SDS 321: Introduction to Probability and Statistics
 Lecture 3: Conditional probability and Bayes rule

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
www.cs.cmu.edu/~psarkar/teaching.html

Example: Umbrella sales

Anita works for an umbrella company. She gets a bonus if and only if she sells more than 10 umbrellas in a day.

- If it is raining, the probability that she sells more than 10 umbrellas is 0.8 .
- If it isn't raining, the probability that she sells more than 10 umbrellas is 0.25 .
- The probability that it rains tomorrow is 0.1 .

What is the probability that it doesn't rain tomorrow, and she gets her bonus?

Example: Umbrella sales

Anita works for an umbrella company. She gets a bonus if and only if she sells more than 10 umbrellas in a day.

- If it is raining, the probability that she sells more than 10 umbrellas is 0.8 .
- $W:=\{\#$ umbrellas sold $>10\}, R:=\{$ rain $\}$ and
$B:=\{$ Anita gets bonus $\}$
- If it isn't raining, the probability that she sells more than 10 umbrellas is 0.25 .
- The probability that it rains tomorrow is 0.1 .

What is the probability that it doesn't rain tomorrow, and she gets her bonus?

Example: Umbrella sales

Anita works for an umbrella company. She gets a bonus if and only if she sells more than 10 umbrellas in a day.

- If it is raining, the probability that she sells more than 10 umbrellas is 0.8 .
- $W:=\{\#$ umbrellas sold $>10\}, R:=\{$ rain $\}$ and $B:=\{$ Anita gets bonus $\}$
- $W=B$.
- If it isn't raining, the probability that she sells more than 10 umbrellas is 0.25 .
- The probability that it rains tomorrow is 0.1 .

What is the probability that it doesn't rain tomorrow, and she gets her bonus?

Example: Umbrella sales

Anita works for an umbrella company. She gets a bonus if and only if she sells more than 10 umbrellas in a day.

- If it is raining, the probability that she sells more than 10 umbrellas is 0.8 .
- $W:=\{\#$ umbrellas sold $>10\}, R:=\{$ rain $\}$ and $B:=\{$ Anita gets bonus $\}$
- $W=B$.
- $P(W \mid R)=0.8$
- If it isn't raining, the probability that she sells more than 10 umbrellas is 0.25 .
- The probability that it rains tomorrow is 0.1.

What is the probability that it doesn't rain tomorrow, and she gets her bonus?

Example: Umbrella sales

Anita works for an umbrella company. She gets a bonus if and only if she sells more than 10 umbrellas in a day.

- If it is raining, the probability that she sells more than 10 umbrellas is 0.8 .
- $W:=\{\#$ umbrellas sold $>10\}, R:=\{$ rain $\}$ and $B:=\{$ Anita gets bonus $\}$
- $W=B$.
- $P(W \mid R)=0.8$
- If it isn't raining, the probability that she sells more than 10 umbrellas is 0.25 .
- $P\left(W \mid R^{c}\right)=0.25$
- The probability that it rains tomorrow is 0.1 .

What is the probability that it doesn't rain tomorrow, and she gets her bonus?

Example: Umbrella sales

Anita works for an umbrella company. She gets a bonus if and only if she sells more than 10 umbrellas in a day.

- If it is raining, the probability that she sells more than 10 umbrellas is 0.8 .
- $W:=\{\#$ umbrellas sold $>10\}, R:=\{$ rain $\}$ and $B:=\{$ Anita gets bonus $\}$
- $W=B$.
- $P(W \mid R)=0.8$
- If it isn't raining, the probability that she sells more than 10 umbrellas is 0.25 .
- $P\left(W \mid R^{c}\right)=0.25$
- The probability that it rains tomorrow is 0.1 .
- $P(R)=0.1$.

What is the probability that it doesn't rain tomorrow, and she gets her bonus?

Example: Umbrella sales

Anita works for an umbrella company. She gets a bonus if and only if she sells more than 10 umbrellas in a day.

- If it is raining, the probability that she sells more than 10 umbrellas is 0.8 .
- $W:=\{\#$ umbrellas sold $>10\}, R:=\{$ rain $\}$ and $B:=\{$ Anita gets bonus $\}$
- $W=B$.
- $P(W \mid R)=0.8$
- If it isn't raining, the probability that she sells more than 10 umbrellas is 0.25 .
- $P\left(W \mid R^{c}\right)=0.25$
- The probability that it rains tomorrow is 0.1 .
- $P(R)=0.1$.

