SDS 321: Introduction to Probability and Statistics
 Lecture 2: Conditional probability

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
www.cs.cmu.edu/~psarkar/teaching

Example

Alice and Bob toss two fair coins separately. Denote the event that Alice gets a H by E_{A} and the event that Bob gets a H by E_{B}. We know that $P\left(E_{A}\right)=P\left(E_{B}\right)=1 / 2$.

Example

Alice and Bob toss two fair coins separately. Denote the event that Alice gets a H by E_{A} and the event that Bob gets a H by E_{B}. We know that $P\left(E_{A}\right)=P\left(E_{B}\right)=1 / 2$.

- $P\left(E_{A} \cup E_{B}\right)=P\left(E_{A}\right)+P\left(E_{B}\right)=1$. So its certain that at least one of them will get a head.

Example

Alice and Bob toss two fair coins separately. Denote the event that Alice gets a H by E_{A} and the event that Bob gets a H by E_{B}. We know that $P\left(E_{A}\right)=P\left(E_{B}\right)=1 / 2$.

- $P\left(E_{A} \cup E_{B}\right)=P\left(E_{A}\right)+P\left(E_{B}\right)=1$. So its certain that at least one of them will get a head.
- Whats wrong with this argument?

Example

Alice and Bob toss two fair coins separately. Denote the event that Alice gets a H by E_{A} and the event that Bob gets a H by E_{B}. We know that $P\left(E_{A}\right)=P\left(E_{B}\right)=1 / 2$.

- $P\left(E_{A} \cup E_{B}\right)=P\left(E_{A}\right)+P\left(E_{B}\right)=1$. So its certain that at least one of them will get a head.
- Whats wrong with this argument? But both could get tails!

Example

Alice and Bob toss two fair coins separately. Denote the event that Alice gets a H by E_{A} and the event that Bob gets a H by E_{B}. We know that $P\left(E_{A}\right)=P\left(E_{B}\right)=1 / 2$.

- $P\left(E_{A} \cup E_{B}\right)=P\left(E_{A}\right)+P\left(E_{B}\right)=1$. So its certain that at least one of them will get a head.
- Whats wrong with this argument? But both could get tails!
- Are E_{A} and E_{B} disjoint?

Example

Alice and Bob toss two fair coins separately. Denote the event that Alice gets a H by E_{A} and the event that Bob gets a H by E_{B}. We know that $P\left(E_{A}\right)=P\left(E_{B}\right)=1 / 2$.

- $P\left(E_{A} \cup E_{B}\right)=P\left(E_{A}\right)+P\left(E_{B}\right)=1$. So its certain that at least one of them will get a head.
- Whats wrong with this argument? But both could get tails!
- Are E_{A} and E_{B} disjoint? Not quite. The sample space you are considering is: $H T, T H, T T, H H$. So $E_{A}=\{H T, H H\}$ and $E_{B}=\{T H, H H\}$.

Example

Alice and Bob toss two fair coins separately. Denote the event that Alice gets a H by E_{A} and the event that Bob gets a H by E_{B}. We know that $P\left(E_{A}\right)=P\left(E_{B}\right)=1 / 2$.

- $P\left(E_{A} \cup E_{B}\right)=P\left(E_{A}\right)+P\left(E_{B}\right)=1$. So its certain that at least one of them will get a head.
- Whats wrong with this argument? But both could get tails!
- Are E_{A} and E_{B} disjoint? Not quite. The sample space you are considering is: $H T, T H, T T, H H$. So $E_{A}=\{H T, H H\}$ and $E_{B}=\{T H, H H\}$.
- So the union is really

$$
P\left(E_{A} \cup E_{B}\right)=P\left(E_{A}\right)+P\left(E_{B}\right)-P\left(E_{A} \cap E_{B}\right)=3 / 4
$$

Example

Alice and Bob toss two fair coins separately. Denote the event that Alice gets a H by E_{A} and the event that Bob gets a H by E_{B}. We know that $P\left(E_{A}\right)=P\left(E_{B}\right)=1 / 2$.

