SDS 321: Introduction to Probability and Statistics
 Lecture 20: Practice problems

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
www.cs.cmu.edu/~psarkar/teaching

Continuous r.v

A continuous random variable has PDF

$$
f_{X}(x)= \begin{cases}a+b x^{2} & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

- If $E[X]=\frac{3}{5}$, find a and b.

Continuous r.v

A continuous random variable has PDF

$$
f_{X}(x)= \begin{cases}a+b x^{2} & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

- If $E[X]=\frac{3}{5}$, find a and b.
- Normalize: $\int_{x=0}^{1}\left(a+b x^{2}\right) d x=1$.

Continuous r.v

A continuous random variable has PDF

$$
f_{X}(x)= \begin{cases}a+b x^{2} & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

- If $E[X]=\frac{3}{5}$, find a and b.
- Normalize: $\int_{x=0}^{1}\left(a+b x^{2}\right) d x=1$. Solving $a+b / 3=1$

Continuous r.v

A continuous random variable has PDF

$$
f_{X}(x)= \begin{cases}a+b x^{2} & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

- If $E[X]=\frac{3}{5}$, find a and b.
- Normalize: $\int_{x=0}^{1}\left(a+b x^{2}\right) d x=1$. Solving $a+b / 3=1$
- $E[X]=\int_{0}^{1} x\left(a+b x^{2}\right) d x=3 / 5$. Solving $a / 2+b / 4=3 / 5$, i.e. $a+b / 2=6 / 5$

Continuous r.v

A continuous random variable has PDF

$$
f_{X}(x)= \begin{cases}a+b x^{2} & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

- If $E[X]=\frac{3}{5}$, find a and b.
- Normalize: $\int_{x=0}^{1}\left(a+b x^{2}\right) d x=1$. Solving $a+b / 3=1$
- $E[X]=\int_{0}^{1} x\left(a+b x^{2}\right) d x=3 / 5$. Solving $a / 2+b / 4=3 / 5$, i.e.
$a+b / 2=6 / 5$
- Solving the two equations we get: $a=3 / 5, b=6 / 5$.

A continuous random variable has PDF

$$
f_{X}(x)= \begin{cases}a+b x^{2} & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

- What is $\operatorname{var}(X)$?

A continuous random variable has PDF

$$
f_{X}(x)= \begin{cases}a+b x^{2} & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

- What is $\operatorname{var}(X)$?
- $E\left[X^{2}\right]=\int_{0}^{1} x^{2}\left(a+b x^{2}\right) d x=a / 3+b / 5=1 / 5+6 / 25=11 / 25$
- $\operatorname{var}(X)=E\left[X^{2}\right]-E[X]^{2}=11 / 25-(3 / 5)^{2}=2 / 25$

A continuous random variable has PDF

$$
f_{X}(x)= \begin{cases}a+b x^{2} & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

- What is $\operatorname{var}(X)$?
- $E\left[X^{2}\right]=\int_{0}^{1} x^{2}\left(a+b x^{2}\right) d x=a / 3+b / 5=1 / 5+6 / 25=11 / 25$
- $\operatorname{var}(X)=E\left[X^{2}\right]-E[X]^{2}=11 / 25-(3 / 5)^{2}=2 / 25$
- $Y=X-1$. What is $E[X Y]$?

A continuous random variable has PDF

$$
f_{X}(x)= \begin{cases}a+b x^{2} & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

- What is $\operatorname{var}(X)$?
- $E\left[X^{2}\right]=\int_{0}^{1} x^{2}\left(a+b x^{2}\right) d x=a / 3+b / 5=1 / 5+6 / 25=11 / 25$
- $\operatorname{var}(X)=E\left[X^{2}\right]-E[X]^{2}=11 / 25-(3 / 5)^{2}=2 / 25$
- $Y=X-1$. What is $E[X Y]$?
- $E[X Y]=E[X] E[Y]=3 / 5(3 / 5-1)=-6 / 25$. Is this correct?

A continuous random variable has PDF

$$
f_{X}(x)= \begin{cases}a+b x^{2} & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

- What is $\operatorname{var}(X)$?
- $E\left[X^{2}\right]=\int_{0}^{1} x^{2}\left(a+b x^{2}\right) d x=a / 3+b / 5=1 / 5+6 / 25=11 / 25$
- $\operatorname{var}(X)=E\left[X^{2}\right]-E[X]^{2}=11 / 25-(3 / 5)^{2}=2 / 25$
- $Y=X-1$. What is $E[X Y]$?
- $E[X Y]=E[X] E[Y]=3 / 5(3 / 5-1)=-6 / 25$. Is this correct? No! This is only true is X, Y are independent. Are they?

