SDS 321: Introduction to Probability and Statistics
 Lecture 18: Continuous random variables: conditional expectation, Independence, covariance

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
www.cs.cmu.edu/~psarkar/teaching

Roadmap

- Two random variables: joint distributions
- Joint pdf
- Joint pdf to a single pdf: Marginalization
- Conditional pdf
- Conditioning on an event
- Conditioning on a continuous r.v
- Total probability rule for continuous r.v's
- Bayes theorem for continuous r.v's
- Conditional expectation and total expectation theorem
- Independence
- Covariance and correlation.
- More than two random variables.

Bayes' law with continuous outcomes but discrete hidden

causes

- Sometimes our hidden cause is inherently discrete.
- e.g. I may be interested in whether I have flu or not - a binary choice.
- My observation might be my temperature - a continuous random variable.
- We want $P(A \mid Y=y)=$ e.g. $P($ flu $\mid Y=100)$
- Pretend Y is a discrete r.v.

$$
P(A \mid Y=y)=\frac{P(Y=y \mid A) P(A)}{P(Y=y \mid A) P(A)+P\left(Y=y \mid A^{c}\right) P\left(A^{c}\right)}
$$

All that changes for a continuous r.v. is:

$$
P(A \mid Y=y)=\frac{f_{Y \mid A}(y) P(A)}{f_{Y \mid A}(y) P(A)+f_{Y \mid A^{c}}(y) P\left(A^{c}\right)}
$$

Bayes' law with continuous outcomes but discrete hidden

causes

- The probability that anyone has flu (event A) is 20%.
- Body temperature is Y.
- Without flu, Y is a normal random variable with $\mu=98.6$ degrees and $\sigma=.5$.
- With flu, Y is a normal random variable with $\mu=102$ and $\sigma=2$.
- My temperature is 100 . If A is the event "has flu" and Y is temp.

Bayes' law with continuous outcomes but discrete hidden

causes

- The probability that anyone has flu (event A) is 20%.
- Body temperature is Y.
- Without flu, Y is a normal random variable with $\mu=98.6$ degrees and $\sigma=.5$.
- With flu, Y is a normal random variable with $\mu=102$ and $\sigma=2$.
- My temperature is 100 . If A is the event "has flu" and Y is temp.
$-\begin{aligned} f_{Y \mid A}(y) & =\frac{1}{\sqrt{2 \pi \times 4}} \exp -\frac{(y-102)^{2}}{2 \times 4} \\ f_{Y \mid A^{c}}(y) & =\frac{1}{\sqrt{2 \pi \times .25}} \exp -\frac{(y-98.6)^{2}}{2 \times .25}\end{aligned}$

Bayes' law with continuous outcomes but discrete hidden

causes

- The probability that anyone has flu (event A) is 20%.
- Body temperature is Y.
- Without flu, Y is a normal random variable with $\mu=98.6$ degrees and $\sigma=.5$.
- With flu, Y is a normal random variable with $\mu=102$ and $\sigma=2$.
- My temperature is 100 . If A is the event "has flu" and Y is temp.
- $\begin{aligned} f_{Y \mid A}(y) & =\frac{1}{\sqrt{2 \pi \times 4}} \exp -\frac{(y-102)^{2}}{2 \times 4} \\ f_{Y \mid A^{c}}(y) & =\frac{1}{\sqrt{2 \pi \times .25}} \exp -\frac{(y-98.6)^{2}}{2 \times .25}\end{aligned}$

$$
\begin{gathered}
P(A \mid Y=y)=\frac{P(A) f_{Y \mid A}(y)}{f_{Y}(y)}=\frac{f_{Y \mid A}(y) P(A)}{f_{Y \mid A}(y) P(A)+f_{Y \mid A^{c}}(y) P\left(A^{c}\right)} \\
P(A \mid Y=100)=\frac{0.2 \frac{1}{2 \sqrt{2 \pi}} e^{-(100-102)^{2} / 8}}{0.2 \frac{1}{2 \sqrt{2 \pi}} e^{-(100-102)^{2} / 8}+0.8 \frac{1}{0.5 \sqrt{2 \pi}} e^{-(100-98.6)^{2} / 0.5}}=0.65
\end{gathered}
$$

Conditional Expectation

- When we were looking at discrete random variables, we looked at conditional expectations.
- The conditional expectation, $E[X \mid A]$, of a random variable X given an event A is the value of X we expect to get out, on average, when A is true.
- We could calculate it by summing over all values x that X can take on, and scaling them by the conditional PMF $p_{X \mid A}(x)=P(X=x \mid A)$.

$$
E[X \mid A]=\sum_{x} x p_{X \mid A}(x)
$$

Conditional Expectation

- We can also look at the conditional expectation of a continuous random variable.
- If $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$, what do you think the conditional expectation of X given some event A looks like?

