SDS 321: Introduction to Probability and Statistics
 Lecture 19: Continuous random variables: Independence, covariance

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
www.cs.cmu.edu/~psarkar/teaching

Roadmap

- Independence
- Covariance and correlation.
- More than two random variables.
- Function of random variables

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c x y & x, y \in[0,1] \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c x y & x, y \in[0,1] \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?
- $c \int_{x=0}^{1} \int_{y=0}^{1} x y d y d x=c / 4=1$. So $c=4$.

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c x y & x, y \in[0,1] \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?
- $c \int_{x=0}^{1} \int_{y=0}^{1} x y d y d x=c / 4=1$. So $c=4$.
- $f_{X}(x)= \begin{cases}\int_{0}^{1} 4 x y d y=2 x & x \in[0,1] \\ 0 & \text { Otherwise }\end{cases}$

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c x y & x, y \in[0,1] \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?
- $c \int_{x=0}^{1} \int_{y=0}^{1} x y d y d x=c / 4=1$. So $c=4$.
- $f_{X}(x)= \begin{cases}\int_{0}^{1} 4 x y d y=2 x & x \in[0,1] \\ 0 & \text { Otherwise }\end{cases}$
- $f_{Y}(y)= \begin{cases}2 y & y \in[0,1] \\ 0 & \text { Otherwise }\end{cases}$
- $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ for all $x, y \in[0,1]$.

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c x y & 0 \leq y \leq x \leq 1 \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c x y & 0 \leq y \leq x \leq 1 \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?
- $c \int_{x=0}^{1} \int_{y=0}^{x} x y d y d x=c \int_{x=0}^{1} x^{3} / 2 d x=c / 8$. So $c=8$.

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c x y & 0 \leq y \leq x \leq 1 \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?
- $c \int_{x=0}^{1} \int_{y=0}^{x} x y d y d x=c \int_{x=0}^{1} x^{3} / 2 d x=c / 8$. So $c=8$.
- $f_{X}(x)= \begin{cases}\int_{0}^{x} 8 x y d y=4 x^{3} & x \in[0,1] \\ 0 & \text { Otherwise }\end{cases}$

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c x y & 0 \leq y \leq x \leq 1 \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?
- $c \int_{x=0}^{1} \int_{y=0}^{x} x y d y d x=c \int_{x=0}^{1} x^{3} / 2 d x=c / 8$. So $c=8$.
- $f_{X}(x)= \begin{cases}\int_{0}^{x} 8 x y d y=4 x^{3} & x \in[0,1] \\ 0 & \text { Otherwise }\end{cases}$
- $f_{Y}(y)= \begin{cases}\int_{y}^{1} 8 x y d x=4 y\left(1-y^{2}\right) & y \in[0,1] \\ 0 & \text { Otherwise }\end{cases}$
- $f_{X, Y}(x, y) \neq f_{X}(x) f_{Y}(y)$ for all $x, y \in[0,1]$.

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c e^{-2 x} e^{-3 y} & x, y \geq 0 \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?
- Compute $E[X Y]$.

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c e^{-2 x} e^{-3 y} & x, y \geq 0 \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?
- Compute $E[X Y]$.
- First note that the $X Y$ are not constrained by each other.

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c e^{-2 x} e^{-3 y} & x, y \geq 0 \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?
- Compute $E[X Y]$.
- First note that the $X Y$ are not constrained by each other.
- Next note that $e^{-2 x} e^{-3 y}$ is basically the product of a function of x and a function of y. If I gave you $f_{X, Y}(x, y)=c(x+y)$, then its not a product of a function of x and a function of y. But in the given problem, X, Y are independent.

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c e^{-2 x} e^{-3 y} & x, y \geq 0 \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?
- Compute $E[X Y]$.
- First note that the $X Y$ are not constrained by each other.
- Next note that $e^{-2 x} e^{-3 y}$ is basically the product of a function of x and a function of y. If I gave you $f_{X, Y}(x, y)=c(x+y)$, then its not a product of a function of x and a function of y. But in the given problem, X, Y are independent.
- Next look at the two bits, for x we have $e^{-2 x}$. So this is sort of like an exponential. So $f_{X}(x)=2 e^{-2 x}$ and $f_{Y}(y)=3 e^{-3 x}$.

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c e^{-2 x} e^{-3 y} & x, y \geq 0 \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?
- Compute $E[X Y]$.
- First note that the $X \quad Y$ are not constrained by each other.
- Next note that $e^{-2 x} e^{-3 y}$ is basically the product of a function of x and a function of y. If I gave you $f_{X, Y}(x, y)=c(x+y)$, then its not a product of a function of x and a function of y. But in the given problem, X, Y are independent.
- Next look at the two bits, for x we have $e^{-2 x}$. So this is sort of like an exponential. So $f_{X}(x)=2 e^{-2 x}$ and $f_{Y}(y)=3 e^{-3 x}$.
- $c=6$.