What is the probability that it doesn't rain tomorrow, and she gets her bonus? What is $P\left(R^{c} \cap B\right)$?

Example: Umbrella sales

- $P(R)=0.1$
- $P(W \mid R)=0.8$
- $P\left(W \mid R^{c}\right)=0.25$

Example: Umbrella sales

- $P(R)=0.1$
- $P(W \mid R)=0.8$
- $P\left(W \mid R^{C}\right)=0.25$

We can rearrange our formula for conditional probability. Since $P\left(W \mid R^{c}\right)=\frac{P\left(W \cap R^{c}\right)}{P\left(R^{c}\right)}$, we also have:
$P\left(W \cap R^{c}\right)=P\left(W \mid R^{c}\right) P\left(R^{c}\right)$

Example: Umbrella sales

- $P(R)=0.1$
- $P(W \mid R)=0.8$
- $P\left(W \mid R^{C}\right)=0.25$

We can rearrange our formula for conditional probability. Since $P\left(W \mid R^{c}\right)=\frac{P\left(W \cap R^{c}\right)}{P\left(R^{c}\right)}$, we also have:
$P\left(W \cap R^{c}\right)=P\left(W \mid R^{c}\right) P\left(R^{c}\right)=P\left(W \mid R^{c}\right)(1-P(R))=0.25 \times 0.9=0.225$

Example: Umbrella sales

- $P(R)=0.1$
- $P(W \mid R)=0.8$
- $P\left(W \mid R^{C}\right)=0.25$

We can rearrange our formula for conditional probability. Since $P\left(W \mid R^{c}\right)=\frac{P\left(W \cap R^{c}\right)}{P\left(R^{c}\right)}$, we also have:
$P\left(W \cap R^{c}\right)=P\left(W \mid R^{c}\right) P\left(R^{c}\right)=P\left(W \mid R^{c}\right)(1-P(R))=0.25 \times 0.9=0.225$

- But I wanted $P\left(B \cap R^{c}\right)$! Isn't this the same as $P\left(W \cap R^{c}\right)$?

Representing conditional probabilities using a tree

We can represent conditional probabilities using a tree structure.

Representing conditional probabilities using a tree

The probability at a leaf node is the product of the probabilities along each path.

Representing conditional probabilities using a tree

The probability at a leaf node is the product of the probabilities along each path.

Multiplication Rule

This is known as the multiplication rule.

Multiplication Rule

This is known as the multiplication rule.

- We know that $P(A \cap B)=P(A \mid B) P(B)$. What is $P(A \cap B \cap C)$?

Multiplication Rule

This is known as the multiplication rule.

- We know that $P(A \cap B)=P(A \mid B) P(B)$. What is $P(A \cap B \cap C)$?
- Treat $(B \cap C)$ as an event. Call this R.

Multiplication Rule

This is known as the multiplication rule.

- We know that $P(A \cap B)=P(A \mid B) P(B)$. What is $P(A \cap B \cap C)$?
- Treat $(B \cap C)$ as an event. Call this R.
- Now $P(A \cap B \cap C)=P(A \cap R)=P(A \mid R) P(R)=P(A \mid B \cap C) P(B \cap C)$.

Multiplication Rule

This is known as the multiplication rule.

- We know that $P(A \cap B)=P(A \mid B) P(B)$. What is $P(A \cap B \cap C)$?
- Treat $(B \cap C)$ as an event. Call this R.
- Now $P(A \cap B \cap C)=P(A \cap R)=P(A \mid R) P(R)=P(A \mid B \cap C) P(B \cap C)$.
- But $P(R)=P(B \cap C)=P(B \mid C) P(C)$.

Multiplication Rule

This is known as the multiplication rule.

