SDS 321: Introduction to Probability and Statistics
 Lecture 19: Continuous random variables-Derived distributions, max of two independent r.v.'s

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
www.cs.cmu.edu/~psarkar/teaching

Roadmap

- Two random variables: joint distributions
- Joint pdf $\sqrt{ }$
- Joint pdf to a single pdf: Marginalization \checkmark
- Conditional pdf
- Conditioning on an event \checkmark
- Conditioning on a continuous r.v \checkmark
- Total probability rule for continuous r.v's \checkmark
- Bayes theorem for continuous r.v's \checkmark
- Conditional expectation and total expectation theorem \checkmark
- Independence $\sqrt{ }$
- More than two random variables.
- Derived distributions
- Linear functions
- Monotonic functions

Try it yourself: linear function of continuous random variables

- Let X be a random variable with PDF $f_{X}(x)$, and let $Y=2 X+3$
- Then the CDF of Y is given by:

$$
\begin{aligned}
F_{Y}(y) & =P(2 X+3 \leq y)=P\left(x \leq \frac{y-3}{2}\right) \\
& =F_{X}\left(\frac{y-3}{2}\right)
\end{aligned}
$$

- Differentiating, we get:

$$
\begin{aligned}
f_{Y}(y) & =\frac{d F_{Y}(y)}{d y}=\frac{d F_{X}\left(\frac{y-3}{2}\right)}{d y} \\
& =\frac{1}{2} f_{X}\left(\frac{y-3}{2}\right)
\end{aligned}
$$

Try it yourself: linear function of continuous random

 variables- Let X be a random variable with PDF $f_{X}(x)$, and let $Y=-2 X+3$
- Then the CDF of Y is given by:

$$
\begin{aligned}
F_{Y}(y) & =P(-2 X+3 \leq y)=P\left(x \geq \frac{3-y}{2}\right) \\
& =1-F_{X}\left(\frac{3-y}{2}\right)
\end{aligned}
$$

- Differentiating, we get:

$$
\begin{aligned}
f_{Y}(y) & =\frac{d F_{Y}(y)}{d y}=-\frac{d F_{X}\left(\frac{3-y}{2}\right)}{d y} \\
& =\frac{1}{2} f_{X}\left(\frac{y-3}{(-2)}\right)
\end{aligned}
$$

Functions of continuous random variables

- Let X be a random variable with PDF $f_{X}(x)$, and let $Y=a X+b$

$$
\begin{aligned}
f_{Y}(y)=\frac{d F_{Y}}{d y}(y) & = \begin{cases}\frac{1}{a} f_{X}\left(\frac{y-b}{a}\right) & a>0 \\
-\frac{1}{a} f_{X}\left(\frac{y-b}{a}\right) & a<0\end{cases} \\
& =\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)
\end{aligned}
$$

Linear functions of continuous random variables

- So, for any continuous random variable X, if $Y=a X+b$, then

$$
f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)
$$

- Let's consider a normal random variable... $X \sim N(0,1)$, then what is the distribution of $Y=a X+b$?

Linear functions of continuous random variables

- So, for any continuous random variable X, if $Y=a X+b$, then

$$
f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)
$$

- Let's consider a normal random variable... $X \sim N(0,1)$, then what is the distribution of $Y=a X+b$?
- We know that

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

Linear functions of continuous random variables

- So, for any continuous random variable X, if $Y=a X+b$, then

$$
f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)
$$

- Let's consider a normal random variable... $X \sim N(0,1)$, then what is the distribution of $Y=a X+b$?
- We know that

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

- So,

$$
\begin{aligned}
f_{Y}(y) & =\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)=\frac{1}{|a|} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\left(\frac{y-b}{a}\right)^{2} / 2\right\} \\
& =\frac{1}{\sqrt{2 \pi}|a|} \exp \left(-\frac{(y-b)^{2}}{2 a^{2}}\right)
\end{aligned}
$$

Linear functions of continuous random variables

- So, for any continuous random variable X, if $Y=a X+b$, then

$$
f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)
$$

- Let's consider a normal random variable... $X \sim N(0,1)$, then what is the distribution of $Y=a X+b$?
- We know that