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c e^{-2 x} e^{-3 y} & x, y \geq 0 \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?
- Compute $E[X Y]$.
- First note that the $X \quad Y$ are not constrained by each other.
- Next note that $e^{-2 x} e^{-3 y}$ is basically the product of a function of x and a function of y. If I gave you $f_{X, Y}(x, y)=c(x+y)$, then its not a product of a function of x and a function of y. But in the given problem, X, Y are independent.
- Next look at the two bits, for x we have $e^{-2 x}$. So this is sort of like an exponential. So $f_{X}(x)=2 e^{-2 x}$ and $f_{Y}(y)=3 e^{-3 x}$.
- $c=6$.
- So $E[X]=1 / 2$ and $E[Y]=1 / 3$ and via independence $E[X Y]=1 / 6$

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c e^{-2 x} e^{-y^{2} / 2} & x \geq 0,-\infty \leq y \leq \infty \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?
- Compute $E[X], E[Y]$.

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c e^{-2 x} e^{-y^{2} / 2} & x \geq 0,-\infty \leq y \leq \infty \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?
- Compute $E[X], E[Y]$.
- Yes, they are independent.
- $f_{X}(x)=2 e^{-2 x}$, i.e. $X \sim$ Exponential(2)

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c e^{-2 x} e^{-y^{2} / 2} & x \geq 0,-\infty \leq y \leq \infty \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?
- Compute $E[X], E[Y]$.
- Yes, they are independent.
- $f_{X}(x)=2 e^{-2 x}$, i.e. $X \sim$ Exponential(2)
- $f_{Y}(y)=1 / \sqrt{2 \pi} e^{-y^{2} / 2}$, i.e. $Y \sim N(0,1)$

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c e^{-2 x} e^{-y^{2} / 2} & x \geq 0,-\infty \leq y \leq \infty \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?
- Compute $E[X], E[Y]$.
- Yes, they are independent.
- $f_{X}(x)=2 e^{-2 x}$, i.e. $X \sim$ Exponential(2)
- $f_{Y}(y)=1 / \sqrt{2 \pi} e^{-y^{2} / 2}$, i.e. $Y \sim N(0,1)$
- $c=2 / \sqrt{2 \pi}$.

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c e^{-2 x} e^{-y^{2} / 2} & x \geq 0,-\infty \leq y \leq \infty \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?
- Compute $E[X], E[Y]$.
- Yes, they are independent.
- $f_{X}(x)=2 e^{-2 x}$, i.e. $X \sim$ Exponential(2)
- $f_{Y}(y)=1 / \sqrt{2 \pi} e^{-y^{2} / 2}$, i.e. $Y \sim N(0,1)$
- $c=2 / \sqrt{2 \pi}$.
- $E[X]=1 / 2$ and $E[Y]=0$.

Covariance

- The covariance of two random variables X and Y is given by

$$
\operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])]
$$

- We can simplify this a little

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y-X E[Y]-Y E[X]+E[X] E[Y] \\
& =E[X Y]-E[X] E[Y]-E[X] E[Y]+E[X] E[Y] \\
& =E[X Y]-E[X][E[Y]
\end{aligned}
$$

- It is a measure of how much X and Y change together.
- A positive covariance means that, if $X>E[X]$, we are likely to have $Y>E[Y]$
- A negative covariance means that, if $X>E[X]$, we are likely to have $Y<E[Y]$.

Covariance

- A positive covariance means that we have most mass in the upper right and lower left quadrants.
- A negative covariance means that we have most mass in the upper left and lower right quadrants.
- A zero covariance means that we have about an equal mass in the upper left and upper right quadrants.

Covariance

- We are plotting two random variables X and Y below. Which one corresponds to a positive, negative or zero covariance?

Example: Continuous case

- Let $f_{X, Y}(x, y)= \begin{cases}2 & 0 \leq y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}$
- What is $\operatorname{cov}(X, Y)$?

Example: Continuous case

- Let $f_{X, Y}(x, y)= \begin{cases}2 & 0 \leq y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}$
- What is $\operatorname{cov}(X, Y)$?

- We first need to calculate the expectation of X and Y.

Example: Continuous case

- Let $f_{X, Y}(x, y)= \begin{cases}2 & 0 \leq y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}$
- What is $\operatorname{cov}(X, Y)$?

- We first need to calculate the expectation of X and Y.
- The marginal PDF of X and Y are:

$$
f_{X}(x)=
$$

$$
f_{Y}(y)=
$$

Example: Continuous case

- Let $f_{X, Y}(x, y)= \begin{cases}2 & 0 \leq y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}$
- What is $\operatorname{cov}(X, Y)$?

