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Roadmap

I Two random variables: joint distributions

I Joint pdf 3
I Joint pdf to a single pdf: Marginalization 3
I Conditional pdf

I Conditioning on an event 3
I Conditioning on a continuous r.v 3
I Total probability rule for continuous r.v’s 3
I Bayes theorem for continuous r.v’s 3
I Conditional expectation and total expectation theorem3

I Independence 3

I More than two random variables. 3

I Derived distributions
I Linear functions
I Monotonic functions
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Try it yourself: linear function of continuous random
variables

I Let X be a random variable with PDF fX (x), and let Y = 2X + 3

I Then the CDF of Y is given by:

FY (y) = P(2X + 3 ≤ y) = P

(
X ≤ y − 3

2

)
= FX

(
y − 3

2

)
I Differentiating, we get:

fY (y) =
dFY (y)

dy
=

dFX

(
y−3
2

)
dy

=
1

2
fX

(
y − 3

2

)
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Try it yourself: linear function of continuous random
variables

I Let X be a random variable with PDF fX (x), and let Y = −2X + 3

I Then the CDF of Y is given by:

FY (y) = P(−2X + 3 ≤ y) = P

(
X ≥ 3− y

2

)
= 1− FX

(
3− y

2

)
I Differentiating, we get:

fY (y) =
dFY (y)

dy
= −

dFX

(
3−y
2

)
dy

=
1

2
fX

(
y − 3

(−2)

)
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Functions of continuous random variables

I Let X be a random variable with PDF fX (x), and let Y = aX + b

I

fY (y) =
dFY
dy

(y) =


1

a
fX

(
y − b

a

)
a > 0

−1

a
fX

(
y − b

a

)
a < 0

=
1

|a| fX
(
y − b

a

)
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Linear functions of continuous random variables
I So, for any continuous random variable X , if Y = aX + b, then

fY (y) =
1

|a| fX
(
y − b

a

)
I Let’s consider a normal random variable... X ∼ N(0, 1), then what is

the distribution of Y = aX + b?

I We know that

fX (x) =
1√
2π

e−x
2/2

I So,

fY (y) =
1

|a| fX
(
y − b

a

)
=

1

|a|
1√
2π

exp{−
(
y − b

a

)2
/2}

=
1√
2π|a|

exp

(
− (y − b)2

2a2

)

I This is just the PDF of a normal distribution with mean b and
variance a2!

I In fact, if X ∼ N(µ, σ2), then Y = aX + b ∼ N(aµ+ b, a2σ2).
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How about strictly monotonic functions?

I Another special case is where g is a strictly monotonic function of X .

I Let X be a continuous random variable whose PDF is non-zero only
in some range I . A function g(X ) is said to be strictly monotonic
over I if it is either:

I Monotonically increasing: if x < x ′ then g(x) < g(x ′) for all
x , x ′ ∈ I .

I Monotonically decreasing: if x < x ′ then g(x) > g(x ′) for all
x , x ′ ∈ I .

I In the following picture which one is which?
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Monotonically increasing

I We have random variable X ∼ fX

I We have Y = eX . What is fY (y)?

I Start with the CDF .

I

FY (y) = P(Y ≤ y) = P(eX ≤ y) = P(X ≤ ln y) = FX (ln y)

fY (y) =
dFY (y)

dy
=

dFX (ln y)

dy
=

1

y
fX (ln y)
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Monotonically decreasing

I We have random variable X ∼ fX

I We have Y = e−X . What is fY (y)?

I Start with the CDF .

I

FY (y) = P(Y ≤ y) = P(e−X ≤ y) = P(X ≥ − ln y) = 1− FX (− ln y)

fY (y) =
dFY (y)

dy
= −dFX (− ln y)

dy
=

1

y
fX (− ln y)
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Monotonically decreasing

I We have random variable X ∼ fX

I We have Y = e−X . What is fY (y)?

I Start with the CDF .

I

FY (y) = P(Y ≤ y) = P(e−X ≤ y) = P(X ≥ − ln y) = 1− FX (− ln y)

fY (y) =
dFY (y)

dy
= −dFX (− ln y)

dy
=

1

y
fX (− ln y)

9



Monotonic functions of continuous random variables
I Any strictly monotonic function can be inverted, that is there exists

an inverse function h (also known as g−1) such that

g(x) = y if and only if x = h(y) For all x ∈ I

I If I tell you that g(x) = ax + b, then what is the inverse function?

I Well just set ax + b = y and solve for x.

I We get x = (y − b)/a. So x = h(y) = (y − b)/a.