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

- So,

$$
\begin{aligned}
f_{Y}(y) & =\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)=\frac{1}{|a|} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\left(\frac{y-b}{a}\right)^{2} / 2\right\} \\
& =\frac{1}{\sqrt{2 \pi}|a|} \exp \left(-\frac{(y-b)^{2}}{2 a^{2}}\right)
\end{aligned}
$$

- This is just the PDF of a normal distribution with mean b and variance a^{2} !
- In fact, if $X \sim N\left(\mu, \sigma^{2}\right)$, then $Y=a X+b \sim N\left(a \mu+b, a^{2} \sigma^{2}\right)$.

How about strictly monotonic functions?

- Another special case is where g is a strictly monotonic function of X.
- Let X be a continuous random variable whose PDF is non-zero only in some range I. A function $g(X)$ is said to be strictly monotonic over I if it is either:
- Monotonically increasing: if $x<x^{\prime}$ then $g(x)<g\left(x^{\prime}\right)$ for all $x, x^{\prime} \in I$.
- Monotonically decreasing: if $x<x^{\prime}$ then $g(x)>g\left(x^{\prime}\right)$ for all $x, x^{\prime} \in I$.
- In the following picture which one is which?

Monotonically increasing

- We have random variable $X \sim f_{X}$
- We have $Y=e^{X}$. What is $f_{Y}(y)$?
- Start with the CDF.

Monotonically increasing

- We have random variable $X \sim f_{X}$
- We have $Y=e^{X}$. What is $f_{Y}(y)$?
- Start with the CDF .

$$
F_{Y}(y)=P(Y \leq y)=P\left(e^{X} \leq y\right)=P(X \leq \ln y)=F_{X}(\ln y)
$$

$$
f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=\frac{d F_{X}(\ln y)}{d y}=\frac{1}{y} f_{X}(\ln y)
$$

Monotonically decreasing

- We have random variable $X \sim f_{X}$
- We have $Y=e^{-X}$. What is $f_{Y}(y)$?
- Start with the CDF.

Monotonically decreasing

- We have random variable $X \sim f_{X}$
- We have $Y=e^{-X}$. What is $f_{Y}(y)$?
- Start with the CDF .

$$
F_{Y}(y)=P(Y \leq y)=P\left(e^{-X} \leq y\right)=P(X \geq-\ln y)=1-F_{X}(-\ln y)
$$

$$
f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=-\frac{d F_{X}(-\ln y)}{d y}=\frac{1}{y} f_{X}(-\ln y)
$$

Monotonic functions of continuous random variables

- Any strictly monotonic function can be inverted, that is there exists an inverse function h (also known as g^{-1}) such that

$$
g(x)=y \quad \text { if and only if } \quad x=h(y) \quad \text { For all } x \in I
$$

- If I tell you that $g(x)=a x+b$, then what is the inverse function?

Monotonic functions of continuous random variables

- Any strictly monotonic function can be inverted, that is there exists an inverse function h (also known as g^{-1}) such that

$$
g(x)=y \quad \text { if and only if } \quad x=h(y) \quad \text { For all } x \in I
$$

- If I tell you that $g(x)=a x+b$, then what is the inverse function?
- Well just set $a x+b=y$ and solve for x.

Monotonic functions of continuous random variables

- Any strictly monotonic function can be inverted, that is there exists an inverse function h (also known as g^{-1}) such that

$$
g(x)=y \quad \text { if and only if } \quad x=h(y) \quad \text { For all } x \in I
$$

- If I tell you that $g(x)=a x+b$, then what is the inverse function?
- Well just set $a x+b=y$ and solve for x.
- We get $x=(y-b) / a$. So $x=h(y)=(y-b) / a$.

Monotonic functions of continuous random variables

- Any strictly monotonic function can be inverted, that is there exists an inverse function h (also known as g^{-1}) such that

$$
g(x)=y \quad \text { if and only if } \quad x=h(y) \quad \text { For all } x \in I
$$

- If I tell you that $g(x)=a x+b$, then what is the inverse function?
- Well just set $a x+b=y$ and solve for x.
- We get $x=(y-b) / a$. So $x=h(y)=(y-b) / a$.

