THE UNIVERSITY OF TEXAS AT AUSTIN

Department of Statistics and Data Sciences

College of Natural Sciences

SDS 321: Introduction to Probability and Statistics
 Review: Continuous r.v. review

Purnamrita Sarkar
Department of Statistics and Data Sciences
The University of Texas at Austin

Random variables

- If the range of our random variable X is finite or countable, we call it a discrete random variable.
- We can write the probability that the random variable X takes on a specific value x using the probability mass function, $p_{X}(x)=\mathbf{P}(X=x)$.
- If the range of X is uncountable, and no single outcome x has $\mathbf{P}(X=x)>0$, we call it a continuous random variable.
- Because $\mathbf{P}(X=x)=0$ for all X, we can't use a PMF.
- However, for any range B of X - e.g. $B=\{x \mid x<0\}$, $B=\{\mid 3 \leq x \leq 4\}$ - we have $\mathbf{P}(X \in B) \geq 0$.
- We can define the probability density function $f_{X}(x)$ as the non-negative function such that

$$
\mathbf{P}(X \in B)=\int_{B} f_{X}(x) d x
$$

for all subsets B of the line.

Cumulative distribution functions

- For a discrete random variable, to get the probability of X being in a range B, we sum the PMF over that range:

$$
\mathbf{P}(X \in B)=\sum_{x \in B} p_{X}(x)
$$

e.g. if $X \sim \operatorname{Binomial}(10,0.2)$

$$
\mathbf{P}(2<X \leq 5)=p_{X}(3)+p_{X}(4)+p_{X}(5)=\sum_{k=3}^{5}\binom{10}{k} 0.2^{k}(1-0.2)^{10-k}
$$

- For a continuous random variable, to get the probability of X being in a range B, we integrate the PDF over that range:

$$
\begin{aligned}
\mathbf{P}(X \in B) & =\int_{B} f_{X}(x) d x \\
\mathbf{P}(2<X \leq 5) & =\int_{2}^{5} f_{X}(x) d x
\end{aligned}
$$

Cumulative distribution functions

- In both cases, we call the probability $\mathbf{P}(X \leq x)$ the cumulative distribution function (CDF) $F_{X}(x)$ of X

Common discrete random variables

We have looked at four main types of discrete random variable:

- Bernoulli: We have a biased coin with probability of heads p. A Bernoulli random variable is 1 if we get heads, 0 if we get tails.
- If $X \sim \operatorname{Bernoulli}(p), p_{X}(x)= \begin{cases}p & \text { if } x=1 \\ 1-p & \text { otherwise. }\end{cases}$
- Examples: Has disease, hits target.
- Binomial: We have a sequence of n biased coin flips, each with probability of heads $p-$ i.e. a sequence of n independent $\operatorname{Bernoulli}(p)$ trials. A Binomial random variable returns the number of heads.
- If $X \sim \operatorname{Binomial}(n, p), p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
- p^{k} because we have heads (prob. p) k times, $(1-p)^{n-k}$ because we have tails (prob. $1-p$) $n-k$ times.
- Why $\binom{n}{k}$? Because this is the number of sequences of length n that have exactly k heads.
- Examples: How many people will vote for a candidate, how many of my seeds will sprout.

Common discrete random variables

- Geometric: We have a biased coin with probability of heads p. A geometric random variable returns the number of times we have to throw the coin before we get heads. e.g. If our sequence is (T, T, H, T, \ldots), then $X=3$.
- If $X \sim \operatorname{Geometric}(p), p_{X}(k)=(1-p)^{k-1} p$
- Prob. of getting a sequence of $k-1$ tails and then a head.
- $E[X]=1 / p$ (should know this) and $\operatorname{var}(X)=(1-p) / p^{2}$ (don't need to know this)
- $P(X>k)=1-P(X \leq k)=(1-p)^{k}$
- Memoryless property: $P(X>k+j \mid X>j)=P(X>k)$
- Poisson: Independent events occur, on average, λ times over a given period/distance/area. A Poisson random variable returns the number of times they actually happen.
- If $X \sim \operatorname{Poisson}(\lambda), p_{x}(k)=\frac{\lambda^{k} e^{-\lambda}}{k!}$.
- $E[X]=\lambda$ and $\operatorname{var}(X)=\lambda$.
- The Poisson distribution with $\lambda=n p$ is a good approximation to the Binomial (n, p) distribution, when n is large and p is small.