- We first need to calculate the expectation of X and Y.
- The marginal PDF of X and Y are:

$$
f_{X}(x)=\int_{0}^{1} f_{X, Y}(x, y) d y=2 \int_{0}^{x} d y=2 x \quad 0 \leq x \leq 1
$$

$$
f_{Y}(y)=
$$

Example: Continuous case

- Let $f_{X, Y}(x, y)= \begin{cases}2 & 0 \leq y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}$
- What is $\operatorname{cov}(X, Y)$?

- We first need to calculate the expectation of X and Y.
- The marginal PDF of X and Y are:

$$
\begin{array}{cc}
f_{X}(x)=\int_{0}^{1} f_{X, Y}(x, y) d y=2 \int_{0}^{x} d y=2 x & 0 \leq x \leq 1 \\
f_{Y}(y)=\int_{0}^{1} f_{X, Y}(x, y) d x=2 \int_{y}^{1} d x=2(1-y) & 0 \leq y \leq 1
\end{array}
$$

Example: Continuous case

- Let $f_{X, Y}(x, y)= \begin{cases}2 & 0 \leq y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}$
- What is $\operatorname{cov}(X, Y)$?

- We first need to calculate the expectation of X and Y.
- The marginal PDF of X and Y are:

$$
\begin{array}{cc}
f_{X}(x)=\int_{0}^{1} f_{X, Y}(x, y) d y=2 \int_{0}^{x} d y=2 x & 0 \leq x \leq 1 \\
f_{Y}(y)=\int_{0}^{1} f_{X, Y}(x, y) d x=2 \int_{y}^{1} d x=2(1-y) & 0 \leq y \leq 1
\end{array}
$$

- So the expectations are:

$$
\begin{gathered}
E[X]= \\
E[Y]=
\end{gathered}
$$

Example: Continuous case

- Let $f_{X, Y}(x, y)= \begin{cases}2 & 0 \leq y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}$
- What is $\operatorname{cov}(X, Y)$?

- We first need to calculate the expectation of X and Y.
- The marginal PDF of X and Y are:

$$
\begin{array}{cc}
f_{X}(x)=\int_{0}^{1} f_{X, Y}(x, y) d y=2 \int_{0}^{x} d y=2 x & 0 \leq x \leq 1 \\
f_{Y}(y)=\int_{0}^{1} f_{X, Y}(x, y) d x=2 \int_{y}^{1} d x=2(1-y) & 0 \leq y \leq 1
\end{array}
$$

- So the expectations are:

$$
\begin{aligned}
& E[X]=\int_{0}^{1} 2 x^{2} d x=2 / 3 \\
& E[Y]=
\end{aligned}
$$

Example: Continuous case

- Let $f_{X, Y}(x, y)= \begin{cases}2 & 0 \leq y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}$
- What is $\operatorname{cov}(X, Y)$?

- We first need to calculate the expectation of X and Y.
- The marginal PDF of X and Y are:

$$
\begin{array}{cc}
f_{X}(x)=\int_{0}^{1} f_{X, Y}(x, y) d y=2 \int_{0}^{x} d y=2 x & 0 \leq x \leq 1 \\
f_{Y}(y)=\int_{0}^{1} f_{X, Y}(x, y) d x=2 \int_{y}^{1} d x=2(1-y) & 0 \leq y \leq 1
\end{array}
$$

- So the expectations are:

$$
\begin{gathered}
E[X]=\int_{0}^{1} 2 x^{2} d x=2 / 3 \\
E[Y]=\int_{0}^{1}\left(2 y-2 y^{2}\right) d y=1 / 3
\end{gathered}
$$

Example: Continuous case

- We next need to calculate $E[X Y]$.
- This is just the expectation of a function of two random variables

$$
E[X Y]=\int_{0}^{1} \int_{0}^{1} x y f_{X, Y}(x, y) d x d y
$$

Example: Continuous case

- We next need to calculate $E[X Y]$.
- This is just the expectation of a function of two random variables

$$
\begin{aligned}
E[X Y] & =\int_{0}^{1} \int_{0}^{1} x y f_{X, Y}(x, y) d x d y \\
& =\int_{x=0}^{1} \int_{y=0}^{x} 2 x y d x d y
\end{aligned}
$$

Example: Continuous case

- We next need to calculate $E[X Y]$.
- This is just the expectation of a function of two random variables

$$
\begin{aligned}
E[X Y] & =\int_{0}^{1} \int_{0}^{1} x y f_{X, Y}(x, y) d x d y \\
& =\int_{x=0}^{1} \int_{y=0}^{x} 2 x y d x d y \\
& =\int_{x=0}^{1} x\left(\int_{y=0}^{x} 2 y d y\right) d x
\end{aligned}
$$