- We know that $P(A \cap B)=P(A \mid B) P(B)$. What is $P(A \cap B \cap C)$?
- Treat $(B \cap C)$ as an event. Call this R.
- Now $P(A \cap B \cap C)=P(A \cap R)=P(A \mid R) P(R)=P(A \mid B \cap C) P(B \cap C)$.
- But $P(R)=P(B \cap C)=P(B \mid C) P(C)$.
- Using induction you can prove that:

$$
P\left(\cap_{i=1}^{n} A_{i}\right)=P\left(A_{1} \mid A_{2} \cap \cdots \cap A_{n}\right) P\left(A_{2} \mid A_{3} \cap \cdots \cap A_{n}\right) \cdots P\left(A_{n-1} \mid A_{n}\right) P\left(A_{n}\right)
$$

Revisit Example: Umbrella sales

Anita works for an umbrella company. She gets a bonus (event B) iff she sells more than 10 umbrellas in a day (event W).

- Now $W=B$. We have $P(R)=0.1, P(W \mid R)=0.8$ and $P\left(W \mid R^{C}\right)=0.25$.
- If you knew that Anita got a bonus, then what is the probability that it rained?

Revisit Example: Umbrella sales

Anita works for an umbrella company. She gets a bonus (event B) iff she sells more than 10 umbrellas in a day (event W).

- Now $W=B$. We have $P(R)=0.1, P(W \mid R)=0.8$ and $P\left(W \mid R^{c}\right)=0.25$.
- If you knew that Anita got a bonus, then what is the probability that it rained?
- We are interested in $P(R \mid B)$, which is the same as $P(R \mid W)$. First we need $P(R \cap W)$ and then we need $P(W)$.

Revisit Example: Umbrella sales

Anita works for an umbrella company. She gets a bonus (event B) iff she sells more than 10 umbrellas in a day (event W).

- Now $W=B$. We have $P(R)=0.1, P(W \mid R)=0.8$ and $P\left(W \mid R^{c}\right)=0.25$.
- If you knew that Anita got a bonus, then what is the probability that it rained?
- We are interested in $P(R \mid B)$, which is the same as $P(R \mid W)$. First we need $P(R \cap W)$ and then we need $P(W)$.
- $P(R \cap W)=P(W \mid R) P(R)=0.8 \times 0.1=0.08$.

Revisit Example: Umbrella sales

Anita works for an umbrella company. She gets a bonus (event B) iff she sells more than 10 umbrellas in a day (event W).

- Now $W=B$. We have $P(R)=0.1, P(W \mid R)=0.8$ and $P\left(W \mid R^{c}\right)=0.25$.
- If you knew that Anita got a bonus, then what is the probability that it rained?
- We are interested in $P(R \mid B)$, which is the same as $P(R \mid W)$. First we need $P(R \cap W)$ and then we need $P(W)$.
- $P(R \cap W)=P(W \mid R) P(R)=0.8 \times 0.1=0.08$.
- Now what about $P(W)$?

Revisit Example: Umbrella sales

Anita works for an umbrella company. She gets a bonus iff she sells more than 10 umbrellas in a day.

- Now what about $P(W)$?

Revisit Example: Umbrella sales

Anita works for an umbrella company. She gets a bonus iff she sells more than 10 umbrellas in a day.

- Now what about $P(W)$?
- First write W as an union of two disjoint events. Guesses?

Revisit Example: Umbrella sales

Anita works for an umbrella company. She gets a bonus iff she sells more than 10 umbrellas in a day.

- Now what about $P(W)$?
- First write W as an union of two disjoint events. Guesses?
- $W=W \cap \Omega=W \cap\left(R \cup R^{c}\right)=(W \cap R) \cup\left(W \cap R^{c}\right)$.

Revisit Example: Umbrella sales

Anita works for an umbrella company. She gets a bonus iff she sells more than 10 umbrellas in a day.

- Now what about $P(W)$?
- First write W as an union of two disjoint events. Guesses?
- $W=W \cap \Omega=W \cap\left(R \cup R^{c}\right)=(W \cap R) \cup\left(W \cap R^{c}\right)$.
- Now additivity gives

$$
\begin{aligned}
P(W) & =P(W \cap R)+P\left(W \cap R^{c}\right) \\
& =P(W \mid R) P(R)+P\left(W \mid R^{c}\right) P\left(R^{c}\right)=0.08+0.25 \times 0.9 \approx 0.3
\end{aligned}
$$

Revisit Example: Umbrella sales

Anita works for an umbrella company. She gets a bonus iff she sells more than 10 umbrellas in a day.