Common continuous random variables

- Uniform random variable: X takes on a value between a lower bound a and an upper bound b, with all values being equally likely.
- If $X \sim \operatorname{Uniform}(a, b), f_{X}(x)= \begin{cases}\frac{1}{b-a} & \text { if } a \leq X \leq b \\ 0 & \text { otherwise. }\end{cases}$
- $E[X]=(a+b) / 2 . \operatorname{var}(X)=(b-a)^{2} / 12$
- Normal random variable: X follows a bell-shaped curve with mean μ and variance σ^{2}. No upper or lower bound.
- If $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$, then $f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$
- If $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$, then $Z=\frac{X-\mu}{\sigma} \sim \operatorname{Normal}(0,1)$
- $E[X]=\mu$ and $\operatorname{var}(X)=\sigma^{2}$.
- Exponential random variable: X takes non-negative values.
- If $X \sim$ Exponential $(\lambda), f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & \text { if } x \geq 0 \\ 0 & \text { otherwise. }\end{cases}$
- $E[X]=1 / \lambda, \operatorname{var}(X)=1 / \lambda^{2}$.
- Always remember, whenever you have an integration of the form $\int_{0}^{\infty} \lambda x \exp (-\lambda x) d x$, you should be able to go around partial integration by using the expectation formula of an Exponential.

The standard normal

- The pdf of a standard normal is defined as:

$$
f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

- The CDF of the standard normal is denoted Φ :

$$
\Phi(z)=\mathbf{P}(Z \leq z)=\mathbf{P}(Z<z)=\frac{1}{\sqrt{(2 \pi)}} \int_{-\infty}^{z} e^{-t^{2} / 2} d t
$$

- We cannot calculate this analytically.
- The standard normal table lets us look up values of $\Phi(y)$ for $y \geq 0$

	.00	.01	.02	0.03	0.04	\cdots
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	\cdots
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	\cdots
0.2	0.5793	$\mathbf{0 . 5 8 3 2}$	0.5871	0.5910	0.5948	\cdots
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	

$$
\mathbf{P}(Z<0.21)=0.5832
$$

CDF of a normal random variable

The pdf of a $X \sim N\left(\mu, \sigma^{2}\right)$ r.v. is defined as:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

If $X \sim N(3,4)$, what is $\mathbf{P}(X<0)$?

- First we need to standardize:

$$
z=\frac{x-\mu}{\sigma}=\frac{x-3}{2}
$$

- So, a value of $x=0$ corresponds to a value of $z=-1.5$
- Now, we can translate our question into the standard normal:

$$
\mathbf{P}(X<0)=\mathbf{P}(Z<-1.5)=\mathbf{P}(Z \leq-1.5)
$$

- Problem... our table only gives $\Phi(z)=\mathbf{P}(Z \leq z)$ for $z \geq 0$.
- But, $\mathbf{P}(Z \leq-1.5)=\mathbf{P}(Z \geq 1.5)$, due to symmetry.
- Our table only gives us "less than" values.
- But, $\mathbf{P}(Z \geq 1.5)=1-\mathbf{P}(Z<1.5)=1-\mathbf{P}(Z \leq 1.5)=1-\Phi(1.5)$.
- And we're done!

$$
\mathbf{P}(X<0)=1-\Phi(1.5)=(\text { look at the table... }) 1-0.9332=0.0668
$$

Multiple random variables

- We can have multiple random variables associated with the same sample space.
- e.g. if our experiment is an infinite sequence of coin tosses, we might have:
- $X=$ number of heads in the first 10 coin tosses.
- $Y=$ outcome of 3rd coin toss.
- $Z=$ number of coin tosses until we get a head.
- e.g. if our experiment is to pick a random individual, we might have:
- $X=$ age.
- $Y=1$ if male, 0 otherwise.
- $Z=$ height.
- We can look at the probability of outcomes of a single random variable in isolation:
- Discrete case: The marginal PMF of X is just $p_{X}(x)=\mathbf{P}(X=x)$ the PMF associated with X in isolation.
- Continuous case: The marginal PDF of X is the function $f_{X}(x)$ such that $\mathbf{P}(X \in B)=\int_{B} f_{X}(x) d x$.