- The inverse function of $g(x)=e^{x}$ is $x=h(y)=\ln (y)$

Monotonic functions of continuous random variables

- Any strictly monotonic function can be inverted, that is there exists an inverse function h (also known as g^{-1}) such that

$$
g(x)=y \quad \text { if and only if } \quad x=h(y) \quad \text { For all } x \in I
$$

- If I tell you that $g(x)=a x+b$, then what is the inverse function?
- Well just set $a x+b=y$ and solve for x.
- We get $x=(y-b) / a$. So $x=h(y)=(y-b) / a$.

- The inverse function of $g(x)=e^{x}$ is $x=h(y)=\ln (y)$

Monotonic functions of continuous random variables

- Any strictly monotonic function can be inverted, that is there exists an inverse function h (also known as g^{-1}) such that

$$
g(x)=y \quad \text { if and only if } \quad x=h(y) \quad \text { For all } x \in I
$$

- If I tell you that $g(x)=a x+b$, then what is the inverse function?
- Well just set $a x+b=y$ and solve for x.
- We get $x=(y-b) / a$. So $x=h(y)=(y-b) / a$.

- The inverse function of $g(x)=e^{x}$ is $x=h(y)=\ln (y)$
- If g is monotonically increasing, so is h. If g is monotonically decreasing, so is h.

Monotonic functions of continuous random variables

- If g is monotonically increasing, then

$$
F_{Y}(y)=P(g(X) \leq y)=P(X \leq h(y))=F_{X}(h(y))
$$

Monotonic functions of continuous random variables

- If g is monotonically increasing, then

$$
F_{Y}(y)=P(g(X) \leq y)=P(X \leq h(y))=F_{X}(h(y))
$$

- e.g. if $Y=g(X)=e^{X}$, then $X=g^{-1}(Y)=\ln (Y)$ and

$$
F_{Y}(y)=P\left(e^{X} \leq y\right)=P(X \leq \ln (y))=F_{X}(\ln (y))
$$

Monotonic functions of continuous random variables

- If g is monotonically increasing, then

$$
F_{Y}(y)=P(g(X) \leq y)=P(X \leq h(y))=F_{X}(h(y))
$$

- e.g. if $Y=g(X)=e^{X}$, then $X=g^{-1}(Y)=\ln (Y)$ and

$$
F_{Y}(y)=P\left(e^{X} \leq y\right)=P(X \leq \ln (y))=F_{X}(\ln (y))
$$

- We can differentiate $F_{Y}(y)$ to get

$$
f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=f_{X}(h(y)) \frac{d h(y)}{d y}
$$

- Since h is monotonically increasing, it's slope, $\frac{d h(y)}{d y}$, must be nonnegative.

Monotonic functions of continuous random variables

- Similarly we can show that when h is monotonically decreasing,

$$
f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=f_{X}(h(y))\left(-\frac{d h(y)}{d y}\right)
$$

- Since h is monotonically decreasing, it's slope, $\frac{d h}{d y}(y)$, must be negative.
- So, for general strictly monotonic functions of X, we have

$$
f_{Y}(y)=f_{X}(h(y))\left|\frac{d h(y)}{d y}\right|
$$

Example: Monotonically decreasing function

- Let X be a uniform random variable on the interval $(0,1]$, and let $Y=g(X)=1 / X$.
- So Y takes values in $[1, \infty)$

- What is it's inverse?

Example: Monotonically decreasing function

- Let X be a uniform random variable on the interval $(0,1]$, and let $Y=g(X)=1 / X$.
- So Y takes values in $[1, \infty)$

- What is it's inverse? $h(y)=1 / y$

Example: Monotonically decreasing function

- Let X be a uniform random variable on the interval $(0,1]$, and let $Y=g(X)=1 / X$.
- So Y takes values in $[1, \infty)$

- What is it's inverse? $h(y)=1 / y$
- $f_{Y}(y)=f_{X}(h(y))\left|\frac{d h(y)}{d y}\right| \ldots$ so we need to know $f_{X}(h(y))$ and $\left|\frac{d h(y)}{d y}\right|$.