A continuous random variable has PDF

$$
f_{X}(x)= \begin{cases}a+b x^{2} & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

- What is $\operatorname{var}(X)$?
- $E\left[X^{2}\right]=\int_{0}^{1} x^{2}\left(a+b x^{2}\right) d x=a / 3+b / 5=1 / 5+6 / 25=11 / 25$
- $\operatorname{var}(X)=E\left[X^{2}\right]-E[X]^{2}=11 / 25-(3 / 5)^{2}=2 / 25$
- $Y=X-1$. What is $E[X Y]$?
- $E[X Y]=E[X] E[Y]=3 / 5(3 / 5-1)=-6 / 25$. Is this correct? No! This is only true is X, Y are independent. Are they?
- $E[X Y]=E[X(X-1)]=E\left[X^{2}\right]-E[X]=11 / 25-3 / 5=-4 / 5$

Continuous r.v

A continuous r.v. X has density function

$$
f(x)=c e^{-|x|}= \begin{cases}c e^{-x} & x \geq 0 \\ c e^{x} & x<0\end{cases}
$$

1. Find c.

- We have

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{0} c e^{x} d x+\int_{0}^{\infty} c e^{-x} d x=
$$

2. Find $p(|X|>2)$.
3. Find $E(X)$ (Hint: no integral required).

Continuous r.v

A continuous r.v. X has density function

$$
f(x)=c e^{-|x|}= \begin{cases}c e^{-x} & x \geq 0 \\ c e^{x} & x<0\end{cases}
$$

1. Find c.

- We have

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{0} c e^{x} d x+\int_{0}^{\infty} c e^{-x} d x=2 c=1 . c=1 / 2
$$

2. Find $p(|X|>2)$.
3. Find $E(X)$ (Hint: no integral required).

Continuous r.v

A continuous r.v. X has density function

$$
f(x)=c e^{-|x|}= \begin{cases}c e^{-x} & x \geq 0 \\ c e^{x} & x<0\end{cases}
$$

1. Find c.

- We have

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{0} c e^{x} d x+\int_{0}^{\infty} c e^{-x} d x=2 c=1 . c=1 / 2
$$

2. Find $p(|X|>2)$.

- $P(|X|>2)=P(X<-2)+P(X>2)=2 \times 0.5 \int_{-\infty}^{-2} e^{x} d x=e^{-2}$.

3. Find $E(X)$ (Hint: no integral required).

Continuous r.v

A continuous r.v. X has density function

$$
f(x)=c e^{-|x|}= \begin{cases}c e^{-x} & x \geq 0 \\ c e^{x} & x<0\end{cases}
$$

1. Find c.

- We have

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{0} c e^{x} d x+\int_{0}^{\infty} c e^{-x} d x=2 c=1 . c=1 / 2
$$

2. Find $p(|X|>2)$.

- $P(|X|>2)=P(X<-2)+P(X>2)=2 \times 0.5 \int_{-\infty}^{-2} e^{x} d x=e^{-2}$.

3. Find $E(X)$ (Hint: no integral required).

- $E[X]=0$. Why?

Continuous r.v

A continuous r.v. X has density function

$$
f(x)=c e^{-|x|}= \begin{cases}c e^{-x} & x \geq 0 \\ c e^{x} & x<0\end{cases}
$$

1. Find c.

- We have

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{0} c e^{x} d x+\int_{0}^{\infty} c e^{-x} d x=2 c=1 . c=1 / 2
$$

2. Find $p(|X|>2)$.

- $P(|X|>2)=P(X<-2)+P(X>2)=2 \times 0.5 \int_{-\infty}^{-2} e^{x} d x=e^{-2}$.

3. Find $E(X)$ (Hint: no integral required).

- $E[X]=0$. Why?
- For any r.v. X with a PDF symmetric around $0, E[X]=0$

Useful tricks to go around integration by parts

- You have to calculate $\int_{0}^{\infty} v e^{-v} d v$, but you don't remember integration by parts.
- Remember that the expectation of $X \sim \operatorname{Exp}(\lambda)$ is

$$
E[X]=\lambda \int_{0}^{\infty} x e^{-\lambda x} d x=\frac{1}{\lambda}
$$

Useful tricks to go around integration by parts

- You have to calculate $\int_{0}^{\infty} v e^{-v} d v$, but you don't remember integration by parts.
- Remember that the expectation of $X \sim \operatorname{Exp}(\lambda)$ is

$$
E[X]=\lambda \int_{0}^{\infty} x e^{-\lambda x} d x=\frac{1}{\lambda}
$$

- So by comparison, $\int_{0}^{\infty} v e^{-v} d v$ is the expectation of $Y \sim \operatorname{Exp}(1)$ and is 1 .