Multiple random variables

- We can look at the probability of two (or more) random variables' outcomes together.
- For example, if we are interested in $\mathbf{P}(X<3)$ and $\mathbf{P}(2<Y \leq 5)$, we might want to know $\mathbf{P}((X<3) \cap(2<Y \leq 5))$ - the probability that both events occur.
- Discrete case: The joint PMF, $p_{X, Y}(x, y)$, of X and Y gives probability that X and Y both take on specific values x and y, i.e.

$$
p_{X, Y}(x, y)=\mathbf{P}(\{X=x\} \cap\{Y=y\})
$$

- Continuous case: The joint PDF, $f_{X, Y}(x, y)$, of X and Y is the function we integrate over to get $\mathbf{P}((X, Y) \in B)$, i.e.

$$
\mathbf{P}((X, Y) \in B)=\iint_{X, y \in B} f_{X, Y}(x, y) d x d y
$$

Multiple random variables

- We can get from the joint PMF of X and Y to the marginal PMF of X by summing over (marginalizing over) Y :

$$
p_{X}(x)=\sum_{y} p_{X, Y}(x, y)
$$

- We can get from the joint PDF of X and Y to the marginal PDF of X by integrating over (marginalizing over) Y :

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y
$$

Multiple random variables

- If we have two events A and B, if we know B is true, we can look at the conditional probability of A given $B, \mathbf{P}(A \mid B)$
- We know that $\mathbf{P}(A \mid B)=\frac{\mathbf{P}(A, B)}{\mathbf{P}(B)}=\frac{\mathbf{P}(B \mid A) \mathbf{P}(A)}{\mathbf{P}(B)}$
- If we have a discrete random variable X and an event B, if we know B is true, the conditional PMF of X given B gives the PMF of X given B :

$$
p_{X \mid B}(x)=\mathbf{P}(\{X=x\} \mid B)
$$

- If we have a discrete random variable X and a discrete random variable Y, the conditional PMF of X given Y gives the PMF of X given $Y=y$:

$$
p_{X \mid Y}(x \mid y)=\mathbf{P}(\{X=x\} \mid\{Y=y\})
$$

- Since $\mathbf{P}(A \mid B)=\frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}=\frac{\mathbf{P}(B \mid A) \mathbf{P}(A)}{\mathbf{P}(B)}$, we know that

$$
p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}=\frac{p_{Y \mid X}(y \mid x) p_{X}(x)}{p_{Y}(y)}
$$

Multiple random variables

- If we have a continuous random variable X and an event B, if we know B is true, the conditional PDF of X given B is the function $f_{X \mid B}(x)$ such that

$$
\mathbf{P}(X \in A \mid B)=\int_{A} f_{X \mid B}(x) d x
$$

- If the event B corresponds to a range of outcomes of X, we have

$$
\begin{aligned}
\mathbf{P}(X \in A \mid X \in B) & =\frac{\mathbf{P}(\{X \in A\} \cap\{X \in B\})}{\mathbf{P}(X \in B)}=\frac{\int_{A \cap B} f_{X}(x) d x}{\mathbf{P}(X \in B)} \\
& =\int_{A} f_{X \mid\{X \in B\}}(x) d x \\
\text { Therefore, } f_{X \mid\{X \in B\}} & = \begin{cases}\frac{f_{X}(x)}{\mathbf{P}(X \in B)} & \text { if } x \in B \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Multiple random variables

- If the event B corresponds to the outcome y of another random variable Y, the conditional PDF of X given $Y=y$ is the function $f_{X \mid Y}(x \mid y)$ such that

$$
\mathbf{P}(\{X \in A\} \mid Y=y)=\int_{A} f_{X \mid Y}(x \mid y) d x
$$

- If Y is a continuous random variable, we have the relationship

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)}
$$

- If Y is a discrete random variable, we have the relationship

$$
f_{X \mid Y}(x \mid y)=\frac{\mathbf{P}(Y=y \mid X=x) f_{X}(x)}{\mathbf{P}(Y=y)}
$$

Expectation and Variance

- The expectation (expected value, mean) $E[X]$ of a random variable X is the number we expect to get out, on average, if we repeat the experiment infinitely many times.
- The variance of a random variable is the expected value of $(X-E[X])^{2}$. It is a measure of how far away from our expectation we expect to be.
- If we know the PMF or PDF of a random variable, we can calculate its mean and variance.