- $P\left(E_{A} \cup E_{B}\right)=P\left(E_{A}\right)+P\left(E_{B}\right)=1$. So its certain that at least one of them will get a head.
- Whats wrong with this argument? But both could get tails!
- Are E_{A} and E_{B} disjoint? Not quite. The sample space you are considering is: $H T, T H, T T, H H$. So $E_{A}=\{H T, H H\}$ and $E_{B}=\{T H, H H\}$.
- So the union is really

$$
P\left(E_{A} \cup E_{B}\right)=P\left(E_{A}\right)+P\left(E_{B}\right)-P\left(E_{A} \cap E_{B}\right)=3 / 4
$$

- May be what you are really thinking about is independent and not disjoint events.

Partial information

- So far, we have assumed we know nothing about the outcome of our experiment, except for the information encoded in the probability law.
- Sometimes, however, we have partial information that may affect the likelihood of a given event.
- The experiment involves rolling a die. You are told that the number is odd.
- The experiment involves the weather tomorrow. You know that the weather today is rainy.
- The experiment involves the presence or absence of a disease. A blood test comes back positive.
- In each case, knowing about some event B (e.g. "it is raining today") changes our beliefs about event A ("Will it rain tomorrow?").
- We want to update our probability law to incorporate this new knowledge.

Conditional Probability

Original problem:

- What is the probability of some event A.
- e.g. What is the probability that we roll a number less than 4?
- In other words, what is $P(A)$?
- This is given by our probability law.

Conditional Probability

Original problem:

- What is the probability of some event A.
- e.g. What is the probability that we roll a number less than 4 ?
- In other words, what is $P(A)$?
- This is given by our probability law.

New problem:

- Assuming event B (equivalently given event B), what is the probability of event A ?
- e.g. Given that the number rolled is an odd number, what is the probability that it is less than 4 ?
- We call this the conditional distribution of A given B.
- We write this as $P(A \mid B)$
- Read | as "given" or "conditioned on the fact that".
- Our conditional probability is still describing "the probability of something", so we expect it to behave like a probability distribution.

Conditional Probability

- Consider rolling a fair 6 -sided die (uniform, discrete probability distribution).
- Let A be the event "outcome is equal to 1^{\prime}.
- What is $P(A)$?
- Let's now assume that the number rolled is an odd number.
- What is the set, B, that we are conditioning on?
- What do you think $P(A \mid B)$ should be?

Conditional Probability

- You are conditioning on event B. So your new sample space is $\{1,3,5\}$ instead of $\{1,2,3,4,5,6\}$.

Conditional Probability

- You are conditioning on event B. So your new sample space is $\{1,3,5\}$ instead of $\{1,2,3,4,5,6\}$.
- Each of these are equally likely. So $P(A \mid B)=1 / 3$.

Conditional Probability

- You are conditioning on event B. So your new sample space is $\{1,3,5\}$ instead of $\{1,2,3,4,5,6\}$.
- Each of these are equally likely. So $P(A \mid B)=1 / 3$.
- Formally, if all outcomes are equally likely, we have

$$
P(A \mid B)=\frac{\# \text { elements in } A \cap B}{\# \text { elements in } B}
$$

Conditional Probability

- You are conditioning on event B. So your new sample space is $\{1,3,5\}$ instead of $\{1,2,3,4,5,6\}$.
- Each of these are equally likely. So $P(A \mid B)=1 / 3$.
- Formally, if all outcomes are equally likely, we have

$$
P(A \mid B)=\frac{\# \text { elements in } A \cap B}{\# \text { elements in } B}
$$

- More generally, $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$.

Conditional Probability

- You are conditioning on event B. So your new sample space is $\{1,3,5\}$ instead of $\{1,2,3,4,5,6\}$.
- Each of these are equally likely. So $P(A \mid B)=1 / 3$.
- Formally, if all outcomes are equally likely, we have

$$
P(A \mid B)=\frac{\# \text { elements in } A \cap B}{\# \text { elements in } B}
$$

- More generally, $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$.
- A conditional probability is only defined if $P(B)>0$.

Conditional Probability Axioms

- Nonnegativity - Check.
- Normalization -
- Additivity -

Conditional Probability Axioms

- Nonnegativity - Check.
- Normalization - Your new universe is now B, and we know that $P(B \mid B)=1$.
- Additivity -

Conditional Probability Axioms

- Nonnegativity - Check.
- Normalization - Your new universe is now B, and we know that $P(B \mid B)=1$.
- Additivity - $P\left(A_{1} \cup A_{2} \mid B\right)=P\left(A_{1} \mid B\right)+P\left(A_{2} \mid B\right)$ for two disjoint sets, A_{1} and A_{2}.

