for any pair Ai ,Aj , P(Ai ∩ Aj ) = P(Ai )P(Aj )
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Conditionally independent events

I We say any two events A and B are conditionally independent
given some third event C if

P(A ∩ B|C) = P(A|C)P(B|C)

I If P(B|C) > 0, this implies P(A|B,C) = P(A|C) – i.e. if we already
know C , knowing B tells us nothing more about A.

I Conditional independence does not imply independence!

I Independence does not imply conditional independence!
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Independent random variables

I We can extend this concept to random variables.

I We say two random variables X and Y are independent if, for all x
and y ,

Discrete:

pX ,Y (x , y) = pX (x)pY (y)

Continuous:

fX ,Y (x , y) = fX (x)fY (y)

I If pY (y) (discrete case)/fY (y) (continuous case is zero, this implies

Discrete:

pX |Y (x |y) = pX (x)

Continuous:

fX |Y (x |y) = fX (x)

– i.e. knowing y tells us nothing about X (and vice versa)!
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Expectation and Variance of independent random variables

I If X and Y are independent random variables,
pX ,Y (x , y) = pX (x)pY (y)/fX ,Y (x , y) = fX (x)fY (y), so we have

Discrete:

E [XY ] =
∑
x ,y

xypX ,Y (x , y)

=
∑
x

xpX (x)
∑
Y

ypY (y)

=E [X ]E [Y ]

Continuous:

E [XY ] =

∫ ∞
−∞

∫ ∞
−∞

xyfX ,Y (x , y)dx dy

=

∫ ∞
−∞

xfX (x)dx

∫ ∞
−∞

yfY (y)dy

=E [X ]E [Y ]

I We also have:

var(X + Y ) =E [(X + Y )2]− E [X + Y ]2

=E [X2] + 2E [XY ] + E [Y 2]−2E [X ]2−2E [X ]E [Y ]−2E [Y 2]

=var(X ) + var(Y )
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Conditional PDF and conditional expectation
I We all know how to calculate expectation of a continuous or discrete

random variable

I e.g. E [X ] =

∫ ∞
−∞

xfX (x)dx

I ... and we’re generally OK with calculating the expectation of a
function of a random variable

I e.g. E [X 3] =

∫ ∞
−∞

x3fX (x)dx

I If we condition on some separate event, it’s still pretty
straightforward.

I The conditional PDF of X given some event A describes the
probability distribution of X given some event A.

I e.g. X might be “height” and A might be “is male”; fX |A(x) is the
PDF of a man’s height.

I X might be “weight” and A might be “X > 140lb”; fX |X>140(x) is
the PDF of weight, given weight>140.

I The event might be the outcome of another random variable.
I e.g. e.g. X might be height, and Y might be age; pX |Y (x |y) is the

PDF of someone’s height given their age is y .

I In all these cases, we can calculate the conditional expectation and
conditional variance of X . 25



Law of total expectation

I Let’s look at a concrete example. Let’s say the distribution of
heights for men is a normal distribution with mean 69 and variance
9, and the distribution of heights for women is a normal distribution
with mean 64 and variance 9.

I What is the conditional expectation of height, given a subject is
male?

I E [H|M] = 69” - it’s the mean of a Normal(69, 9) distribution.

I Similarly, the conditional expectation of height given a subject is
female is 64”.

I If a population contains equal numbers of men and women, what is
the overall expected height?

I E [H] = 66.5′′... why?
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Law of total expectation

I Well, we have a 0.5 probability of being male, and if we’re male the
conditional expectation is 69... we have a 0.5 probability of being
female, and then the conditional expectation is 64.

E [H] = E [H|M]P(M) + E [H|F ]P(F )︸ ︷︷ ︸
law of total expectation

= 69× 0.5 + 64× 0.5 = 66.5

I What if our population were 2/3 men? What would the total
expectation be then?

E [H] = E [H|M]P(M) + E [H|F ]P(F ) = 69× 2

3
+ 64× 1

3
= 67.33
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Conditional expectation: Conditioning on a concrete event

I Let’s look at another example

I A bird leaves its nest heading north, at 1pm. Let X be the speed at
which a bird flies, and Y be the bird’s distance north from the nest
at 1:30pm.

I Assume X ∼ Uniform(3, 6) and Y |X = x ∼ Normal(x/2, 1)

I Let’s say we now discover the bird’s flight speed is 4mph. What is
the conditional expectation of its distance?

I If its speed is 4mph, the distance is a normal random variable with
mean 2 miles and variance 1. So, E [Y |X = 4] = 2.

I Note that this doesn’t depend on the distribution of X ! We are
conditioning on a fixed value of X = x, so we don’t need to
incorporate its distribution.