Useful tricks to go around integration by parts

- You have to calculate $\int_{0}^{\infty} v e^{-v} d v$, but you don't remember integration by parts.
- Remember that the expectation of $X \sim \operatorname{Exp}(\lambda)$ is

$$
E[X]=\lambda \int_{0}^{\infty} x e^{-\lambda x} d x=\frac{1}{\lambda}
$$

- So by comparison, $\int_{0}^{\infty} v e^{-v} d v$ is the expectation of $Y \sim \operatorname{Exp}(1)$ and is 1 .
- Can you get $\int_{0}^{\infty} 3 v e^{-2 v} d v$?

Useful tricks to go around integration by parts

- You have to calculate $\int_{0}^{\infty} v e^{-v} d v$, but you don't remember integration by parts.
- Remember that the expectation of $X \sim \operatorname{Exp}(\lambda)$ is

$$
E[X]=\lambda \int_{0}^{\infty} x e^{-\lambda x} d x=\frac{1}{\lambda}
$$

- So by comparison, $\int_{0}^{\infty} v e^{-v} d v$ is the expectation of $Y \sim \operatorname{Exp}(1)$ and is 1 .
- Can you get $\int_{0}^{\infty} 3 v e^{-2 v} d v$?

$$
\begin{aligned}
& \int_{0}^{\infty} 3 v e^{-2 v} d v=3 \int_{0}^{\infty} v e^{-2 v} d v=1.5 \times \int_{0}^{\infty}(2 v) e^{-2 v} d v=1.5 E[Y]=.75 \\
& \text { where } Y \sim \operatorname{Exp}(2)
\end{aligned}
$$

Useful tricks to go around integration by parts

- You have to calculate $\int_{0}^{\infty} v^{2} e^{-v / 2} d v$.
- Remember that the variance of $X \sim \operatorname{Exp}(\lambda)$ is

$$
E\left[X^{2}\right]=\lambda \int_{0}^{\infty} x^{2} \exp (-\lambda x) d x=\operatorname{var}(X)+1 / \lambda^{2}=\frac{2}{\lambda^{2}}
$$

- So $\int_{0}^{\infty} v^{2} e^{-v / 2} d v=2 \int_{0}^{\infty} 1 / 2 v^{2} e^{-v / 2} d v$ is just $2 E\left[X^{2}\right]$ where $X \sim \operatorname{Exp}(1 / 2)$. So it equals 16 .

Useful tricks to go around integration by parts

- You have to calculate $\int_{0}^{\infty} e^{-v^{2} / 2} d v$.
- Whats the distribution that you should compare with?

Useful tricks to go around integration by parts

- You have to calculate $\int_{0}^{\infty} e^{-v^{2} / 2} d v$.
- Whats the distribution that you should compare with?
- $\int_{0}^{\infty} e^{-x^{2} / 2} d x=P(X \geq 0)=1 / 2$, where $X \sim N(0,1)$.
- $\int_{0}^{\infty} e^{-v^{2} / 2} d v=\sqrt{2 \pi} \frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-v^{2} / 2} d v=\sqrt{2 \pi} P(X \geq 0)=\sqrt{\pi / 2}$

Continuous r.v

You have $X \sim N(0,1)$.

- What is $E[X \mid X \geq 0]$?
- First, what is $f_{X \mid X \geq 0}(x)=f_{X}(x) / P(X \geq 0)$
- But what is $P(X \geq 0)$?
- So $E[X \mid X \geq 0]=\int_{0}^{\infty} x f_{X \mid X \geq 0}(x) d x=2 \int_{0}^{\infty} x f_{X}(x) d x=$ $\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} x e^{-x^{2} / 2} d x$. You could integrate this.
- Let $v=x^{2} / 2$. Now $E[X \mid X \geq 0]=\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-v} d v=\sqrt{2 / \pi}$
- What is $E[X \mid X<0]$
- You could use the same calculation. OR....

Continuous r.v

You have $X \sim N(0,1)$.

- What is $E[X \mid X \geq 0]$?
- First, what is $f_{X \mid X \geq 0}(x)=f_{X}(x) / P(X \geq 0)$
- But what is $P(X \geq 0)$? $1 / 2$ by symmetry.
- So $E[X \mid X \geq 0]=\int_{0}^{\infty} x f_{X \mid X \geq 0}(x) d x=2 \int_{0}^{\infty} x f_{X}(x) d x=$ $\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} x e^{-x^{2} / 2} d x$. You could integrate this.
- Let $v=x^{2} / 2$. Now $E[X \mid X \geq 0]=\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-v} d v=\sqrt{2 / \pi}$
- What is $E[X \mid X<0]$
- You could use the same calculation. OR....
- Use total expectation theorem!

Continuous r.v

You have $X \sim N(0,1)$.