Conditional Probability Axioms

- Nonnegativity - Check.
- Normalization - Your new universe is now B, and we know that $P(B \mid B)=1$.
- Additivity - $P\left(A_{1} \cup A_{2} \mid B\right)=P\left(A_{1} \mid B\right)+P\left(A_{2} \mid B\right)$ for two disjoint sets, A_{1} and A_{2}.

Conditional Probability Axioms

- Nonnegativity - Check.
- Normalization - Your new universe is now B, and we know that $P(B \mid B)=1$.
- Additivity - $P\left(A_{1} \cup A_{2} \mid B\right)=P\left(A_{1} \mid B\right)+P\left(A_{2} \mid B\right)$ for two disjoint sets, A_{1} and A_{2}.

Using additivity, $P\left(\left(A_{1} \cup A_{2}\right) \cap B\right)=P\left(A_{1} \cap B\right)+P\left(A_{2} \cap B\right)$, so

$$
P\left(A_{1} \cup A_{2} \mid B\right)=\frac{P\left(A_{1} \cap B\right)+P\left(A_{2} \cap B\right)}{P(B)}=P\left(A_{1} \mid B\right)+P\left(A_{2} \mid B\right)
$$

Properties of conditional probability

If $P(B)>0$,

- If A_{i} for $i \in\{1, \ldots, n\}$ are all pairwise disjoint, then

$$
P\left(\cup_{i=1}^{n} A_{i} \mid B\right)=\sum_{i=1}^{n} P\left(A_{i} \mid B\right) .
$$

Properties of conditional probability

If $P(B)>0$,

- If A_{i} for $i \in\{1, \ldots, n\}$ are all pairwise disjoint, then $P\left(\cup_{i=1}^{n} A_{i} \mid B\right)=\sum_{i=1}^{n} P\left(A_{i} \mid B\right)$.
- If $A_{1} \subseteq A_{2}$, then $P\left(A_{1} \mid B\right) \leq P\left(A_{2} \mid B\right)$.

Properties of conditional probability

If $P(B)>0$,

- If A_{i} for $i \in\{1, \ldots, n\}$ are all pairwise disjoint, then

$$
P\left(\cup_{i=1}^{n} A_{i} \mid B\right)=\sum_{i=1}^{n} P\left(A_{i} \mid B\right) .
$$

- If $A_{1} \subseteq A_{2}$, then $P\left(A_{1} \mid B\right) \leq P\left(A_{2} \mid B\right)$.
- $P\left(A_{1} \cup A_{2} \mid B\right)=P\left(A_{1} \mid B\right)+P\left(A_{2} \mid B\right)-P\left(A_{1} \cap A_{2} \mid B\right)$

Properties of conditional probability

If $P(B)>0$,

- If A_{i} for $i \in\{1, \ldots, n\}$ are all pairwise disjoint, then

$$
P\left(\cup_{i=1}^{n} A_{i} \mid B\right)=\sum_{i=1}^{n} P\left(A_{i} \mid B\right) .
$$

- If $A_{1} \subseteq A_{2}$, then $P\left(A_{1} \mid B\right) \leq P\left(A_{2} \mid B\right)$.
- $P\left(A_{1} \cup A_{2} \mid B\right)=P\left(A_{1} \mid B\right)+P\left(A_{2} \mid B\right)-P\left(A_{1} \cap A_{2} \mid B\right)$
- Union bound: $P\left(A_{1} \cup A_{2} \mid B\right) \leq P\left(A_{1} \mid B\right)+P\left(A_{2} \mid B\right)$

Properties of conditional probability

If $P(B)>0$,

- If A_{i} for $i \in\{1, \ldots, n\}$ are all pairwise disjoint, then

$$
P\left(\cup_{i=1}^{n} A_{i} \mid B\right)=\sum_{i=1}^{n} P\left(A_{i} \mid B\right) .
$$

- If $A_{1} \subseteq A_{2}$, then $P\left(A_{1} \mid B\right) \leq P\left(A_{2} \mid B\right)$.
- $P\left(A_{1} \cup A_{2} \mid B\right)=P\left(A_{1} \mid B\right)+P\left(A_{2} \mid B\right)-P\left(A_{1} \cap A_{2} \mid B\right)$
- Union bound: $P\left(A_{1} \cup A_{2} \mid B\right) \leq P\left(A_{1} \mid B\right)+P\left(A_{2} \mid B\right)$
- $P\left(\cup_{i=1}^{n} A_{i} \mid B\right) \leq \sum_{i=1}^{n} P\left(A_{i} \mid B\right)$.