Example: Continuous case

- We next need to calculate $E[X Y]$.
- This is just the expectation of a function of two random variables

$$
\begin{aligned}
E[X Y] & =\int_{0}^{1} \int_{0}^{1} x y f_{X, Y}(x, y) d x d y \\
& =\int_{x=0}^{1} \int_{y=0}^{x} 2 x y d x d y \\
& =\int_{x=0}^{1} x\left(\int_{y=0}^{x} 2 y d y\right) d x \\
& =\int_{x=0}^{1} x\left[y^{2}\right]_{0}^{x} d x=\int_{x=0}^{1} x^{3} d x=1 / 4
\end{aligned}
$$

Example: Continuous case

- We next need to calculate $E[X Y]$.
- This is just the expectation of a function of two random variables

$$
\begin{aligned}
E[X Y] & =\int_{0}^{1} \int_{0}^{1} x y f_{X, Y}(x, y) d x d y \\
& =\int_{x=0}^{1} \int_{y=0}^{x} 2 x y d x d y \\
& =\int_{x=0}^{1} x\left(\int_{y=0}^{x} 2 y d y\right) d x \\
& =\int_{x=0}^{1} x\left[y^{2}\right]_{0}^{x} d x=\int_{x=0}^{1} x^{3} d x=1 / 4
\end{aligned}
$$

- So, $\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]=\frac{1}{4}-\frac{1}{3} \cdot \frac{2}{3}=\frac{1}{36}$

Covariance and Independence

- If two random variables are independent, knowing one tells us nothing about the other!
- In this case, $E[X Y]=E[X] E[Y]$
- We know that $\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]$... so if two random variables are independent, their covariance is zero.
- This shouldn't be surprising... we know X can't tell us anything about Y.
- What about the converse? If $\operatorname{cov}(X, Y)=0$, does that mean that X and Y are independent?

Covariance and Independence

- If two random variables are independent, knowing one tells us nothing about the other!
- In this case, $E[X Y]=E[X] E[Y]$
- We know that $\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]$... so if two random variables are independent, their covariance is zero.
- This shouldn't be surprising... we know X can't tell us anything about Y.
- What about the converse? If $\operatorname{cov}(X, Y)=0$, does that mean that X and Y are independent?
- Another way of asking this is, does $E[X Y]=E[X] E[Y]$ imply X and Y are independent?

Covariance and Independence

- I start at co-ordinates (0,0). I pick a compass direction ($\mathrm{N}, \mathrm{S}, \mathrm{E}, \mathrm{W}$) uniformly at random, and walk 1 unit in that direction.
- Let (X, Y) be my new coordinates. My sample space is $\{(0,1),(1,0),(0,-1),(-1,0)\}$.

- What are $E[X]$ and $E[Y]$?

Covariance and Independence

- I start at co-ordinates (0,0). I pick a compass direction ($\mathrm{N}, \mathrm{S}, \mathrm{E}, \mathrm{W}$) uniformly at random, and walk 1 unit in that direction.
- Let (X, Y) be my new coordinates. My sample space is $\{(0,1),(1,0),(0,-1),(-1,0)\}$.

- What are $E[X]$ and $E[Y]$?

Covariance and Independence

- I start at co-ordinates (0,0). I pick a compass direction ($\mathrm{N}, \mathrm{S}, \mathrm{E}, \mathrm{W}$) uniformly at random, and walk 1 unit in that direction.
- Let (X, Y) be my new coordinates. My sample space is $\{(0,1),(1,0),(0,-1),(-1,0)\}$.

- What are $E[X]$ and $E[Y]$? 0 .

Covariance and Independence

- I start at co-ordinates (0,0). I pick a compass direction ($\mathrm{N}, \mathrm{S}, \mathrm{E}, \mathrm{W}$) uniformly at random, and walk 1 unit in that direction.
- Let (X, Y) be my new coordinates. My sample space is $\{(0,1),(1,0),(0,-1),(-1,0)\}$.

- What are $E[X]$ and $E[Y]$? 0 .
- $X Y=$

Covariance and Independence

- I start at co-ordinates (0,0). I pick a compass direction ($\mathrm{N}, \mathrm{S}, \mathrm{E}, \mathrm{W}$) uniformly at random, and walk 1 unit in that direction.
- Let (X, Y) be my new coordinates. My sample space is $\{(0,1),(1,0),(0,-1),(-1,0)\}$.