- What is $E[X \mid X \geq 0]$?
- First, what is $f_{X \mid X \geq 0}(x)=f_{X}(x) / P(X \geq 0)$
- But what is $P(X \geq 0)$? $1 / 2$ by symmetry.
- So $E[X \mid X \geq 0]=\int_{0}^{\infty} x f_{X \mid X \geq 0}(x) d x=2 \int_{0}^{\infty} x f_{X}(x) d x=$ $\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} x e^{-x^{2} / 2} d x$. You could integrate this.
- Let $v=x^{2} / 2$. Now $E[X \mid X \geq 0]=\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-v} d v=\sqrt{2 / \pi}$
- What is $E[X \mid X<0]$
- You could use the same calculation. OR....
- Use total expectation theorem!
- $E[X]=E[X \mid X \geq 0] P(X \geq 0)+E[X \mid X<0] P(X<0)$. But $E[X]=$?

Continuous r.v

You have $X \sim N(0,1)$.

- What is $E[X \mid X \geq 0]$?
- First, what is $f_{X \mid X \geq 0}(x)=f_{X}(x) / P(X \geq 0)$
- But what is $P(X \geq 0)$? $1 / 2$ by symmetry.
- So $E[X \mid X \geq 0]=\int_{0}^{\infty} x f_{X \mid X \geq 0}(x) d x=2 \int_{0}^{\infty} x f_{X}(x) d x=$ $\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} x e^{-x^{2} / 2} d x$. You could integrate this.
- Let $v=x^{2} / 2$. Now $E[X \mid X \geq 0]=\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-v} d v=\sqrt{2 / \pi}$
- What is $E[X \mid X<0]$
- You could use the same calculation. OR....
- Use total expectation theorem!
- $E[X]=E[X \mid X \geq 0] P(X \geq 0)+E[X \mid X<0] P(X<0)$. But $E[X]=? 0$
- $E[X \mid X \geq 0] \times 1 / 2+E[X \mid X<0] \times 1 / 2=0$. So, $E[X \mid X<0]=-E[X \mid X \geq 0]=-\sqrt{2 / \pi}$

Uniform r.v's

A man and a woman agree to meet at a certain location at about 12:30 p.m. Suppose the man arrives at a time uniformly distributed between $12: 00$ and $12: 45$, and the woman independently arrives at a time uniformly distributed between 12:15 and 1:00. Let X be the man's arrival time and Y be the woman's arrival time.

- What is the joint PDF?
- What is the probability that the man arrives first?

Uniform r.v's

Find the PDF first.

$$
\begin{aligned}
& f_{X}(x)= \begin{cases}1 / 45 & x \in[12: 00,12: 45] \\
0 & \text { otherwise }\end{cases} \\
& f_{Y}(y)= \begin{cases}1 / 45 & y \in[12: 15,1: 00] \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Using independence,

$$
f_{X, Y}(x, y)= \begin{cases}1 / 45^{2} & x \in[12: 00,12: 45], y \in[12: 15,1] \\ 0 & \text { otherwise }\end{cases}
$$

Uniform r.v's

Find the probability that the man arrives first.

$$
P(X<Y)=1-1 / 45^{2} \times .5 \times 30^{2}=1-\frac{2}{9}=7 / 9
$$

Conditional expectation

Suppose that the time (in hours) required to repair a car is an exponentially distributed random variable with parameter $\lambda=1 / 2$. That is, letting X denote the repair time, $X \sim$ exponential (λ).

- $f_{X}(x)=\lambda e^{-\lambda x}$ for $x \geq 0$
- $F_{X}(s)=P(X \leq s)=\lambda \int_{0}^{s} e^{-\lambda x} d x=1-e^{-\lambda s}$
- $P(X>4)=1-F_{X}(4)=e^{-2}=.1353$

If the repair time exceeds 4 hours what is the probability that it exceeds 8 hours?

- $P(X>8 \mid X>4)=$

Conditional expectation

Suppose that the time (in hours) required to repair a car is an exponentially distributed random variable with parameter $\lambda=1 / 2$. That is, letting X denote the repair time, $X \sim$ exponential (λ).

- $f_{X}(x)=\lambda e^{-\lambda x}$ for $x \geq 0$
- $F_{X}(s)=P(X \leq s)=\lambda \int_{0}^{s} e^{-\lambda x} d x=1-e^{-\lambda s}$
- $P(X>4)=1-F_{X}(4)=e^{-2}=.1353$

If the repair time exceeds 4 hours what is the probability that it exceeds 8 hours?

- $P(X>8 \mid X>4)=P(X>8, X>4) / P(X>4)=$

Conditional expectation

Suppose that the time (in hours) required to repair a car is an exponentially distributed random variable with parameter $\lambda=1 / 2$. That is, letting X denote the repair time, $X \sim$ exponential (λ).