Example: Monotonically decreasing function

- Let X be a uniform random variable on the interval $(0,1]$, and let $Y=g(X)=1 / X$.
- So Y takes values in $[1, \infty)$

- What is it's inverse? $h(y)=1 / y$
- $f_{Y}(y)=f_{X}(h(y))\left|\frac{d h(y)}{d y}\right| \ldots$ so we need to know $f_{X}(h(y))$ and $\left|\frac{d h(y)}{d y}\right|$.
- So for $y \geq 1, f_{X}(h(y))=f_{X}(1 / y)=1$.

Example: Monotonically decreasing function

- Let X be a uniform random variable on the interval (0,1], and let $Y=g(X)=1 / X$.
- So Y takes values in $[1, \infty)$

- What is it's inverse? $h(y)=1 / y$
- $f_{Y}(y)=f_{X}(h(y))\left|\frac{d h(y)}{d y}\right| \ldots$ so we need to know $f_{X}(h(y))$ and $\left|\frac{d h(y)}{d y}\right|$.
- So for $y \geq 1, f_{X}(h(y))=f_{X}(1 / y)=1$.
- $\left|\frac{d h(y)}{d y}\right|=\left|-\frac{1}{y^{2}}\right|=\frac{1}{y^{2}}$

Example: Monotonically decreasing function

- Let X be a uniform random variable on the interval (0,1], and let $Y=g(X)=1 / X$.
- So Y takes values in $[1, \infty)$

- What is it's inverse? $h(y)=1 / y$
- $f_{Y}(y)=f_{X}(h(y))\left|\frac{d h(y)}{d y}\right| \ldots$ so we need to know $f_{X}(h(y))$ and $\left|\frac{d h(y)}{d y}\right|$.
- So for $y \geq 1, f_{X}(h(y))=f_{X}(1 / y)=1$.
- $\left|\frac{d h(y)}{d y}\right|=\left|-\frac{1}{y^{2}}\right|=\frac{1}{y^{2}}$
- So,

$$
f_{Y}(y)=f_{X}(h(y))\left|\frac{d h}{d y}(y)\right|= \begin{cases}\frac{1}{y^{2}} & y \geq 1 \\ 0 & y<1\end{cases}
$$

Functions of a continuous random variable: Summary

- We know that functions $Y=g(X)$ of random variables X are again random variables.
- In the discrete case, it was pretty easy to find the PMF of the new random variable X :

$$
p_{Y}(y)=\sum_{x \mid g(x)=y} p_{X}(x)
$$

- In the continuous case, we need to find

$$
F_{Y}(y)=P(Y \leq y)=\int_{x \mid g(X) \leq y} f_{X}(x) d x
$$

- We can then differentiate wrt y to get the PDF of Y.
- In certain cases, this procedure simplifies a little:
- Linear case: If $Y=a X+b, f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)$
- Monotonic case: If g is a strictly monotonic function with inverse h, then $f_{Y}(y)=f_{X}(h(y))\left|\frac{d h}{d y}(y)\right|$
- What about if we have functions of more than one random variableat

Functions of two random variables

- If X and Y are both random variables, then $Z=g(X, Y)$ is also a random variable.
- In the discrete case, we could easily find the PMF of the new random variable:

$$
p_{Z}(z)=\sum_{x, y \mid g(x, y)=z} p_{X, Y}(x, y)
$$

- For example, if I roll two fair dice, what is the probability that the sum is 6 ?

