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Roadmap

I Independence

I Covariance and correlation.

I More than two random variables.

I Function of random variables
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Independent random variables-example
I You have two random variables X ,Y with joint PDF

fXY (x , y) =

{
cxy x , y ∈ [0, 1]

0 Otherwise

I What is c?
I Are X ,Y independent?

I c

∫ 1

x=0

∫ 1

y=0
xydydx = c/4 = 1. So c = 4.

I fX (x) =


∫ 1

0
4xydy = 2x x ∈ [0, 1]

0 Otherwise

I fY (y) =

{
2y y ∈ [0, 1]

0 Otherwise

I fX ,Y (x , y) = fX (x)fY (y) for all x , y ∈ [0, 1].
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Independent random variables-example
I You have two random variables X ,Y with joint PDF

fXY (x , y) =

{
ce−2xe−3y x , y ≥ 0

0 Otherwise

I What is c?
I Are X ,Y independent?
I Compute E [XY ].

I First note that the X Y are not constrained by each other.
I Next note that e−2xe−3y is basically the product of a function of x and

a function of y . If I gave you fX ,Y (x , y) = c(x + y), then its not a
product of a function of x and a function of y. But in the given problem,
X ,Y are independent.

I Next look at the two bits, for x we have e−2x . So this is sort of like an
exponential. So fX (x) = 2e−2x and fY (y) = 3e−3x .

I c = 6.
I So E [X ] = 1/2 and E [Y ] = 1/3 and via independence E [XY ] = 1/6
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Independent random variables-example
I You have two random variables X ,Y with joint PDF

fXY (x , y) =

ce−2xe−y
2/2 x ≥ 0,−∞ ≤ y ≤ ∞

0 Otherwise

I What is c?
I Are X ,Y independent?
I Compute E [X ],E [Y ].

I Yes, they are independent.
I fX (x) = 2e−2x , i.e. X ∼ Exponential(2)

I fY (y) = 1/
√

2πe−y
2/2, i.e. Y ∼ N(0, 1)

I c = 2/
√

2π.
I E [X ] = 1/2 and E [Y ] = 0.
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Covariance

I The covariance of two random variables X and Y is given by

cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])]

I We can simplify this a little

cov(X ,Y ) =E [(X − E [X ])(Y − E [Y ])]

=E [XY − XE [Y ]− YE [X ] + E [X ]E [Y ]

=E [XY ]− E [X ]E [Y ]− E [X ]E [Y ] + E [X ]E [Y ]

=E [XY ]− E [X ][E [Y ]

I It is a measure of how much X and Y change together.

I A positive covariance means that, if X > E [X ], we are likely to have
Y > E [Y ]

I A negative covariance means that, if X > E [X ], we are likely to
have Y < E [Y ].

7



Covariance

I A positive covariance means that we have most mass in the upper
right and lower left quadrants.

I A negative covariance means that we have most mass in the upper
left and lower right quadrants.

I A zero covariance means that we have about an equal mass in the
upper left and upper right quadrants.
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Covariance

I We are plotting two random variables X and Y below. Which one
corresponds to a positive, negative or zero covariance?
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Example: Continuous case

I Let fX ,Y (x , y) =

{
2 0 ≤ y ≤ x ≤ 1

0 otherwise
I What is cov(X ,Y )?

x

y

0
0

1

1

I We first need to calculate the expectation of X and Y .
I The marginal PDF of X and Y are:

fX (x) =

∫ 1

0
fX ,Y (x , y)dy = 2

∫ x

0
dy = 2x 0 ≤ x ≤ 1

fY (y) =

∫ 1

0
fX ,Y (x , y)dx = 2

∫ 1

y
dx = 2(1− y) 0 ≤ y ≤ 1

I So the expectations are:

E [X ] =

∫ 1

0
2x2dx = 2/3

E [Y ] =

∫ 1

0
(2y − 2y2)dy = 1/3
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Example: Continuous case

I We next need to calculate E [XY ].