- $f_{X}(x)=\lambda e^{-\lambda x}$ for $x \geq 0$
- $F_{X}(s)=P(X \leq s)=\lambda \int_{0}^{s} e^{-\lambda x} d x=1-e^{-\lambda s}$
- $P(X>4)=1-F_{X}(4)=e^{-2}=.1353$

If the repair time exceeds 4 hours what is the probability that it exceeds 8 hours?

- $P(X>8 \mid X>4)=P(X>8, X>4) / P(X>4)=P(X>8) / P(X>$

4) $=e^{-8 \lambda} / e^{-4 \lambda}=e^{-4 \lambda}$

Conditional expectation

Suppose that the time (in hours) required to repair a car is an exponentially distributed random variable with parameter $\lambda=1 / 2$. That is, letting X denote the repair time, $X \sim \operatorname{exponential}(\lambda)$.

- $f_{X}(x)=\lambda e^{-\lambda x}$ for $x \geq 0$
- $F_{X}(s)=P(X \leq s)=\lambda \int_{0}^{s} e^{-\lambda x} d x=1-e^{-\lambda s}$
- $P(X>4)=1-F_{X}(4)=e^{-2}=.1353$

If the repair time exceeds 4 hours what is the probability that it exceeds 8 hours?

- $P(X>8 \mid X>4)=P(X>8, X>4) / P(X>4)=P(X>8) / P(X>$ 4) $=e^{-8 \lambda} / e^{-4 \lambda}=e^{-4 \lambda}$
- In general, $P(X>s+t \mid X>s)=P(X>t)$. Memoryless property, just like the geometric.

Conditional expectation

Suppose that the time (in hours) required to repair a car is an exponentially distributed random variable with parameter $\lambda=1 / 2$. That is, letting X denote the repair time, $X \sim \operatorname{exponential}(\lambda)$.

- $f_{X}(x)=\lambda e^{-\lambda x}$ for $x \geq 0$
- $F_{X}(s)=P(X \leq s)=\lambda \int_{0}^{s} e^{-\lambda x} d x=1-e^{-\lambda s}$
- $P(X>4)=1-F_{X}(4)=e^{-2}=.1353$

If the repair time exceeds 4 hours what is the probability that it exceeds 8 hours?

- $P(X>8 \mid X>4)=P(X>8, X>4) / P(X>4)=P(X>8) / P(X>$

4) $=e^{-8 \lambda} / e^{-4 \lambda}=e^{-4 \lambda}$

- In general, $P(X>s+t \mid X>s)=P(X>t)$. Memoryless property, just like the geometric.
- $E[X]=\lambda \int_{0}^{\infty} e^{-\lambda x} d x=\int_{0}^{\infty} u e^{-u} d u / \lambda=1 / \lambda$

Exponential r.v.

Suppose that the time (in hours) required to repair a car is an exponentially distributed random variable with parameter $\lambda=1 / 2$. That is, letting X denote the repair time, $X \sim \operatorname{exponential}(\lambda)$.

- $f_{X}(x)=\lambda e^{-\lambda x}$ for $x \geq 0$
- $F_{X}(s)=P(X \leq s)=\lambda \int_{0}^{s} e^{-\lambda x} d x=1-e^{-\lambda s}$
- $P(X>4)=1-F_{X}(4)=e^{-2}=.1353$

If the repair time exceeds 4 hours what is the probability that it exceeds 8 hours?

- $P(X>8 \mid X>4)=$

Exponential r.v.

Suppose that the time (in hours) required to repair a car is an exponentially distributed random variable with parameter $\lambda=1 / 2$. That is, letting X denote the repair time, $X \sim \operatorname{exponential}(\lambda)$.

- $f_{X}(x)=\lambda e^{-\lambda x}$ for $x \geq 0$
- $F_{X}(s)=P(X \leq s)=\lambda \int_{0}^{s} e^{-\lambda x} d x=1-e^{-\lambda s}$
- $P(X>4)=1-F_{X}(4)=e^{-2}=.1353$

If the repair time exceeds 4 hours what is the probability that it exceeds 8 hours?

- $P(X>8 \mid X>4)=P(X>8, X>4) / P(X>4)=$

Exponential r.v.

Suppose that the time (in hours) required to repair a car is an exponentially distributed random variable with parameter $\lambda=1 / 2$. That is, letting X denote the repair time, $X \sim \operatorname{exponential}(\lambda)$.

- $f_{X}(x)=\lambda e^{-\lambda x}$ for $x \geq 0$
- $F_{X}(s)=P(X \leq s)=\lambda \int_{0}^{s} e^{-\lambda x} d x=1-e^{-\lambda s}$
- $P(X>4)=1-F_{X}(4)=e^{-2}=.1353$

If the repair time exceeds 4 hours what is the probability that it exceeds 8 hours?