- What are $E[X]$ and $E[Y]$? 0 .
- $X Y=0$.
- So, $\operatorname{cov}(X, Y)=0$.
- But, if I know $X=1$, then I must have $Y=0$. So, they are not independent!

Independence implies zero correlation... but zero correlation does not ${ }_{13}$ imply independence!

Properties of covariance

- $\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]=\operatorname{cov}(Y, X)$

Properties of covariance

- What is the covariance of X and X ?

Properties of covariance

- What is the covariance of X and X ?
- $\operatorname{cov}(X, X)=\operatorname{var}(X)$

Properties of covariance

- What is the covariance of X and a for some constant a ?

Properties of covariance

- What is the covariance of X and a for some constant a ?

$$
\operatorname{cov}(X, a)=E[X a]-E[X] E[a]
$$

$$
=a E[X]-a E[X]=0
$$

Properties of covariance

- What is the covariance of X and $a Y$?

Properties of covariance

- What is the covariance of X and $a Y$?
- $\operatorname{cov}(X, a Y)=E[a X Y]-E[X] E[a Y]=\operatorname{acov}(X, Y)$

Properties of covariance

- What is the covariance of X and $Y+b$?

Properties of covariance

- What is the covariance of X and $Y+b$? $\operatorname{cov}(X, Y+b)=E[X(Y+b)]-E[X] E[Y+b]$

$$
\begin{aligned}
& =E[X Y]+b E[X]-(E[X] E[Y]+b E[X]) \\
& =\operatorname{cov}(X, Y)
\end{aligned}
$$

Properties of covariance

- What is the covariance of $X_{1}+X_{2}$ and $Y_{1}+Y_{2}$?

Properties of covariance

- What is the covariance of $X_{1}+X_{2}$ and $Y_{1}+Y_{2}$?

$$
\begin{aligned}
& \operatorname{cov}\left(X_{1}+X_{2}, Y_{1}+Y_{2}\right)=E\left[\left(X_{1}+X_{2}\right)\left(Y_{1}+Y_{2}\right)\right]-E\left[X_{1}+X_{2}\right] E\left[Y_{1}+Y_{2}\right] \\
& =E\left[X_{1} Y_{1}\right]+E\left[X_{1} Y_{2}\right]+E\left[X_{2} Y_{1}\right]+E\left[X_{2} Y_{2}\right] \\
& -\left(E\left[X_{1}\right] E\left[Y_{1}\right]+E\left[X_{1}\right] E\left[Y_{2}\right]+E\left[X_{2}\right] E\left[Y_{1}\right]+E\left[X_{2}\right] E\left[Y_{2}\right]\right) \\
& =\left(E\left[X_{1} Y_{1}\right]-E\left[X_{1}\right] E\left[Y_{1}\right]\right)+\left(E\left[X_{1} Y_{2}\right]-E\left[X_{1}\right] E\left[Y_{2}\right]\right) \\
& +\left(E\left[X_{2} Y_{1}\right]-E\left[X_{2}\right] E\left[Y_{1}\right]\right)+\left(E\left[X_{2} Y_{2}\right]-E\left[X_{2}\right] E\left[Y_{2}\right]\right) \\
& =\operatorname{cov}\left(X_{1}, Y_{1}\right)+\operatorname{cov}\left(X_{1}, Y_{2}\right)+\operatorname{cov}\left(X_{2}, Y_{1}\right)+\operatorname{cov}\left(X_{2}, Y_{2}\right)
\end{aligned}
$$

Properties of covariance

- What is the covariance of $\sum_{i=1}^{n} a_{i} X_{i}$ and $\sum_{j=1}^{n} b_{j} Y_{j}$?

Properties of covariance

- What is the covariance of $\sum_{i=1}^{n} a_{i} X_{i}$ and $\sum_{j=1}^{n} b_{j} Y_{j}$?
$-\operatorname{cov}\left(\sum_{i=1}^{n} a_{i} X_{i}, \sum_{j=1}^{n} b_{j} Y_{j}\right)=\sum_{i, j} a_{i} b_{j} \operatorname{cov}\left(X_{i}, Y_{j}\right)$

Correlation

- We know that the sign of a covariance indicates whether $X-E[X]$ and $Y-E[Y]$ tend to have the same sign.
- The magnitude gives us some indication of the extent to which this is true... but it is hard to interpret.
- The magnitude depends not just how much X and Y co-vary, but also on how much X and Y deviate from their expected values.
- The correlation coefficient $\rho_{X, Y}$ (sometimes referred to as the Pearson's correlation coefficient) is a standardized version of the covariance.

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}
$$

- We always have $-1 \leq \rho_{X, Y} \leq 1$
- $\rho=0$ implies zero covariance.
- $|\rho|=1$ iff there is a linear relationship between X and Y.