Conditional Expectation

- We can also look at the conditional expectation of a continuous random variable.
- If $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$, what do you think the conditional expectation of X given some event A looks like?
- $E[X \mid A]=\int_{-\infty}^{\infty} x f_{X \mid A}(x) d x$

Conditional Expectation

- We can also look at the conditional expectation of a continuous random variable.
- If $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$, what do you think the conditional expectation of X given some event A looks like?
- $E[X \mid A]=\int_{-\infty}^{\infty} x f_{X \mid A}(x) d x$
- How about the conditional expectation of some function X given another random variable Y ?

Conditional Expectation

- We can also look at the conditional expectation of a continuous random variable.
- If $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$, what do you think the conditional expectation of X given some event A looks like?
- $E[X \mid A]=\int_{-\infty}^{\infty} x f_{X \mid A}(x) d x$
- How about the conditional expectation of some function X given another random variable Y ?
- How about the conditional expectation of some function $g(X)$ given some event A ?

Conditional Expectation

- We can also look at the conditional expectation of a continuous random variable.
- If $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$, what do you think the conditional expectation of X given some event A looks like?
- $E[X \mid A]=\int_{-\infty}^{\infty} x f_{X \mid A}(x) d x$
- How about the conditional expectation of some function X given another random variable Y ?
- How about the conditional expectation of some function $g(X)$ given some event A ?
- $E[g(X) \mid A]=\int_{-\infty}^{\infty} g(x) f_{X \mid A}(x) d x$

Total expectation theorem

- More generally, if $A_{1}, A_{2}, \ldots, A_{n}$ are a partition of Ω, we have a continuous version of the total expectation theorem:

$$
E[X]=\sum_{i=1}^{n} P\left(A_{i}\right) E\left[X \mid A_{i}\right]
$$

Conditional expectation

- I am expecting an email, that will definitely arrive between midday and 3 pm .
- Within a given hour (midday-1, 1-2, 2-3), each time is equally likely.
- It is twice as likely to arrive between 1 and 2 as it is to arrive between midday and 1 .
- It is twice as likely to arrive between 2 and 3 as it is to arrive between 1 and 2.
- What does the PDF look like?

Conditional expectation

- I am expecting an email, that will definitely arrive between midday and 3 pm .
- Within a given hour (midday-1, 1-2, 2-3), each time is equally likely.
- It is twice as likely to arrive between 1 and 2 as it is to arrive between midday and 1 .
- It is twice as likely to arrive between 2 and 3 as it is to arrive between 1 and 2.
- What does the PDF look like?

Conditional expectation

- I am expecting an email, that will definitely arrive between midday and 3 pm .
- Within a given hour (midday-1, 1-2, 2-3), each time is equally likely.
- It is twice as likely to arrive between 1 and 2 as it is to arrive between midday and 1 .
- It is twice as likely to arrive between 2 and 3 as it is to arrive between 1 and 2.
- What does the PDF look like?

- What is c ?

Conditional expectation

- I am expecting an email, that will definitely arrive between midday and 3 pm .
- Within a given hour (midday-1, 1-2, 2-3), each time is equally likely.
- It is twice as likely to arrive between 1 and 2 as it is to arrive between midday and 1 .
- It is twice as likely to arrive between 2 and 3 as it is to arrive between 1 and 2.
- What does the PDF look like?

- What is c ? $1 / 7$

Conditional expectation

- I wait until 2 pm. It still hasn't arrived. What is the expected value of the arrival time?
- What is the expected time without any conditioning?

Conditional expectation

- I wait until 2 pm. It still hasn't arrived. What is the expected value of the arrival time?
- What is the expected time without any conditioning?

Conditional expectation

- I wait until 2 pm. It still hasn't arrived. What is the expected value of the arrival time?
- What is the expected time without any conditioning?
- First, what is the conditional probability, $f_{X \mid X>2}(x)$?