- $P(X>8 \mid X>4)=P(X>8, X>4) / P(X>4)=P(X>8) / P(X>$

4) $=e^{-8 \lambda} / e^{-4 \lambda}=e^{-4 \lambda}$

Exponential r.v.

Suppose that the time (in hours) required to repair a car is an exponentially distributed random variable with parameter $\lambda=1 / 2$. That is, letting X denote the repair time, $X \sim \operatorname{exponential}(\lambda)$.

- $f_{X}(x)=\lambda e^{-\lambda x}$ for $x \geq 0$
- $F_{X}(s)=P(X \leq s)=\lambda \int_{0}^{s} e^{-\lambda x} d x=1-e^{-\lambda s}$
- $P(X>4)=1-F_{X}(4)=e^{-2}=.1353$

If the repair time exceeds 4 hours what is the probability that it exceeds 8 hours?

- $P(X>8 \mid X>4)=P(X>8, X>4) / P(X>4)=P(X>8) / P(X>$ 4) $=e^{-8 \lambda} / e^{-4 \lambda}=e^{-4 \lambda}$
- In general, $P(X>s+t \mid X>s)=P(X>t)$. Memoryless property, just like the geometric.

Exponential r.v.

Suppose that the time (in hours) required to repair a car is an exponentially distributed random variable with parameter $\lambda=1 / 2$. That is, letting X denote the repair time, $X \sim$ exponential (λ).

- $f_{X}(x)=\lambda e^{-\lambda x}$ for $x \geq 0$
- $F_{X}(s)=P(X \leq s)=\lambda \int_{0}^{s} e^{-\lambda x} d x=1-e^{-\lambda s}$
- $P(X>4)=1-F_{X}(4)=e^{-2}=.1353$

If the repair time exceeds 4 hours what is the probability that it exceeds 8 hours?

- $P(X>8 \mid X>4)=P(X>8, X>4) / P(X>4)=P(X>8) / P(X>$ 4) $=e^{-8 \lambda} / e^{-4 \lambda}=e^{-4 \lambda}$
- In general, $P(X>s+t \mid X>s)=P(X>t)$. Memoryless property, just like the geometric.
- $E[X]=\lambda \int_{0}^{\infty} e^{-\lambda x} d x=\int_{0}^{\infty} u e^{-u} d u / \lambda=1 / \lambda$

Exponential r.v.

Suppose that the time (in hours) required to repair a car is an exponentially distributed random variable with parameter $\lambda=1 / 2$. That is, letting X denote the repair time, $X \sim \operatorname{exponential}(\lambda)$.

Exponential r.v.

Suppose that the time (in hours) required to repair a car is an exponentially distributed random variable with parameter $\lambda=1 / 2$. That is, letting X denote the repair time, $X \sim$ exponential (λ).

- What about $E[X \mid X>4]$? Well,

$$
f_{X \mid X>4}(x)=f_{X}(x) / P(X>4)=\lambda e^{-\lambda(x-4)} \text { for } x \geq 4
$$

Exponential r.v.

Suppose that the time (in hours) required to repair a car is an exponentially distributed random variable with parameter $\lambda=1 / 2$. That is, letting X denote the repair time, $X \sim$ exponential (λ).

- What about $E[X \mid X>4]$? Well,

$$
f_{X \mid X>4}(x)=f_{X}(x) / P(X>4)=\lambda e^{-\lambda(x-4)} \text { for } x \geq 4
$$

- But this is an exponential distribution again! Memoryless property.

Exponential r.v.

Suppose that the time (in hours) required to repair a car is an exponentially distributed random variable with parameter $\lambda=1 / 2$. That is, letting X denote the repair time, $X \sim \operatorname{exponential}(\lambda)$.

- What about $E[X \mid X>4]$? Well,

$$
f_{X \mid X>4}(x)=f_{X}(x) / P(X>4)=\lambda e^{-\lambda(x-4)} \text { for } x \geq 4
$$

- But this is an exponential distribution again! Memoryless property.
- So $E[X \mid X>4]=4+E[X]=4+1 / \lambda=6$

Exponential r.v.

Suppose that the time (in hours) required to repair a car is an exponentially distributed random variable with parameter $\lambda=1 / 2$. That is, letting X denote the repair time, $X \sim$ exponential (λ).

- What about $E[X \mid X>4]$? Well,

$$
f_{X \mid X>4}(x)=f_{X}(x) / P(X>4)=\lambda e^{-\lambda(x-4)} \text { for } x \geq 4
$$

- But this is an exponential distribution again! Memoryless property.
- So $E[X \mid X>4]=4+E[X]=4+1 / \lambda=6$
- $\lambda \int_{4}^{\infty} x e^{-\lambda(x-4)} d x=\lambda \int_{0}^{\infty}(4+y) e^{-\lambda y} d y=$
$4 \int_{0}^{\infty}\left(\lambda e^{-\lambda y}\right) d y+\int_{0}^{\infty} y\left(\lambda e^{-\lambda y}\right) d y=4+E[Y]=4+1 / \lambda$

Exponential r.v.