I This is just the expectation of a function of two random variables

E [XY ] =

∫ 1

0

∫ 1

0
xyfX ,Y (x , y)dxdy

=

∫ 1

x=0

∫ x

y=0
2xydx dy

=

∫ 1

x=0
x(

∫ x

y=0
2ydy) dx

=

∫ 1

x=0
x
[
y2
]x
0
dx =

∫ 1

x=0
x3dx = 1/4

I So, cov(X ,Y ) = E [XY ]− E [X ]E [Y ] =
1

4
− 1

3
· 2

3
=

1

36

11
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y=0
2xydx dy

=

∫ 1

x=0
x(

∫ x

y=0
2ydy) dx

=

∫ 1

x=0
x
[
y2
]x
0
dx =

∫ 1

x=0
x3dx = 1/4

I So, cov(X ,Y ) = E [XY ]− E [X ]E [Y ] =
1

4
− 1

3
· 2

3
=

1

36

11



Covariance and Independence

I If two random variables are independent, knowing one tells us
nothing about the other!

I In this case, E [XY ] = E [X ]E [Y ]

I We know that cov(X ,Y ) = E [XY ]− E [X ]E [Y ]... so if two random
variables are independent, their covariance is zero.

I This shouldn’t be surprising... we know X can’t tell us anything
about Y .

I What about the converse? If cov(X ,Y ) = 0, does that mean that X

and Y are independent?

I Another way of asking this is, does E [XY ] = E [X ]E [Y ] imply X and
Y are independent?
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Covariance and Independence
I I start at co-ordinates (0,0). I pick a compass direction (N,S,E,W)

uniformly at random, and walk 1 unit in that direction.
I Let (X ,Y ) be my new coordinates. My sample space is
{(0, 1), (1, 0), (0,−1), (−1, 0)}.

y

x

(0,1)

(0,−1)

(1,0)(−1,0)

I What are E [X ] and E [Y ]?

0.

I XY = 0 .
I So, cov(X ,Y ) = 0.

I But, if I know X = 1, then I must have Y = 0. So, they are not
independent!

Independence implies zero correlation... but zero correlation does not
imply independence!
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Properties of covariance

I cov(X ,Y ) = E [XY ]− E [X ]E [Y ] = cov(Y ,X )

14



Properties of covariance

I What is the covariance of X and X?

I cov(X ,X ) = var(X )
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Properties of covariance

I What is the covariance of X and a for some constant a?

I
cov(X , a) = E [Xa]− E [X ]E [a]

= aE [X ]− aE [X ] = 0
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I What is the covariance of X and a for some constant a?

I
cov(X , a) = E [Xa]− E [X ]E [a]

= aE [X ]− aE [X ] = 0

16



Properties of covariance

I What is the covariance of X and aY ?

I cov(X , aY ) = E [aXY ]− E [X ]E [aY ] = acov(X ,Y )
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Properties of covariance

I What is the covariance of X and Y + b?

I

cov(X ,Y + b) = E [X (Y + b)]− E [X ]E [Y + b]

= E [XY ] + bE [X ]− (E [X ]E [Y ] + bE [X ])

= cov(X ,Y )
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Properties of covariance

I What is the covariance of X1 + X2 and Y1 + Y2?

I

cov(X1 + X2,Y1 + Y2) = E [(X1 + X2)(Y1 + Y2)]− E [X1 + X2]E [Y1 + Y2]

= E [X1Y1] + E [X1Y2] + E [X2Y1] + E [X2Y2]

− (E [X1]E [Y1] + E [X1]E [Y2] + E [X2]E [Y1] + E [X2]E [Y2])

= (E [X1Y1]− E [X1]E [Y1]) + (E [X1Y2]− E [X1]E [Y2])

+ (E [X2Y1]− E [X2]E [Y1]) + (E [X2Y2]− E [X2]E [Y2])

= cov(X1,Y1) + cov(X1,Y2) + cov(X2,Y1) + cov(X2,Y2)
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Properties of covariance

I What is the covariance of
n∑

i=1

aiXi and
n∑

j=1

bjYj?

I cov(
n∑

i=1

aiXi ,

n∑
j=1

bjYj) =
∑
i,j

aibjcov(Xi ,Yj)
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Correlation

I We know that the sign of a covariance indicates whether X − E [X ]

and Y − E [Y ] tend to have the same sign.

I The magnitude gives us some indication of the extent to which this
is true... but it is hard to interpret.

I The magnitude depends not just how much X and Y co-vary, but
also on how much X and Y deviate from their expected values.

I The correlation coefficient ρX ,Y (sometimes referred to as the
Pearson’s correlation coefficient) is a standardized version of the
covariance.