Discrete:

$$
\begin{aligned}
E[X] & =\sum_{x} x p_{X}(x) \\
\operatorname{var}(X) & =\sum_{x}(x-E[X])^{2} p_{X}(x) \\
& =E\left[X^{2}\right]-E[X]^{2}
\end{aligned}
$$

Continuous:

$$
\begin{aligned}
E[X] & =\int_{-\infty}^{\infty} x f_{X}(x) d x \\
\operatorname{var}(X) & =\int_{-\infty}^{\infty}(x-E[X])^{2} f_{X}(x) d x \\
& =E\left[X^{2}\right]-E[X]^{2}
\end{aligned}
$$

Expectation and Variance

- A random variable is a mapping from our sample space to the real line.
- So, any function of a random variable is itself a random variable.
- So, we can calculate its mean and expectation!

Discrete:

$$
E[g(X)]=\sum_{x} g(x) p_{X}(x)
$$

Continuous:

$$
E[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

$$
\text { e.g. } E\left[X^{2}\right]=\sum_{x} x^{2} p_{X}(x)
$$

$$
\text { e.g. } E\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x
$$

$$
\left.\left.\begin{array}{rl}
\operatorname{var}(g(X)) & =\sum_{x}^{x}(g(x)-E[g(X)])^{2} p_{X}(x) \operatorname{var}(g(X))
\end{array}\right)=\int_{-\infty}^{\infty}(g(x)-E[g(X)])^{2} f_{X}(x) d x\right)
$$

- If $g(X)=a X+b$, then we have:

Discrete:

$$
\begin{aligned}
E[a X+b] & =a E[X]+b \\
\operatorname{var}(a X+b) & =a^{2} \operatorname{var}(X)
\end{aligned}
$$

Continuous:

$$
\begin{aligned}
E[a X+b] & =a E[X]+b \\
\operatorname{var}(a X+b) & =a^{2} \operatorname{var}(X)
\end{aligned}
$$

Expectation and Variance

- If X and Y are two random variables, any function of X and Y is also a random variable.
- So, we can look at the expectation and variance of $g(X, Y)$

Discrete:

$$
\begin{aligned}
E[g(X, Y)] & =\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y) \\
\operatorname{var}(g(X, Y)) & =\sum_{x} \sum_{y}(g(x, y)-E[g(X, Y)])^{2} p_{X, Y}(x, y) \\
& =E\left[g(X, Y)^{2}\right]-E[g(X, Y)]^{2}
\end{aligned}
$$

Continuous:

$$
\begin{aligned}
E[g(X, Y)] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y \\
\operatorname{var}(g(X, Y)) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(g(x, y)-E[g(X, Y)])^{2} f_{X, Y}(x, y) d x d y \\
& =E\left[g(X, Y)^{2}\right]-E[g(X, Y)]^{2}
\end{aligned}
$$

Linearity of expectation

- If $g(X, Y)=a X+b Y+c$, we observe linearity of expectation:

$$
\begin{aligned}
E[a X+b Y+c] & =a E[X]+b E[Y]+c \\
E\left[a X^{2}+b Y^{2}+c\right] & =a E\left[X^{2}\right]+b E\left[Y^{2}\right]+c
\end{aligned}
$$

- $\operatorname{var}(a X+b Y+c)=a^{2} \operatorname{var}(X)+b^{2} \operatorname{var}(Y)$ Only if X and Y are independent!
- When X and Y are dependent, then there are covariance terms. See probability review after the midterm.
- Adding a constant never changes the variance.
- If you have the mean and the variance, you can easily calculate $E\left[X^{2}\right]$ by using the formula

$$
\operatorname{var}(X)=E\left[X^{2}\right]-E[X]^{2}
$$

Conditional expectation

- We can also look at the conditional expectation of X, given some event Y.
- This is just the expectation of the appropriate conditional distribution!