Correlation: Example of $|\rho|=1$

- We throw a biased coin, with probability of heads p, n times. Let X be the number of heads, and let Y be the number of tails.
- $Y=n-X$
- $E[X]=$

Correlation: Example of $|\rho|=1$

- We throw a biased coin, with probability of heads p, n times. Let X be the number of heads, and let Y be the number of tails.
- $Y=n-X$
- $E[X]=n p$, and $E[Y]=n(1-p)=n-E[X]$.
- $\operatorname{var}(X)=n p(1-p)=\operatorname{var}(Y)$.

Correlation: Example of $|\rho|=1$

- We throw a biased coin, with probability of heads p, n times. Let X be the number of heads, and let Y be the number of tails.
- $Y=n-X$
- $E[X]=n p$, and $E[Y]=n(1-p)=n-E[X]$.
- $\operatorname{var}(X)=n p(1-p)=\operatorname{var}(Y)$.
- $\operatorname{cov}(X, Y)=\operatorname{cov}(X, n-X)=\operatorname{cov}(X,-X)=-\operatorname{cov}(X, X)=-\operatorname{var}(X)$

Correlation: Example of $|\rho|=1$

- We throw a biased coin, with probability of heads p, n times. Let X be the number of heads, and let Y be the number of tails.
- $Y=n-X$
- $E[X]=n p$, and $E[Y]=n(1-p)=n-E[X]$.
- $\operatorname{var}(X)=n p(1-p)=\operatorname{var}(Y)$.
- $\operatorname{cov}(X, Y)=\operatorname{cov}(X, n-X)=\operatorname{cov}(X,-X)=-\operatorname{cov}(X, X)=-\operatorname{var}(X)$
- The correlation coefficient is therefore

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}=\frac{-\operatorname{var}(X)}{\sqrt{\operatorname{var}(X) \operatorname{var}(X)}}=-1
$$

Correlation: Example of $|\rho|=1$

- We throw a biased coin, with probability of heads p, n times. Let X be the number of heads, and let Y be the number of tails.
- $Y=n-X$
- $E[X]=n p$, and $E[Y]=n(1-p)=n-E[X]$.
- $\operatorname{var}(X)=n p(1-p)=\operatorname{var}(Y)$.
- $\operatorname{cov}(X, Y)=\operatorname{cov}(X, n-X)=\operatorname{cov}(X,-X)=-\operatorname{cov}(X, X)=-\operatorname{var}(X)$
- The correlation coefficient is therefore

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}=\frac{-\operatorname{var}(X)}{\sqrt{\operatorname{var}(X) \operatorname{var}(X)}}=-1
$$

Correlation: Example of $|\rho|=1$

- We throw a biased coin, with probability of heads p, n times. Let X be the number of heads, and let Y be the number of tails.
- $Y=n-X$
- $E[X]=n p$, and $E[Y]=n(1-p)=n-E[X]$.
- $\operatorname{var}(X)=n p(1-p)=\operatorname{var}(Y)$.
- $\operatorname{cov}(X, Y)=\operatorname{cov}(X, n-X)=\operatorname{cov}(X,-X)=-\operatorname{cov}(X, X)=-\operatorname{var}(X)$
- The correlation coefficient is therefore

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}=\frac{-\operatorname{var}(X)}{\sqrt{\operatorname{var}(X) \operatorname{var}(X)}}=-1
$$

Correlation: Example of $|\rho|=1$

- We throw a biased coin, with probability of heads p, n times. Let X be the number of heads, and let Y be the number of tails.
- $Y=n-X$
- $E[X]=n p$, and $E[Y]=n(1-p)=n-E[X]$.
- $\operatorname{var}(X)=n p(1-p)=\operatorname{var}(Y)$.
- $\operatorname{cov}(X, Y)=\operatorname{cov}(X, n-X)=\operatorname{cov}(X,-X)=-\operatorname{cov}(X, X)=-\operatorname{var}(X)$
- The correlation coefficient is therefore

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}=\frac{-\operatorname{var}(X)}{\sqrt{\operatorname{var}(X) \operatorname{var}(X)}}=-1
$$

- Remember $X=n-Y$, so they have a linear relationship.

Correlation: Example of $|\rho|=1$

- Let $Y=a X+b$.