I What is the conditional variance of Y , given X = 4?

I var(Y |X = 4) = 1.
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Conditional expectation: Conditioning on a random event

I What if we don’t know the bird’s speed? What can we say about the
conditional expectation of the distance, given this unknown speed?

I Well, the conditional expectation will always be half the speed!

I If we know X = x, then E [Y |X = x ] = x/2. It is a function of x!

I Since X is random, the conditional expectation of Y given X ,
E [Y |X ] is random.

I Note we are now conditioning on a random variable rather than a
specific set.

I We know that E [Y |X ] = X/2... i.e. the conditional expectation of Y

given X is a Uniform(1.5, 3) distribution.
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Correlation and Covariance

I The expectation of a random variable tells us where we expect it
to be, on average.

I The variance of a random variable tells us how far away from the
expectation it is likely to be.

I If we have two random variables, we might also be interested in how
much they jointly vary from the mean.

I We might be interested in knowing whether a larger-than-expected
X comes with a larger-than-expected Y .

I The covariance between X and Y captures this:

cov(X ,Y ) =E [(X − E [X ])(Y − E [Y ])]

=E [XY ]− E [X ]E [Y ]
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Covariance

I A positive covariance means that, if X > E [X ], we are likely to have
Y > E [Y ]

I A negative covariance means that, if X > E [X ], we are likely to
have Y < E [Y ]. 31



Covariance: Example

A die is rolled twice. Let X be the sum of outcomes and Y be the first
outcome minus the second. Calculate cov(X ,Y )

I Let X1 be the first outcome and X2 the second.

I X = X1 + X2 and Y = X1 − X2

I cov(X1 + X2,X1 − X2) =

cov(X1,X1)− cov(X1,X2) + cov(X1,X2)− cov(X2,X2) = 0, since
cov(X1,X1) = cov(X2,X2) = var(X1).
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Covariance: A slightly harder example

Let X be the number of ones and Y be the number of 2’s that occur in n

rolls of a fair die. Calculate cov(X ,Y )

I Let Xi = 1 if the ith throw yields a 1 and Yi = 1 if the ith throw
yields a 2.

I We want cov(
∑
i

Xi ,
∑
j

Yj )

I This equals
∑
ij

cov(Xi ,Yj )

I But Xi and Yj are independent when i 6= j, and so cov(Xi ,Yj ) = 0

when i 6= j

I So cov(X ,Y ) =
∑
i

cov(Xi ,Yi ) =
∑
i

(E [XiYi ]− E [Xi ]E [Yj ]).

However, E [XiYi ] = P(Xi = 1,Yi = 1) = 0 and so the answer is
n(0− 1/36) = −n/36
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Correlation

I The covariance can be hard to interpret.

I The sign gives us the direction of the relationship.

I The size depends on both the strength of the relationship and how
far X and Y tend to be from their mean – i.e. the variances of X

and Y .

I The correlation coefficient ρX ,Y is a standardized version of the
covariance.

ρX ,Y =
cov(X ,Y )√

var(X )var(Y )

I It takes away the effect of the variances, so we always have
−1 ≤ ρX ,Y ≤ 1

I ρ = 0 implies zero covariance.
I |ρ| = 1 iff there is a linear relationship between X and Y .
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Covariance and correlation properties

I cov(X ,X ) = var(X )

I cov(X ,Y ) = cov(Y ,X )

I cov(X , a) = 0 for some constant a.

I cov(aX , bY ) = abcov(X ,Y )

I cov(X , b + Y ) = cov(X ,Y )

I If X = aY + b and a > 0 then ρX ,Y = 1

I If X = aY + b and a < 0 then ρX ,Y = −1
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Correlation: Example

I We just calculated the correlation between the number of ones and
the number of twos that occur in n rolls of a fair die:
cov(X ,Y ) = −n/36.

I What is the correlation?

I Well, we first need to know the variances.

I X is a binomial random variable... each roll comes up ones with
probability 1/6.

I So, we know var(X ) = 5n/36.

I Similarly, var(Y ) = 5n/36.

I So,

ρX ,Y =
cov(X ,Y )√

var(X )var(Y )
=
−n/36

5n/36
= −1

5
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What you should know

I Independence and conditional independence. The difference.

I What is a valid (joint) pdf ?

I How to calculate mean, variance, marginal pdf of a random variable.

I How to look up a normal table?

I Forms of the common distributions and at least their means.
Probably a good idea to keep the variances on a cheat sheet.

I Bayes rule.

I Conditional probabilities and expectations. Law of total probability
and total expectation theorem

I How to calculate covariance and correlation. Rules of covariance and
correlation.
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