Continuous:

Discrete:

$$
E[X \mid A]=\sum_{x} x p_{X \mid A}(x)
$$

$$
\begin{gathered}
E[X \mid A]=\int_{-\infty}^{\infty} x f_{X \mid A}(x) d x \\
E[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x
\end{gathered}
$$

- If $B_{1}, B_{2}, \ldots, B_{n}$ is a partition of Ω, we can use the total expectation theorem to get $E[X]$ from the conditional expectations $E\left[X \mid B_{i}\right]$:

$$
E[X]=\sum_{i=1}^{n} E\left[X \mid B_{i}\right] \mathbf{P}\left(B_{i}\right)
$$

- For a continuous random variable, if we know the conditional expectations $E[X \mid Y=y]$, we have

$$
E[X]=\int_{-\infty}^{\infty} E[X \mid Y=y] f_{Y}(y) d y
$$

Independent events

- We say two events A and B are independent if $\mathbf{P}(A \cap B)=\mathbf{P}(A) \mathbf{P}(B)$.
- If $\mathbf{P}(B)>0$, this implies $\mathbf{P}(A \mid B)=\mathbf{P}(A)$ - i.e. knowing B tells us nothing about A.
- We say more than two events $A_{1}, A_{2}, \ldots, A_{n}$ are independent if, for any subset S of $\{1,2, \ldots, n\}, \mathbf{P}\left(\bigcap_{i \in S} A_{i}\right)=\prod_{i \in S} \mathbf{P}\left(A_{i}\right)$
- We say more than two events $A_{1}, A_{2}, \ldots, A_{n}$ are pairwise independent if, for any pair $A_{i}, A_{j}, \mathbf{P}\left(A_{i} \cap A_{j}\right)=\mathbf{P}\left(A_{i}\right) \mathbf{P}\left(A_{j}\right)$

Conditionally independent events

- We say any two events A and B are conditionally independent given some third event C if

$$
\mathbf{P}(A \cap B \mid C)=\mathbf{P}(A \mid C) \mathbf{P}(B \mid C)
$$

- If $\mathbf{P}(B \mid C)>0$, this implies $\mathbf{P}(A \mid B, C)=\mathbf{P}(A \mid C)$ - i.e. if we already know C, knowing B tells us nothing more about A.
- Conditional independence does not imply independence!
- Independence does not imply conditional independence!

Independent random variables

- We can extend this concept to random variables.
- We say two random variables X and Y are independent if, for all x and y,

Discrete:

$$
p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)
$$

Continuous:

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

- If $p_{Y}(y)$ (discrete case) $/ f_{Y}(y)$ (continuous case is zero, this implies Discrete:

Continuous:

$$
f_{X \mid Y}(x \mid y)=f_{X}(x)
$$

- i.e. knowing y tells us nothing about X (and vice versa)!

Expectation and Variance of independent random variables

- If X and Y are independent random variables,

$$
p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y) / f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y), \text { so we have }
$$

Discrete:

$$
\begin{aligned}
E[X Y] & =\sum_{x, y} x y p_{X, Y}(x, y) \\
& =\sum_{x} x p_{X}(x) \sum_{Y} y p_{Y}(y) \\
& =E[X] E[Y]
\end{aligned}
$$

Continuous:

$$
\begin{aligned}
E[X Y] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X, Y}(x, y) d x d y \\
& =\int_{-\infty}^{\infty} x f_{X}(x) d x \int_{-\infty}^{\infty} y f_{Y}(y) d y \\
& =E[X] E[Y]
\end{aligned}
$$

- We also have:

$$
\begin{aligned}
\operatorname{var}(X+Y) & =E\left[(X+Y)^{2}\right]-E[X+Y]^{2} \\
& =E\left[X^{2}\right]+2 E[X Y]+E\left[Y^{2}\right]-2 E[X]^{2}-2 E[X] E[Y]-2 E\left[Y^{2}\right] \\
& =\operatorname{var}(X)+\operatorname{var}(Y)
\end{aligned}
$$