Correlation: Example of $|\rho|=1$

- Let $Y=a X+b$.

$$
\begin{aligned}
\operatorname{cov}(X, a X+b) & =\operatorname{cov}(X, a X)=a \operatorname{var}(X) \\
\rho_{X, a} X+b & =\frac{\operatorname{cov}(X, a X)}{\sqrt{\operatorname{var}(X) a^{2} \operatorname{var}(X)}}=\frac{a \operatorname{var}(X)}{|a| \operatorname{var}(X)}=\frac{a}{|a|} \\
& = \begin{cases}1 & a>0 \\
-1 & a<0\end{cases}
\end{aligned}
$$

Variance of a sum of random variables

- Earlier in the course, we looked at the variance of the sum of discrete random variables. Same rule holds for continuous random variables.

$$
\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)+2 \operatorname{cov}(X, Y)
$$

- So for independent $X, Y, \operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)$

More than two random variables

- For multiple random variables we have:

$$
P((X, Y, Z) \in B)=\int_{(x, y, z) \in B)} f_{X, Y, Z}(x, y, z) d x d y d z
$$

- Marginalization: $f_{X, Y}(x, y)=$

More than two random variables

- For multiple random variables we have:
$P((X, Y, Z) \in B)=\int_{(x, y, z) \in B)} f_{X, Y, Z}(x, y, z) d x d y d z$
- Marginalization: $f_{X, Y}(x, y)=\int f_{X, Y, Z}(x, y, z) d z$

More than two random variables

- For multiple random variables we have:

$$
P((X, Y, Z) \in B)=\int_{(x, y, z) \in B)} f_{X, Y, Z}(x, y, z) d x d y d z
$$

- Marginalization: $f_{X, Y}(x, y)=\int f_{X, Y, Z}(x, y, z) d z$
- Marginalization: $f_{X}(x)=\iint f_{X, Y, Z}(x, y, z) d y d z$

More than two random variables

- For multiple random variables we have:

$$
P((X, Y, Z) \in B)=\int_{(x, y, z) \in B)} f_{X, Y, Z}(x, y, z) d x d y d z
$$

- Marginalization: $f_{X, Y}(x, y)=\int f_{X, Y, Z}(x, y, z) d z$
- Marginalization: $f_{X}(x)=\iint f_{X, Y, Z}(x, y, z) d y d z$
- Conditional PDF: $f_{X, Y \mid Z}(x, y \mid z)=\frac{f_{X, Y, Z}(x, y, z)}{f_{Z}(z)}$, For $f_{Z}(z)>0$

More than two random variables

- For multiple random variables we have:
$P((X, Y, Z) \in B)=\int_{(x, y, z) \in B)} f_{X, Y, Z}(x, y, z) d x d y d z$
- Marginalization: $f_{X, Y}(x, y)=\int f_{X, Y, Z}(x, y, z) d z$
- Marginalization: $f_{X}(x)=\iint f_{X, Y, Z}(x, y, z) d y d z$
- Conditional PDF: $f_{X, Y \mid Z}(x, y \mid z)=\frac{f_{X, Y, Z}(x, y, z)}{f_{Z}(z)}$, For $f_{Z}(z)>0$
- Conditional PDF: $f_{X \mid Y, Z}(x \mid y, z)=\frac{f_{X, Y, Z}(x, y, z)}{f_{Y, Z}(y, z)}$, For $f_{Y, Z}(y, z)>0$

More than two random variables

- For multiple random variables we have:
$P((X, Y, Z) \in B)=\int_{(x, y, z) \in B)} f_{X, Y, Z}(x, y, z) d x d y d z$
- Marginalization: $f_{X, Y}(x, y)=\int f_{X, Y, Z}(x, y, z) d z$
- Marginalization: $f_{X}(x)=\iint f_{X, Y, Z}(x, y, z) d y d z$
- Conditional PDF: $f_{X, Y \mid Z}(x, y \mid z)=\frac{f_{X, Y, Z}(x, y, z)}{f_{Z}(z)}$, For $f_{Z}(z)>0$
- Conditional PDF: $f_{X \mid Y, Z}(x \mid y, z)=\frac{f_{X, Y, Z}(x, y, z)}{f_{Y, Z}(y, z)}$, For $f_{Y, Z}(y, z)>0$
- Multiplication rule:

$$
f_{X, Y, Z}(x, y, z)=f_{X \mid Y, Z}(x \mid y, z) f_{Y \mid Z}(y \mid z) f_{Z}(z) \text {, For } f_{Y, Z}(y, z)>0
$$

More than two random variables

- For multiple random variables we have:
$P((X, Y, Z) \in B)=\int_{(x, y, z) \in B)} f_{X, Y, Z}(x, y, z) d x d y d z$
- Marginalization: $f_{X, Y}(x, y)=\int f_{X, Y, Z}(x, y, z) d z$
- Marginalization: $f_{X}(x)=\iint f_{X, Y, Z}(x, y, z) d y d z$
- Conditional PDF: $f_{X, Y \mid Z}(x, y \mid z)=\frac{f_{X, Y, Z}(x, y, z)}{f_{Z}(z)}$, For $f_{Z}(z)>0$
- Conditional PDF: $f_{X \mid Y, Z}(x \mid y, z)=\frac{f_{X, Y, Z}(x, y, z)}{f_{Y, Z}(y, z)}$, For $f_{Y, Z}(y, z)>0$
- Multiplication rule:

$$
f_{X, Y, Z}(x, y, z)=f_{X \mid Y, Z}(x \mid y, z) f_{Y \mid Z}(y \mid z) f_{Z}(z), \quad \text { For } f_{Y, Z}(y, z)>0
$$