Suppose that the time (in hours) required to repair a car is an exponentially distributed random variable with parameter $\lambda=1 / 2$. That is, letting X denote the repair time, $X \sim$ exponential (λ).

- What about $E[X \mid X>4]$? Well,

$$
f_{X \mid X>4}(x)=f_{X}(x) / P(X>4)=\lambda e^{-\lambda(x-4)} \text { for } x \geq 4
$$

- But this is an exponential distribution again! Memoryless property.
- So $E[X \mid X>4]=4+E[X]=4+1 / \lambda=6$
- $\lambda \int_{4}^{\infty} x e^{-\lambda(x-4)} d x=\lambda \int_{0}^{\infty}(4+y) e^{-\lambda y} d y=$

$$
4 \int_{0}^{\infty}\left(\lambda e^{-\lambda y}\right) d y+\int_{0}^{\infty} y\left(\lambda e^{-\lambda y}\right) d y=4+E[Y]=4+1 / \lambda
$$

- How do you calculate $E[X \mid X \leq 4]$?

Exponential r.v.

Suppose that the time (in hours) required to repair a car is an exponentially distributed random variable with parameter $\lambda=1 / 2$. That is, letting X denote the repair time, $X \sim$ exponential (λ).

- What about $E[X \mid X>4]$? Well,

$$
f_{X \mid X>4}(x)=f_{X}(x) / P(X>4)=\lambda e^{-\lambda(x-4)} \text { for } x \geq 4
$$

- But this is an exponential distribution again! Memoryless property.
- So $E[X \mid X>4]=4+E[X]=4+1 / \lambda=6$
- $\lambda \int_{4}^{\infty} x e^{-\lambda(x-4)} d x=\lambda \int_{0}^{\infty}(4+y) e^{-\lambda y} d y=$

$$
4 \int_{0}^{J 4}\left(\lambda e^{-\lambda y}\right) d y+\int_{0}^{\infty} y\left(\lambda e^{-\lambda y}\right) d y=4+E[Y]=4+1 / \lambda
$$

- How do you calculate $E[X \mid X \leq 4]$?
- Remember! $E[X]=E[X \mid X \leq 4] P(X \leq 4)+E[X \mid X>4] P(X>4)$. So $2=1 / \lambda=E[X \mid X \leq 4]\left(1-e^{-4}\right)+(4+1 / \lambda) e^{-4}$. So $E[X \mid X \leq 4]=\frac{2-6 e^{-4}}{1-e^{-4}}$

Correlation: Example of $|\rho|=1$

- We throw a biased coin, with probability of heads p, n times. Let X be the number of heads, and let Y be the number of tails.
- $Y=n-X$
- $E[X]=$

Correlation: Example of $|\rho|=1$

- We throw a biased coin, with probability of heads p, n times. Let X be the number of heads, and let Y be the number of tails.
- $Y=n-X$
- $E[X]=n p$, and $E[Y]=n(1-p)=n-E[X]$.
- $\operatorname{var}(X)=n p(1-p)=\operatorname{var}(Y)$.

Correlation: Example of $|\rho|=1$

- We throw a biased coin, with probability of heads p, n times. Let X be the number of heads, and let Y be the number of tails.
- $Y=n-X$
- $E[X]=n p$, and $E[Y]=n(1-p)=n-E[X]$.
- $\operatorname{var}(X)=n p(1-p)=\operatorname{var}(Y)$.
- $\operatorname{cov}(X, Y)=\operatorname{cov}(X, n-X)=\operatorname{cov}(X,-X)=-\operatorname{cov}(X, X)=-\operatorname{var}(X)$

Correlation: Example of $|\rho|=1$

- We throw a biased coin, with probability of heads p, n times. Let X be the number of heads, and let Y be the number of tails.
- $Y=n-X$
- $E[X]=n p$, and $E[Y]=n(1-p)=n-E[X]$.
- $\operatorname{var}(X)=n p(1-p)=\operatorname{var}(Y)$.
- $\operatorname{cov}(X, Y)=\operatorname{cov}(X, n-X)=\operatorname{cov}(X,-X)=-\operatorname{cov}(X, X)=-\operatorname{var}(X)$
- The correlation coefficient is therefore

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}=\frac{-\operatorname{var}(X)}{\sqrt{\operatorname{var}(X) \operatorname{var}(X)}}=-1
$$