Conditional PDF and conditional expectation

- We all know how to calculate expectation of a continuous or discrete random variable
- e.g. $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$
- ... and we're generally OK with calculating the expectation of a function of a random variable
- e.g. $E\left[X^{3}\right]=\int_{-\infty}^{\infty} x^{3} f_{x}(x) d x$
- If we condition on some separate event, it's still pretty straightforward.
- The conditional PDF of X given some event A describes the probability distribution of X given some event A.
- e.g. X might be "height" and A might be "is male"; $f_{X \mid A}(x)$ is the PDF of a man's height.
- X might be "weight" and A might be " $X>140 / b$ "; $f_{X \mid X>140}(x)$ is the PDF of weight, given weight >140.
- The event might be the outcome of another random variable.
- e.g. e.g. X might be height, and Y might be age; $p_{X \mid Y}(x \mid y)$ is the PDF of someone's height given their age is y.
- In all these cases, we can calculate the conditional expectation and conditional variance of X.

Law of total expectation

- Let's look at a concrete example. Let's say the distribution of heights for men is a normal distribution with mean 69 and variance 9 , and the distribution of heights for women is a normal distribution with mean 64 and variance 9 .
- What is the conditional expectation of height, given a subject is male?
- $E[H \mid M]=69^{\prime \prime}$ - it's the mean of a $\operatorname{Normal}(69,9)$ distribution.
- Similarly, the conditional expectation of height given a subject is female is $64^{\prime \prime}$.
- If a population contains equal numbers of men and women, what is the overall expected height?
- $E[H]=66.5^{\prime \prime} \ldots$ why?

Law of total expectation

- Well, we have a 0.5 probability of being male, and if we're male the conditional expectation is $69 \ldots$ we have a 0.5 probability of being female, and then the conditional expectation is 64 .

$$
\underbrace{E[H]=E[H \mid M] \mathbf{P}(M)+E[H \mid F] \mathbf{P}(F)}_{\text {law of total expectation }}=69 \times 0.5+64 \times 0.5=66.5
$$

- What if our population were $2 / 3$ men? What would the total expectation be then?

$$
E[H]=E[H \mid M] \mathbf{P}(M)+E[H \mid F] \mathbf{P}(F)=69 \times \frac{2}{3}+64 \times \frac{1}{3}=67.33
$$

Conditional expectation: Conditioning on a concrete event

- Let's look at another example
- A bird leaves its nest heading north, at 1 pm . Let X be the speed at which a bird flies, and Y be the bird's distance north from the nest at $1: 30 \mathrm{pm}$.
- Assume $X \sim \operatorname{Uniform}(3,6)$ and $Y \mid X=x \sim \operatorname{Normal}(x / 2,1)$
- Let's say we now discover the bird's flight speed is 4 mph . What is the conditional expectation of its distance?
- If its speed is 4 mph , the distance is a normal random variable with mean 2 miles and variance 1. So, $E[Y \mid X=4]=2$.
- Note that this doesn't depend on the distribution of X ! We are conditioning on a fixed value of $X=x$, so we don't need to incorporate its distribution.
- What is the conditional variance of Y, given $X=4$?
- $\operatorname{var}(Y \mid X=4)=1$.

Conditional expectation: Conditioning on a random event

- What if we don't know the bird's speed? What can we say about the conditional expectation of the distance, given this unknown speed?
- Well, the conditional expectation will always be half the speed!
- If we know $X=x$, then $E[Y \mid X=x]=x / 2$. It is a function of x !
- Since X is random, the conditional expectation of Y given X, $E[Y \mid X]$ is random.
- Note we are now conditioning on a random variable rather than a specific set.
- We know that $E[Y \mid X]=X / 2 \ldots$ i.e. the conditional expectation of Y given X is a $\operatorname{Uniform}(1.5,3)$ distribution.

Correlation and Covariance

- The expectation of a random variable tells us where we expect it to be, on average.
- The variance of a random variable tells us how far away from the expectation it is likely to be.
- If we have two random variables, we might also be interested in how much they jointly vary from the mean.
- We might be interested in knowing whether a larger-than-expected X comes with a larger-than-expected Y.
- The covariance between X and Y captures this:

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

Covariance

- A positive covariance means that, if $X>E[X]$, we are likely to have $Y>E[Y]$
- A negative covariance means that, if $X>E[X]$, we are likely to have $Y<E[Y]$.