Example: Coin toss

Consider the experiment of tossing a fair coin three times. What is the probability of getting alternating heads and tails conditioned on the event that your first toss gives a head?

- Notation: Let $A:=\{$ Tosses yield alternating tails and heads $\}$ and $B:=\{$ The first toss is a head $\}$.
- We want $P(A \mid B)$.
- What if you wanted to follow the formula?

Example: Coin toss

Consider the experiment of tossing a fair coin three times. What is the probability of getting alternating heads and tails conditioned on the event that your first toss gives a head?

- Notation: Let $A:=\{$ Tosses yield alternating tails and heads $\}$ and $B:=\{$ The first toss is a head $\}$.
- We want $P(A \mid B)$.
- What if you wanted to follow the formula?
- Sample space for three coin tosses \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT $\}$.

Example: Coin toss

Consider the experiment of tossing a fair coin three times. What is the probability of getting alternating heads and tails conditioned on the event that your first toss gives a head?

- Notation: Let $A:=\{$ Tosses yield alternating tails and heads $\}$ and $B:=\{$ The first toss is a head $\}$.
- We want $P(A \mid B)$.
- What if you wanted to follow the formula?
- Sample space for three coin tosses \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT \}.
- $A=\{H T H, T H T\}$ and $A \cap B=\{H T H\}$.

Example: Coin toss

Consider the experiment of tossing a fair coin three times. What is the probability of getting alternating heads and tails conditioned on the event that your first toss gives a head?

- Notation: Let $A:=\{$ Tosses yield alternating tails and heads $\}$ and $B:=\{$ The first toss is a head $\}$.
- We want $P(A \mid B)$.
- What if you wanted to follow the formula?
- Sample space for three coin tosses \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT \}.
- $A=\{H T H, T H T\}$ and $A \cap B=\{H T H\}$.
- We have $P(B)=4 / 8$ and $P(A \cap B)=1 / 8$ and so $P(A \mid B)=1 / 4$.

Example: Coin toss

Consider the experiment of tossing a fair coin three times. What is the probability of getting alternating heads and tails conditioned on the event that your first toss gives a head?

- Notation: Let $A:=\{$ Tosses yield alternating tails and heads $\}$ and $B:=\{$ The first toss is a head $\}$.
- We want $P(A \mid B)$.
- What if you wanted to follow the formula?
- Sample space for three coin tosses \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT \}.
- $A=\{H T H, T H T\}$ and $A \cap B=\{H T H\}$.
- We have $P(B)=4 / 8$ and $P(A \cap B)=1 / 8$ and so $P(A \mid B)=1 / 4$.
- Your new world/sample space when you condition is $B=\{H H T, H T H, H T T, H H H\}$. Each of these are equally likely. Out of these 1 event satisfies alternating heads and tails.

Example: Coin toss

Consider the experiment of tossing a fair coin three times. What is the probability of getting alternating heads and tails conditioned on the event that your first toss gives a head?

- Notation: Let $A:=\{$ Tosses yield alternating tails and heads $\}$ and $B:=\{$ The first toss is a head $\}$.
- We want $P(A \mid B)$.
- What if you wanted to follow the formula?
- Sample space for three coin tosses \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT \}.
- $A=\{H T H, T H T\}$ and $A \cap B=\{H T H\}$.
- We have $P(B)=4 / 8$ and $P(A \cap B)=1 / 8$ and so $P(A \mid B)=1 / 4$.
- Your new world/sample space when you condition is $B=\{H H T, H T H, H T T, H H H\}$. Each of these are equally likely. Out of these 1 event satisfies alternating heads and tails.
- So, $P(A \mid B)=1 / 4$.

Homework

- Read Sections 1.1, 1.2 and 1.3 of Bertsekas and Tsitsiklis.
- The first homework will be posted online today. It is due next Thursday by 5 pm via Canvas.