- Independence: $f_{X, Y, Z}(x, y, z)=f_{X}(x) f_{Y}(y) f_{Z}(z)$ For all x, y, z

More than two random variables

- For two random variables X, Y arising out of the same experiment, we define their CDF as:

$$
F_{X, Y}(x, y)=P(X \leq x, Y \leq y)=
$$

- How do I get $f_{X, Y}(x, y)$ back? $f_{X, Y}(x, y)=\frac{d^{2} F_{X, Y}(x, y)}{d x d y}$
- Let X and Y be jointly uniform on the unit square. $F_{X, Y}(x, y)=x y$ for $0 \leq x, y \leq 1$
- What is $f_{X, Y}(x, y)$?. Differentiate! $\frac{d}{d x}\left(\frac{d}{d y}(x y)\right)$
- This equals 1 for all $0 \leq x, y \leq 1$!

More than two random variables

- For two random variables X, Y arising out of the same experiment, we define their CDF as:

$$
F_{X, Y}(x, y)=P(X \leq x, Y \leq y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(u, v) d u d v
$$

- How do I get $f_{X, Y}(x, y)$ back? $f_{X, Y}(x, y)=\frac{d^{2} F_{X, Y}(x, y)}{d x d y}$
- Let X and Y be jointly uniform on the unit square. $F_{X, Y}(x, y)=x y$ for $0 \leq x, y \leq 1$
- What is $f_{X, Y}(x, y)$?. Differentiate! $\frac{d}{d x}\left(\frac{d}{d y}(x y)\right)$
- This equals 1 for all $0 \leq x, y \leq 1$!

Function of random variables-I

- $X \sim \operatorname{Exp}(1)$. Find the PDF of $Y=X^{2}$.
- How do we do this?
- Start with the CDF. Find $F_{Y}(y)=P\left(X^{2} \leq y\right)$.

Function of random variables-I

- $X \sim \operatorname{Exp}(1)$. Find the PDF of $Y=X^{2}$.
- How do we do this?
- Start with the CDF. Find $F_{Y}(y)=P\left(X^{2} \leq y\right)$.
- $F_{Y}(y)=P\left(X^{2} \leq y\right)=P(X \leq \sqrt{y})=1-\exp (-\sqrt{y})$.

Function of random variables-I

- $X \sim \operatorname{Exp}(1)$. Find the PDF of $Y=X^{2}$.
- How do we do this?
- Start with the CDF. Find $F_{Y}(y)=P\left(X^{2} \leq y\right)$.
- $F_{Y}(y)=P\left(X^{2} \leq y\right)=P(X \leq \sqrt{y})=1-\exp (-\sqrt{y})$.
- So $f_{Y}(y)= \begin{cases}\frac{d F_{Y}(y)}{d y} x=\frac{\exp (-\sqrt{y})}{2 \sqrt{y}} & y \geq 0 \\ 0 & \text { otherwise }\end{cases}$

Function of random variables-II

- $X \sim \operatorname{Uniform}([0,1])$. Find the PDF of $Y=X^{2}$.
- How do we do this?
- Start with the CDF. Find $F_{Y}(y)=P\left(X^{2} \leq y\right)$.

Function of random variables-II

- $X \sim \operatorname{Uniform}([0,1])$. Find the PDF of $Y=X^{2}$.
- How do we do this?
- Start with the CDF. Find $F_{Y}(y)=P\left(X^{2} \leq y\right)$.
- $F_{Y}(y)=P\left(X^{2} \leq y\right)=P(X \leq \sqrt{y})=\sqrt{y}$.

Function of random variables-II

- $X \sim \operatorname{Uniform}([0,1])$. Find the PDF of $Y=X^{2}$.
- How do we do this?
- Start with the CDF. Find $F_{Y}(y)=P\left(X^{2} \leq y\right)$.
- $F_{Y}(y)=P\left(X^{2} \leq y\right)=P(X \leq \sqrt{y})=\sqrt{y}$.
- So $f_{Y}(y)= \begin{cases}\frac{d F_{Y}(y)}{d y}=\frac{1}{2 \sqrt{y}} & y \in[0,1] \\ 0 & \text { otherwise }\end{cases}$