Covariance: Example

A die is rolled twice. Let X be the sum of outcomes and Y be the first outcome minus the second. Calculate $\operatorname{cov}(X, Y)$

- Let X_{1} be the first outcome and X_{2} the second.
- $X=X_{1}+X_{2}$ and $Y=X_{1}-X_{2}$
- $\operatorname{cov}\left(X_{1}+X_{2}, X_{1}-X_{2}\right)=$

$$
\operatorname{cov}\left(X_{1}, X_{1}\right)-\operatorname{cov}\left(X_{1}, X_{2}\right)+\operatorname{cov}\left(X_{1}, X_{2}\right)-\operatorname{cov}\left(X_{2}, X_{2}\right)=0, \text { since }
$$

$$
\operatorname{cov}\left(X_{1}, X_{1}\right)=\operatorname{cov}\left(X_{2}, X_{2}\right)=\operatorname{var}\left(X_{1}\right) .
$$

Covariance: A slightly harder example

Let X be the number of ones and Y be the number of 2's that occur in n rolls of a fair die. Calculate $\operatorname{cov}(X, Y)$

- Let $X_{i}=1$ if the $i^{\text {th }}$ throw yields a 1 and $Y_{i}=1$ if the $i^{\text {th }}$ throw yields a 2.
- We want $\operatorname{cov}\left(\sum_{i} X_{i}, \sum_{j} Y_{j}\right)$
- This equals $\sum_{i j} \operatorname{cov}\left(X_{i}, Y_{j}\right)$
- But X_{i} and Y_{j} are independent when $i \neq j$, and so $\operatorname{cov}\left(X_{i}, Y_{j}\right)=0$ when $i \neq j$
- So $\operatorname{cov}(X, Y)=\sum_{i} \operatorname{cov}\left(X_{i}, Y_{i}\right)=\sum_{i}\left(E\left[X_{i} Y_{i}\right]-E\left[X_{i}\right] E\left[Y_{j}\right]\right)$.

However, $E\left[X_{i} Y_{i}\right]=P\left(X_{i}=1, Y_{i}=1\right)=0$ and so the answer is $n(0-1 / 36)=-n / 36$

Correlation

- The covariance can be hard to interpret.
- The sign gives us the direction of the relationship.
- The size depends on both the strength of the relationship and how far X and Y tend to be from their mean - i.e. the variances of X and Y.
- The correlation coefficient $\rho_{X, Y}$ is a standardized version of the covariance.

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}
$$

- It takes away the effect of the variances, so we always have
$-1 \leq \rho_{X, Y} \leq 1$
- $\rho=0$ implies zero covariance.
- $|\rho|=1$ iff there is a linear relationship between X and Y.

Covariance and correlation properties

- $\operatorname{cov}(X, X)=\operatorname{var}(X)$
- $\operatorname{cov}(X, Y)=\operatorname{cov}(Y, X)$
- $\operatorname{cov}(X, a)=0$ for some constant a.
- $\operatorname{cov}(a X, b Y)=a b \operatorname{cov}(X, Y)$
- $\operatorname{cov}(X, b+Y)=\operatorname{cov}(X, Y)$
- If $X=a Y+b$ and $a>0$ then $\rho_{X, Y}=1$
- If $X=a Y+b$ and $a<0$ then $\rho_{X, Y}=-1$

Correlation: Example

- We just calculated the correlation between the number of ones and the number of twos that occur in n rolls of a fair die: $\operatorname{cov}(X, Y)=-n / 36$.
- What is the correlation?
- Well, we first need to know the variances.
- X is a binomial random variable... each roll comes up ones with probability $1 / 6$.
- So, we know $\operatorname{var}(X)=5 n / 36$.
- Similarly, $\operatorname{var}(Y)=5 n / 36$.
- So,

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}=\frac{-n / 36}{5 n / 36}=-\frac{1}{5}
$$

What you should know

- Independence and conditional independence. The difference.
- What is a valid (joint) pdf?
- How to calculate mean, variance, marginal pdf of a random variable.
- How to look up a normal table?
- Forms of the common distributions and at least their means. Probably a good idea to keep the variances on a cheat sheet.
- Bayes rule.
- Conditional probabilities and expectations. Law of total probability and total expectation theorem
- How to calculate covariance and correlation. Rules of covariance and correlation.