I

I The inverse function of g(x) = ex is x = h(y) = ln(y)

I If g is monotonically increasing, so is h. If g is monotonically
decreasing, so is h.
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Monotonic functions of continuous random variables

I If g is monotonically increasing, then

FY (y) = P(g(X ) ≤ y) = P(X ≤ h(y)) = FX (h(y))

I e.g. if Y = g(X ) = eX , then X = g−1(Y ) = ln(Y ) and

FY (y) = P(eX ≤ y) = P(X ≤ ln(y)) = FX (ln(y))

I We can differentiate FY (y) to get

fY (y) =
dFY (y)

dy
= fX (h(y))

dh(y)

dy

I Since h is monotonically increasing, it’s slope,
dh(y)

dy
, must be

nonnegative.
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Monotonic functions of continuous random variables

I Similarly we can show that when h is monotonically decreasing,

fY (y) =
dFY (y)

dy
= fX (h(y))

(
−dh(y)

dy

)

I Since h is monotonically decreasing, it’s slope,
dh

dy
(y), must be

negative.

I So, for general strictly monotonic functions of X , we have

fY (y) = fX (h(y))

∣∣∣∣dh(y)dy

∣∣∣∣
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Example: Monotonically decreasing function
I Let X be a uniform random variable on the interval (0, 1], and let

Y = g(X ) = 1/X .
I So Y takes values in [1,∞)

I What is it’s inverse?

h(y) = 1/y

I fY (y) = fX (h(y))

∣∣∣∣dh(y)dy

∣∣∣∣... so we need to know fX (h(y)) and

∣∣∣∣dh(y)dy

∣∣∣∣.
I So for y ≥ 1, fX (h(y)) = fX (1/y) = 1.

I

∣∣∣∣dh(y)dy

∣∣∣∣ = ∣∣∣∣− 1

y2

∣∣∣∣ = 1

y2
I So,

fY (y) = fX (h(y))

∣∣∣∣dhdy (y)
∣∣∣∣ =


1

y2
y ≥ 1

0 y < 1
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Functions of a continuous random variable: Summary
I We know that functions Y = g(X ) of random variables X are again

random variables.

I In the discrete case, it was pretty easy to find the PMF of the new
random variable X :

pY (y) =
∑

x |g(x)=y

pX (x)

I In the continuous case, we need to find

FY (y) = P(Y ≤ y) =

∫
x |g(X )≤y

fX (x)dx

I We can then differentiate wrt y to get the PDF of Y .

I In certain cases, this procedure simplifies a little:

I Linear case: If Y = aX + b, fY (y) =
1

|a| fX
(
y − b

a

)
I Monotonic case: If g is a strictly monotonic function with inverse

h, then fY (y) = fX (h(y))

∣∣∣∣dhdy (y)
∣∣∣∣

I What about if we have functions of more than one random variable?14



Functions of two random variables

I If X and Y are both random variables, then Z = g(X ,Y ) is also a
random variable.

I In the discrete case, we could easily find the PMF of the new
random variable:

pZ (z) =
∑

x ,y |g(x ,y)=z

pX ,Y (x , y)

I For example, if I roll two fair dice, what is the probability that the
sum is 6?

I Each possible ordered pair has probability 1/36.

I The options that sum to 6 are (1, 5), (2, 4), (3, 3), (4, 2), (5, 1)... or in
other words (k, 6− k) for k = 1, . . . , 5.

I So, pZ (5) = 5/36

15
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Functions of two independent continuous random variables

I I know two guests will both arrive in the next hour. The arrival
times are independent random variables which follow a uniform
distribution. What is the PDF of the arrival time of the last guest to
arrive?

I X ∼ Uniform([0, 1]) and Y ∼ Uniform([0, 1]).

I In other words, what is the PDF of Z = max(X ,Y )?

I Let’s first think about the CDF...

P(Z ≤ z) =P({X ≤ z} ∩ {Y ≤ z})

=P(X ≤ z)P(Y ≤ z) =


0 z < 0

z2 0 ≤ z ≤ 1

1 z > 1

I Differentiating, fZ (z) =

{
2z 0 ≤ z ≤ 1

0 otherwise
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P(Z ≤ z) =P({X ≤ z} ∩ {Y ≤ z})

=P(X ≤ z)P(Y ≤ z) =


0 z < 0

z2 0 ≤ z ≤ 1

1 z > 1

I Differentiating, fZ (z) =

{
2z 0 ≤ z ≤ 1

0 otherwise
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Functions of two random variables: Summary

I If Y = g(X ), in order to get the PDF of Y we first looked at the
CDF, P(Y ≤ y) = P(g(X ) ≤ y) and then differentiated with respect
to y .

I For functions Z = g(X ,Y ) of two random variables, the same
general idea applies:

I First we look at the CDF, P(Z ≤ z) = P(g(X ,Y ) ≤ x)

I Then we differentiate with respect to z.

I We looked at a special case: The maximum of two independent
r.v.’s.

I This procedure is known as convolution.
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