ρX ,Y =
cov(X ,Y )√

var(X )var(Y )

I We always have −1 ≤ ρX ,Y ≤ 1

I ρ = 0 implies zero covariance.
I |ρ| = 1 iff there is a linear relationship between X and Y .
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Correlation: Example of |ρ| = 1

I We throw a biased coin, with probability of heads p, n times. Let X

be the number of heads, and let Y be the number of tails.

I Y = n − X

I E [X ] =

np, and E [Y ] = n(1− p) = n − E [X ].

I var(X ) = np(1− p) = var(Y ).

I cov(X ,Y ) = cov(X , n − X ) = cov(X ,−X ) = −cov(X ,X ) = −var(X )

I The correlation coefficient is therefore

ρX ,Y =
cov(X ,Y )√

var(X )var(Y )
=

−var(X )√
var(X )var(X )

= −1

I Remember X = n − Y , so they have a linear relationship.
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Correlation: Example of |ρ| = 1

I Let Y = aX + b.

I

cov(X , aX + b) = cov(X , aX ) = avar(X )

ρX ,aX+b =
cov(X , aX )√

var(X )a2var(X )
=

avar(X )

|a|var(X )
=

a

|a|

=

{
1 a > 0

−1 a < 0
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Variance of a sum of random variables

I Earlier in the course, we looked at the variance of the sum of discrete
random variables. Same rule holds for continuous random variables.

var(X + Y ) = var(X ) + var(Y ) + 2cov(X ,Y )

I So for independent X ,Y , var(X + Y ) = var(X ) + var(Y )
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More than two random variables
I For multiple random variables we have:

P((X ,Y ,Z) ∈ B) =

∫
(x ,y ,z)∈B)

fX ,Y ,Z (x , y , z)dxdydz

I Marginalization: fX ,Y (x , y) =

∫
fX ,Y ,Z (x , y , z)dz

I Marginalization: fX (x) =

∫ ∫
fX ,Y ,Z (x , y , z)dy dz

I Conditional PDF: fX ,Y |Z (x , y |z) =
fX ,Y ,Z (x , y , z)

fZ (z)
, For fZ (z) > 0

I Conditional PDF: fX |Y ,Z (x |y , z) =
fX ,Y ,Z (x , y , z)

fY ,Z (y , z)
, For fY ,Z (y , z) > 0

I Multiplication rule:
fX ,Y ,Z (x , y , z) = fX |Y ,Z (x |y , z)fY |Z (y |z)fZ (z), For fY ,Z (y , z) > 0

I Independence: fX ,Y ,Z (x , y , z) = fX (x)fY (y)fZ (z) For all x , y , z
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More than two random variables

I For two random variables X ,Y arising out of the same experiment,
we define their CDF as:

FX ,Y (x , y) = P(X ≤ x ,Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX ,Y (u, v)du dv

I How do I get fX ,Y (x , y) back? fX ,Y (x , y) =
d2FX ,Y (x , y)

dx dy

I Let X and Y be jointly uniform on the unit square. FX ,Y (x , y) = xy

for 0 ≤ x , y ≤ 1

I What is fX ,Y (x , y)?. Differentiate!
d

dx

(
d

dy
(xy)

)
I This equals 1 for all 0 ≤ x , y ≤ 1!
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Function of random variables-I

I X ∼ Exp(1). Find the PDF of Y = X2.

I How do we do this?

I Start with the CDF. Find FY (y) = P(X2 ≤ y).

I FY (y) = P(X2 ≤ y) = P(X ≤ √y) = 1− exp(−√y).

I So fY (y) =


dFY (y)

dy
x =

exp(−√y)

2
√
y

y ≥ 0

0 otherwise
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Function of random variables-II

I X ∼ Uniform([0, 1]). Find the PDF of Y = X2.

I How do we do this?

I Start with the CDF. Find FY (y) = P(X2 ≤ y).

I FY (y) = P(X2 ≤ y) = P(X ≤ √y) =
√
y .

I So fY (y) =


dFY (y)

dy
=

1

2
√
y

y ∈ [0, 1]

0 otherwise
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Function of random variables-II

I X ∼ Uniform([0, 1]). Find the PDF of Y = X2.
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Function of random variables-II

I X ∼ Uniform([0, 1]). Find the PDF of Y = X2.
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