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Announcements

I Homework is due today 4pm!

I HW3 is out already and HW1 solutions are available.
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Combinations

So far we have been talking only about ordered samples. For many
applications we only need an unordered sample. In particular we want to
figure out how many ways one can form groups of size r from a set of
size n.

I Q: How many groups of size r are there of a given population of size
n?

I In other words: how many ways can I choose r unordered elements
without replacement from a population of size n?

I We denote this by
(n
r

)
. We say n choose r .

I How many ways can I choose two digits without replacement from
{1, 2, 3}?

I 12,23,13

.

So
(3
2

)
=3.
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Combinations

I Earlier we learned about n permute r . This is how we choose r

elements without replacement, but the order matters.

I Let consider all ordered samples of size 2 picked without
replacement from 3 numbers.

I Now we want the same. But order does not matter. So {1, 2} and
{2, 1} are the same.

I (1, 2), (2, 1)︸ ︷︷ ︸
2times

, (1, 3), (3, 1)︸ ︷︷ ︸
2times

, (2, 3), (3, 2)︸ ︷︷ ︸
2times

I Say we are picking 3 out of 4 numbers. Consider all ordered
arrangements.
123, 132, 231, 213, 312, 321,︸ ︷︷ ︸
(1,2,3) appears 6 times

143, 134, 431, 413, 314, 341︸ ︷︷ ︸
(1,3,4) appears 6 times

, . . .
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Combinations

I Let us start with the collection of ordered r-tuplets chosen without
replacement from n nodes. This collection is of size (n)r .

I However, each unordered sample appears r ! times in this collection.

I Hence the total number of unordered samples/groups of size r is

given by
(n
r

)
:=

(n)r
r !

=
n!

r !(n − r)!

I This also sometimes written as C(n, r).

I These are also known as the binomial coefficients.
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Binomial coefficients: fun stuff

I

(
n

k

)
=

(
n

n − k

)
I Number of ways to choose k out of n things is the same as choosing

(n − k) things out n and removing them.

I

(
n

k

)
+

(
n

k + 1

)
=

(
n + 1

k + 1

)

I How do you choose k + 1 elements out of n + 1 elements?
I Divide n + 1 into a set S of n elements plus one extra element x .
I The sample you pick either has x or not.
I How many ways can you choose k + 1 out of n + 1 so that x is never

included?

I Just choose k + 1 elements from S!

So in
( n

k + 1

)
ways.

I How many ways can you choose a k + 1 elements so that x is
included?

I You can choose k elements from S elements in
(n
k

)
ways and add x

to that pile.
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Example I

I How many binary sequences of length n are there with k ones?

I Same as choosing k out of n positions in the sequence. We put a
one in these positions and zeros in the rest. So the answer is

(n
k

)
.
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Example II

I What is
n∑

k=0

(
n

k

)
?

I Well this is just the total number of possible binary strings, so 2n.
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Practice Problems

I

You are walking on a grid. You can either go right or up by one
step. You start from (0,0). How many paths are there to (5, 10)?

I How many of the above paths go via (4, 4)?
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Practice Problem: Path counting

I Think of each right as a 1 and each up as a 0. Now you have a
bijection with every binary sequence of length 15 with 5 “1”s. A
bijection is essentially saying that each path you construct can be
written as a length 15 binary sequence with 5 “1”s and for any such
binary sequence you have a path that takes you to (5, 10).

I How many such sequences are there?
(15
5

)
.

I Now you need to go via (4, 4). So first count paths from (0, 0) to

(4, 4). There are
(8
4

)
such paths. How many paths go from (4, 4) to

(5, 10)? Change you origin! This is the same as counting paths from

(0, 0) to (1, 6). There are

(
7

1

)
= 7 such paths. So the total number

of paths is

(
8

4

)
× 7 using the multiplication rule.

10



Example II

I How many configurations of length n binary strings are there with k
1’s?

I Think Binomial coefficient!

I How many configurations of length 10 strings are there with three
0’s, four 1’s and three 2’s?

I First choose positions of the 0’s in

(
10

3

)
ways.

I Now choose positions of the 1’s from the remaining 7 in

(
7

4

)
ways.

I The remaining three positions are given to the 2’s.

I So a total of
10!

3!7!
× 7!

4!3!
=

10!

3!4!3!
ways.
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Multinomial coefficients

I
(n
k

)
:= #ways to divide n elements into two disjoint groups, where

the first group has size k and the second size n − k.

I

(
n

n1, n2, n3

)
:= #ways to divide n elements into 3 disjoint groups of

sizes n1, n2 and n3 = n − n1 − n2 respectively.

I First we choose n1 out of n. Next from the remaining n − n1 we
choose n2. Rest are assigned to the third group.

I

(
n

n1, n2, n3

)
=

(
n

n1

)
×

(
n − n1
n2

)
=

n!

n1!n2!n3!

I Generalizing to r groups of sizes n1, . . . , nr with n1 + · · ·+ nr = n we
have: (

n

n1, . . . nr

)
:=

n!

n1! . . . nr !
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Sum up

I Here are all the things we have learned so far.

I There are n! ways to permute n distinguishable objects.

I (n)r is the # ways one can pick r ordered objects from n

distinguishable objects. (n)r = n!/(n − r)!

I
(n
r

)
is the # ways one can pick r unordered objects from n

distinguishable objects.

I
n!

n1!n2!n3!
is the # ways one can label n distinguishable objects with

n1 labels of one type, n2 labels of a second type, and
n3 = n − n1 − n2 elements of the third type.