Functions of two random variables

- If X and Y are both random variables, then $Z=g(X, Y)$ is also a random variable.
- In the discrete case, we could easily find the PMF of the new random variable:

$$
p_{Z}(z)=\sum_{x, y \mid g(x, y)=z} p_{X, Y}(x, y)
$$

- For example, if I roll two fair dice, what is the probability that the sum is 6?
- Each possible ordered pair has probability $1 / 36$.
- The options that sum to 6 are $(1,5),(2,4),(3,3),(4,2),(5,1) \ldots$ or in other words $(k, 6-k)$ for $k=1, \ldots, 5$.
- So, $p_{Z}(5)=5 / 36$

Functions of two independent continuous random variables

- I know two guests will both arrive in the next hour. The arrival times are independent random variables which follow a uniform distribution. What is the PDF of the arrival time of the last guest to arrive?
- $X \sim \operatorname{Uniform}([0,1])$ and $Y \sim \operatorname{Uniform}([0,1])$.
- In other words, what is the PDF of $Z=\max (X, Y)$?

Functions of two independent continuous random variables

- I know two guests will both arrive in the next hour. The arrival times are independent random variables which follow a uniform distribution. What is the PDF of the arrival time of the last guest to arrive?
- $X \sim \operatorname{Uniform}([0,1])$ and $Y \sim \operatorname{Uniform}([0,1])$.
- In other words, what is the PDF of $Z=\max (X, Y)$?
- Let's first think about the CDF...

Functions of two independent continuous random variables

- I know two guests will both arrive in the next hour. The arrival times are independent random variables which follow a uniform distribution. What is the PDF of the arrival time of the last guest to arrive?
- $X \sim \operatorname{Uniform}([0,1])$ and $Y \sim \operatorname{Uniform}([0,1])$.
- In other words, what is the PDF of $Z=\max (X, Y)$?
- Let's first think about the CDF...

Functions of two independent continuous random variables

- I know two guests will both arrive in the next hour. The arrival times are independent random variables which follow a uniform distribution. What is the PDF of the arrival time of the last guest to arrive?
- $X \sim \operatorname{Uniform}([0,1])$ and $Y \sim \operatorname{Uniform}([0,1])$.
- In other words, what is the PDF of $Z=\max (X, Y)$?
- Let's first think about the CDF...

$$
P(Z \leq z)=P(\{X \leq z\} \cap\{Y \leq z\})
$$

Functions of two independent continuous random variables

- I know two guests will both arrive in the next hour. The arrival times are independent random variables which follow a uniform distribution. What is the PDF of the arrival time of the last guest to arrive?
- $X \sim \operatorname{Uniform}([0,1])$ and $Y \sim \operatorname{Uniform}([0,1])$.
- In other words, what is the PDF of $Z=\max (X, Y)$?
- Let's first think about the CDF...

$$
\begin{aligned}
P(Z \leq z) & =P(\{X \leq z\} \cap\{Y \leq z\}) \\
& =P(X \leq z) P(Y \leq z)= \begin{cases}0 & z<0 \\
z^{2} & 0 \leq z \leq 1 \\
1 & z>1\end{cases}
\end{aligned}
$$

Functions of two independent continuous random variables

- I know two guests will both arrive in the next hour. The arrival times are independent random variables which follow a uniform distribution. What is the PDF of the arrival time of the last guest to arrive?
- $X \sim \operatorname{Uniform}([0,1])$ and $Y \sim \operatorname{Uniform}([0,1])$.
- In other words, what is the PDF of $Z=\max (X, Y)$?
- Let's first think about the CDF...

$$
\begin{aligned}
P(Z \leq z) & =P(\{X \leq z\} \cap\{Y \leq z\}) \\
& =P(X \leq z) P(Y \leq z)= \begin{cases}0 & z<0 \\
z^{2} & 0 \leq z \leq 1 \\
1 & z>1\end{cases}
\end{aligned}
$$

- Differentiating, $f_{Z}(z)= \begin{cases}2 z & 0 \leq z \leq 1 \\ 0 & \text { otherwise }\end{cases}$

Functions of two random variables: Summary

- If $Y=g(X)$, in order to get the PDF of Y we first looked at the CDF, $P(Y \leq y)=P(g(X) \leq y)$ and then differentiated with respect to y.
- For functions $Z=g(X, Y)$ of two random variables, the same general idea applies:
- First we look at the CDF, $P(Z \leq z)=P(g(X, Y) \leq x)$
- Then we differentiate with respect to z.
- We looked at a special case: The maximum of two independent r.v.'s.
- This procedure is known as convolution.