- Now what about $P(W)$?
- First write W as an union of two disjoint events. Guesses?
- $W=W \cap \Omega=W \cap\left(R \cup R^{c}\right)=(W \cap R) \cup\left(W \cap R^{c}\right)$.
- Now additivity gives

$$
\begin{aligned}
P(W) & =P(W \cap R)+P\left(W \cap R^{c}\right) \\
& =P(W \mid R) P(R)+P\left(W \mid R^{c}\right) P\left(R^{c}\right)=0.08+0.25 \times 0.9 \approx 0.3 \\
P(R \mid B) & =P(R \mid W)=\frac{P(R \cap W)}{P(W)} \\
& =\frac{P(W \mid R) P(R)}{P(W \mid R) P(R)+P\left(W \mid R^{c}\right) P\left(R^{c}\right)}=0.08 / 0.3 \approx 0.27
\end{aligned}
$$

Revisit Example: Umbrella sales

Anita works for an umbrella company. She gets a bonus iff she sells more than 10 umbrellas in a day.

- Now what about $P(W)$?
- First write W as an union of two disjoint events. Guesses?
- $W=W \cap \Omega=W \cap\left(R \cup R^{c}\right)=(W \cap R) \cup\left(W \cap R^{c}\right)$.
- Now additivity gives

$$
\begin{aligned}
P(W) & =P(W \cap R)+P\left(W \cap R^{c}\right) \quad \text { Theorem of total probability } \\
& =P(W \mid R) P(R)+P\left(W \mid R^{c}\right) P\left(R^{c}\right)=0.08+0.25 \times 0.9 \approx 0.3 \\
P(R \mid B) & =P(R \mid W)=\frac{P(R \cap W)}{P(W)} \\
& =\frac{P(W \mid R) P(R)}{P(W \mid R) P(R)+P\left(W \mid R^{c}\right) P\left(R^{c}\right)}=0.08 / 0.3 \approx 0.27
\end{aligned}
$$

Revisit Example: Umbrella sales

Anita works for an umbrella company. She gets a bonus iff she sells more than 10 umbrellas in a day.

- Now what about $P(W)$?
- First write W as an union of two disjoint events. Guesses?
- $W=W \cap \Omega=W \cap\left(R \cup R^{c}\right)=(W \cap R) \cup\left(W \cap R^{c}\right)$.
- Now additivity gives

$$
\begin{aligned}
P(W) & =P(W \cap R)+P\left(W \cap R^{c}\right) \quad \text { Theorem of total probability } \\
& =P(W \mid R) P(R)+P\left(W \mid R^{c}\right) P\left(R^{c}\right)=0.08+0.25 \times 0.9 \approx 0.3 \\
P(R \mid B) & =P(R \mid W)=\frac{P(R \cap W)}{P(W)} \\
& =\frac{P(W \mid R) P(R)}{P(W \mid R) P(R)+P\left(W \mid R^{c}\right) P\left(R^{c}\right)}=0.08 / 0.3 \approx 0.27
\end{aligned}
$$

The last step is also known as Bayes Rule, which we will study next.

Multiplication rule: examples

Three cards are drawn from an ordinary 52 card deck without replacement. What is the probability that there is no heart among the three?

- Without replacement: drawn cards are not placed back into the deck.
- Notation: $A_{i}=\left\{i^{\text {th }}\right.$ card is not a heart $\}$
- Remember: There are thirteen cards with hearts.

Multiplication rule: examples

Three cards are drawn from an ordinary 52 card deck without replacement. What is the probability that there is no heart among the three?

- Without replacement: drawn cards are not placed back into the deck.
- Notation: $A_{i}=\left\{i^{\text {th }}\right.$ card is not a heart $\}$
- Remember: There are thirteen cards with hearts.
- We want: $P\left(A_{1} \cap A_{2} \cap A_{3}\right)$.

Multiplication rule: examples

Three cards are drawn from an ordinary 52 card deck without replacement. What is the probability that there is no heart among the three?

- Without replacement: drawn cards are not placed back into the deck.
- Notation: $A_{i}=\left\{i^{\text {th }}\right.$ card is not a heart $\}$
- Remember: There are thirteen cards with hearts.
- We want: $P\left(A_{1} \cap A_{2} \cap A_{3}\right)$.
- Use multiplication rule:
$P\left(A_{1} \cap A_{2} \cap A_{3}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} \cap A_{2}\right)$.
- $P\left(A_{1}\right)=. P\left(A_{2} \mid A_{1}\right)=. P\left(A_{3} \mid A_{1} \cap A_{2}\right)=$

Multiplication rule: examples

Three cards are drawn from an ordinary 52 card deck without replacement. What is the probability that there is no heart among the three?