I Today we will learn more about occupancy problems.
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Occupancy numbers

I So far we have been talking about distinguishable objects. In all
these problems, which object was assigned to which group matters.

I Sometimes however we are interested in counting frequencies.

I How many ways can you divide 10 fruits among 4 children so that
everyone gets at least one?

I Here, we are not interested in which fruit went to which child. We
only care about how many of the fruits went to a child.

I So we think of the fruits as indistinguishable objects and the
children are distinguishable bins.
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Occupancy numbers (stars and bars)

I Say xi is the number of fruits going to child i . So we are looking for
ways to write x1 + x2 + x3 + x4 = 10, where xi > 0.

I 1 + 1 + 4 + 4 is not the same as 1 + 4 + 1 + 4.

I How will you represent x1 = 1, x2 = 3, x3 = 2, and x4 = 4. Write 10
stars for 10 fruits. Put bars to represent bins/children.

I In order to divide 10 stars into 4 parts you will need 3 bars.

I

∗︸︷︷︸
1

| ∗ ∗ ∗︸︷︷︸
3

| ∗∗︸︷︷︸
2

| ∗ ∗ ∗∗︸ ︷︷ ︸
4

I There are 9 spaces between 10 stars. We want to put 3 bars in these
places. There are total

(9
3

)
ways of doing this.
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Occupancy numbers (stars and bars)

I Say you want to distribute n fruits among k children so that
everyone gets at least 1.

I Say xi is the number of fruits going to child i . So we are looking for
ways to write x1 + x2 + · · ·+ xk = n, where xi > 0.

I Writing in stars and bars, you want to place (k − 1) bars in (n − 1)

spaces between the stars.

I So the answer is

(
n − 1

k − 1

)
.
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Occupancy numbers (stars and bars)

Now I want to divide 10 fruits among 4 children. A child may or may not
get any fruit. How many ways to do this?

I We want to use our former idea, but how?

Lightbulb! Why not divide 14 fruits to 4 children so that everyone has at least
one, and then remove one fruit from each? The fruits are
indistinguishable and so it does’t matter which one you take out.

I This way everyone will have zero or more fruits, and total number of
fruits is 10.

I So the answer is

(
13

3

)
.
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Lightbulb! Why not divide 14 fruits to 4 children so that everyone has at least
one, and then remove one fruit from each? The fruits are
indistinguishable and so it does’t matter which one you take out.

I This way everyone will have zero or more fruits, and total number of
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13
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Occupancy numbers (stars and bars)

I How many ways can I write n as an sum of k non-negative integers?
1 + 2 + 4 is different from 1 + 4 + 2.

I We want to enumerate the ordered set of k-tuplets {x1, . . . , xk},
such that x1 + . . . xk = n and xi ≥ 0, for i = 1, . . . , k.

I Define yi = xi + 1. Now for each r-tuplet of xi ’s we have an r-tuplet
of yi ’s such that y1 + · · ·+ yk = n + k, and yi > 0 for i = 1, . . . , k.

I But this is the same as the former problem, with n + k stars and k

bars! So the answer is
(n + k − 1

k−1

)
.
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Probability and counting: example 1a

I Our population consists of ten digits {0, 1, . . . , 9}.
I I pick a 5 digit number uniformly at random. Such a number can

start with zero, and may have repetitions.

I What is the probability p that the five digits are all different?

I # all 5 digit numbers is 105.

I # 5 digit numbers without repetition is (10)5.

I p = (10)5/105.
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Probability and counting: example 1b

I A bus with 5 passengers makes 10 stops. All configurations of
discharging the passengers are equally likely.

I What is the probability p that no two passengers get down at the
same stop?

I # all possible configurations is 105.

I # configurations with 5 passengers each with a different stop is
(10)5.

I p = (10)5/105.
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Probability and counting: example 1c

I The birthdays of r ≤ 365 people form a sample of size r from the
population of all birthdays (365 days in the year). We assume that a
person is equally likely to be born on any of the 365 days and no one
was born on Feb 29th.

I What is the probability that no two people will have the same
birthday?

p =
(365)r
365r

=
365!

(365− r)!365r
(1)

I What is the probability if r = 366?

I Then at least two people must have the same birthday. This is also
called the Pigeonhole Principle. So p = 0.

I How will you calculate this for large r , say r = 30?
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Birthdays

I Problem... my calculator can’t handle 365! or 36530.

I Take logarithms! 36530 = 1076.8688 = 7.392× 1076.

I We can approximate factorials using Stirling’s approximation:

n! ∼
√

2πnn+1/2e−n

I The ∼ symbol means the ratio of the two sides tend to 1 as n→∞.

ln(365!) ≈1

2
ln(2π) +

(
365 +

1

2

)
ln(365)− 365 = 1792.3

ln(335!) ≈1

2
ln(2π) +

(
335 +

1

2

)
ln(335)− 335 = 1616.6

ln

(
365!

335!

)
= ln(365!)− ln(335!) ≈ 1792.3− 1616.6 = 175.55

365!

335!
≈e175.55 = 2.1711× 1076

I The actual value is 2.1710× 1076 – not bad!
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Birthdays

I So, we with 30 people, we have 7.392× 1076 possible combinations
of birthdays.

I 2.171× 1076 of these possible combinations of birthdays have no
repeats.

I So, the probability of no one having the same birthday is:

2.171× 1076

7.392× 1076
≈ 0.296

I Odds are, there’s a shared birthday!
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