Correlation: Example of $|\rho|=1$

- We throw a biased coin, with probability of heads p, n times. Let X be the number of heads, and let Y be the number of tails.
- $Y=n-X$
- $E[X]=n p$, and $E[Y]=n(1-p)=n-E[X]$.
- $\operatorname{var}(X)=n p(1-p)=\operatorname{var}(Y)$.
- $\operatorname{cov}(X, Y)=\operatorname{cov}(X, n-X)=\operatorname{cov}(X,-X)=-\operatorname{cov}(X, X)=-\operatorname{var}(X)$
- The correlation coefficient is therefore

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}=\frac{-\operatorname{var}(X)}{\sqrt{\operatorname{var}(X) \operatorname{var}(X)}}=-1
$$

Correlation: Example of $|\rho|=1$

- We throw a biased coin, with probability of heads p, n times. Let X be the number of heads, and let Y be the number of tails.
- $Y=n-X$
- $E[X]=n p$, and $E[Y]=n(1-p)=n-E[X]$.
- $\operatorname{var}(X)=n p(1-p)=\operatorname{var}(Y)$.
- $\operatorname{cov}(X, Y)=\operatorname{cov}(X, n-X)=\operatorname{cov}(X,-X)=-\operatorname{cov}(X, X)=-\operatorname{var}(X)$
- The correlation coefficient is therefore

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}=\frac{-\operatorname{var}(X)}{\sqrt{\operatorname{var}(X) \operatorname{var}(X)}}=-1
$$

Correlation: Example of $|\rho|=1$

- We throw a biased coin, with probability of heads p, n times. Let X be the number of heads, and let Y be the number of tails.
- $Y=n-X$
- $E[X]=n p$, and $E[Y]=n(1-p)=n-E[X]$.
- $\operatorname{var}(X)=n p(1-p)=\operatorname{var}(Y)$.
- $\operatorname{cov}(X, Y)=\operatorname{cov}(X, n-X)=\operatorname{cov}(X,-X)=-\operatorname{cov}(X, X)=-\operatorname{var}(X)$
- The correlation coefficient is therefore

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}=\frac{-\operatorname{var}(X)}{\sqrt{\operatorname{var}(X) \operatorname{var}(X)}}=-1
$$

- Remember $X=n-Y$, so they have a linear relationship.

Correlation: Example of $|\rho|=1$

- Let $Y=a X+b$.

Correlation: Example of $|\rho|=1$

- Let $Y=a X+b$.

$$
\begin{aligned}
\operatorname{cov}(X, a X+b) & =\operatorname{cov}(X, a X)=a \operatorname{var}(X) \\
\rho_{X, a} X+b & =\frac{\operatorname{cov}(X, a X)}{\sqrt{\operatorname{var}(X) a^{2} \operatorname{var}(X)}}=\frac{a \operatorname{var}(X)}{|a| \operatorname{var}(X)}=\frac{a}{|a|} \\
& = \begin{cases}1 & a>0 \\
-1 & a<0\end{cases}
\end{aligned}
$$

More conditional expectation

$$
f_{X}(x)= \begin{cases}1 & x \in[-1 / 2,0] \\ e^{-2 x} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

- Compute $E[X \mid X>0]$.
- Compute $E[X \mid X \leq 0]$.
- Compute $E[X]$.

More conditional expectation

$$
f_{X}(x)= \begin{cases}1 & x \in[-1 / 2,0] \\ e^{-2 x} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

- What is $f_{X \mid X>0}(x)$?

$$
f_{X \mid X>0}(x)= \begin{cases}e^{-2 x} / P(X>0) & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

- $P(X>0)=1-P(X \leq 0)=1 / 2$.

$$
f_{X \mid X>0}(x)= \begin{cases}2 e^{-2 x} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

- So conditioned on $X>0, X \sim \operatorname{Exponential(2).~So~} E[X \mid X>0]=1 / 2$.

More conditional expectation

$$
f_{X}(x)= \begin{cases}1 & x \in[-1 / 2,0] \\ e^{-2 x} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

- What is $f_{X \mid X \leq 0}(x)$?

$$
f_{X \mid X \leq 0}(x)= \begin{cases}1 / P(X<0)=2 & x \in[-1 / 2,0] \\ 0 & \text { otherwise }\end{cases}
$$

- So conditioned on $X \leq 0, X \sim$ Uniform([-1/2, 0]). So $E[X \mid X<0]=(-1 / 2+0) / 2=-1 / 4$.

Total expection theorem

$$
f_{X}(x)= \begin{cases}1 & x \in[-1 / 2,0] \\ e^{-2 x} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

- What is $E[X]$?

$$
\begin{aligned}
E[X] & =E[X \mid X>0] P(X>0)+E[X \mid X \leq 0] P(X \leq 0) \\
& =1 / 4+(-1 / 4) 1 / 2=1 / 8
\end{aligned}
$$