- Without replacement: drawn cards are not placed back into the deck.
- Notation: $A_{i}=\left\{i^{\text {th }}\right.$ card is not a heart $\}$
- Remember: There are thirteen cards with hearts.
- We want: $P\left(A_{1} \cap A_{2} \cap A_{3}\right)$.
- Use multiplication rule:
$P\left(A_{1} \cap A_{2} \cap A_{3}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} \cap A_{2}\right)$.
- $P\left(A_{1}\right)=\frac{39}{52} . P\left(A_{2} \mid A_{1}\right)=. P\left(A_{3} \mid A_{1} \cap A_{2}\right)=$

Multiplication rule: examples

Three cards are drawn from an ordinary 52 card deck without replacement. What is the probability that there is no heart among the three?

- Without replacement: drawn cards are not placed back into the deck.
- Notation: $A_{i}=\left\{i^{\text {th }}\right.$ card is not a heart $\}$
- Remember: There are thirteen cards with hearts.
- We want: $P\left(A_{1} \cap A_{2} \cap A_{3}\right)$.
- Use multiplication rule:
$P\left(A_{1} \cap A_{2} \cap A_{3}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} \cap A_{2}\right)$.
- $P\left(A_{1}\right)=\frac{39}{52} . P\left(A_{2} \mid A_{1}\right)=\frac{38}{51} . P\left(A_{3} \mid A_{1} \cap A_{2}\right)=$

Multiplication rule: examples

Three cards are drawn from an ordinary 52 card deck without replacement. What is the probability that there is no heart among the three?

- Without replacement: drawn cards are not placed back into the deck.
- Notation: $A_{i}=\left\{i^{\text {th }}\right.$ card is not a heart $\}$
- Remember: There are thirteen cards with hearts.
- We want: $P\left(A_{1} \cap A_{2} \cap A_{3}\right)$.
- Use multiplication rule:
$P\left(A_{1} \cap A_{2} \cap A_{3}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} \cap A_{2}\right)$.
- $P\left(A_{1}\right)=\frac{39}{52} . P\left(A_{2} \mid A_{1}\right)=\frac{38}{51} . ~ P\left(A_{3} \mid A_{1} \cap A_{2}\right)=\frac{37}{50}$.

Multiplication rule: examples

I have two black balls, and one red ball. I pick two balls randomly without replacement.

- What is the probability that the first ball is black?
- What is the probability that the second ball is black?

Multiplication rule: examples

I have two black balls, and one red ball. I pick two balls randomly without replacement.

- What is the probability that the first ball is black? $2 / 3$
- What is the probability that the second ball is black?

Multiplication rule: examples

I have two black balls, and one red ball. I pick two balls randomly without replacement.

- What is the probability that the first ball is black? $2 / 3$
- What is the probability that the second ball is black?
- Notation: X_{i} is color of $i^{t h}$ ball. We want $P\left(X_{2}=B\right)$.

Multiplication rule: examples

I have two black balls, and one red ball. I pick two balls randomly without replacement.

- What is the probability that the first ball is black? $2 / 3$
- What is the probability that the second ball is black?
- Notation: X_{i} is color of $i^{t h}$ ball. We want $P\left(X_{2}=B\right)$.

$$
\begin{aligned}
P\left(X_{2}=B\right) & =P\left(X_{2}=B \cap X_{1}=B\right)+P\left(X_{2}=B \cap X_{1}=R\right) \\
& =P\left(X_{2}=B \mid X_{1}=B\right) P\left(X_{1}=B\right)+P\left(X_{2}=B \mid X_{1}=R\right) P\left(X_{1}=R\right) \\
& =\frac{1}{2} \times \frac{2}{3}+1 \times \frac{1}{3}=\frac{2}{3}
\end{aligned}
$$

- Is this obvious? If you know nothing about the first ball, then the second ball can be any one of the 3 balls you have.

Reading

- Read Sections 1.1, 1.2 and 1.3 of Bertsekas and Tsitsiklis.