Conditional expectation

- I wait until 2 pm. It still hasn't arrived. What is the expected value of the arrival time?
- What is the expected time without any conditioning?
- First, what is the conditional probability, $f_{X \mid X>2}(x)$?

$$
f_{X \mid X>2}(x)= \begin{cases}1 & \text { if } 2<x \leq 3 \\ 0 & \text { otherwise }\end{cases}
$$

Conditional expectation

- I wait until 2 pm . It still hasn't arrived. What is the expected value of the arrival time?
- What is the expected time without any conditioning?
- First, what is the conditional probability, $f_{X \mid X>2}(x)$?

$$
f_{X \mid X>2}(x)= \begin{cases}1 & \text { if } 2<x \leq 3 \\ 0 & \text { otherwise }\end{cases}
$$

-So, $E[X \mid X>2]=\int_{-\infty}^{\infty} x f_{X \mid X>2}(x) d x=\int_{2}^{3} x d x=2.5$.

Conditional expectation

- What is the (unconditional) probability that $X>2$?

Conditional expectation

- What is the (unconditional) probability that $X>2$?
- $P(X>2)=\int_{2}^{3} f_{X}(x) d x=4 / 7$

Conditional expectation

- What is the (unconditional) probability that $X>2$?
- $P(X>2)=\int_{2}^{3} f_{X}(x) d x=4 / 7$
- Similarly, $P(X<1)=\int_{0}^{1} f_{X}(x) d x=1 / 7$ and $P(1 \leq X \leq 2)=2 / 7$.

Total expectation theorem

- What is the total expectation of X ?

Total expectation theorem

- What is the total expectation of X ?
- $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$

Total expectation theorem

- What is the total expectation of X ?
- $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$
- By the total probability theorem,

$$
\begin{aligned}
f_{X}(x)= & P(X \leq 1) f_{X \mid 0 \leq X \leq 1}(x) \\
& +P(1 \leq X \leq 2) f_{X \mid 1 \leq X \leq 2}(x)+P(X>2) f_{X \mid X>2}(x)
\end{aligned}
$$

Total expectation theorem

- What is the total expectation of X ?
- $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$
- By the total probability theorem,

$$
\begin{aligned}
f_{X}(x)= & P(X \leq 1) f_{X \mid 0 \leq X \leq 1}(x) \\
& +P(1 \leq X \leq 2) f_{X \mid 1 \leq X \leq 2}(x)+P(X>2) f_{X \mid X>2}(x)
\end{aligned}
$$

- So, we can write the total expectation as

$$
\begin{aligned}
E[X]= & \int_{0}^{1} x P(X \leq 1) f_{X \mid X \leq 1}(x)+\int_{1}^{2} x P(1 \leq X \leq 2) f_{X \mid 1 \leq X \leq 2}(x) \\
& +\int_{2}^{3} x P(X>2) f_{X \mid X>2}(x) \\
= & E[X \mid X \leq 1] P(X \leq 1)+E[X \mid 1 \leq X \leq 2] P(1 \leq X \leq 2) \\
& +E[X \mid X>2] P(X>2) \\
= & 0.5 \cdot 1 / 7+1.5 \cdot 2 / 7+2.5 \cdot 4 / 7=27 / 14
\end{aligned}
$$

Independent random variables

- For discrete random variables, we said two random variables X and Y are independent if

$$
p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y) \quad \forall x, y
$$

- Just like in the discrete case, we say two continous random variables are independent if

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \quad \forall x, y
$$

- If $f_{Y}(y)>0$, this is the same as saying $f_{X}(x)=f_{X \mid Y}(x \mid y)$ - i.e. knowing that $Y=y$ doesn't tell us anything about X.
- Just like with discrete random variables, we if X and Y are independent we have $E[X Y]=E[X] E[Y]$ and $\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)$.
- For two functions $f(X)$ and $g(Y)$ we have

$$
E[f(X) g(Y)]=E[f(X)] E[g(Y)]
$$

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c x y & x, y \in[0,1] \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c x y & x, y \in[0,1] \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?
- $c \int_{x=0}^{1} \int_{y=0}^{1} x y d y d x=c / 4=1$. So $c=4$.

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c x y & x, y \in[0,1] \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?
- $c \int_{x=0}^{1} \int_{y=0}^{1} x y d y d x=c / 4=1$. So $c=4$.
- $f_{X}(x)= \begin{cases}\int_{0}^{1} 4 x y d y=2 x & x \in[0,1] \\ 0 & \text { Otherwise }\end{cases}$

Independent random variables-example

- You have two random variables X, Y with joint PDF

$$
f_{X Y}(x, y)= \begin{cases}c x y & x, y \in[0,1] \\ 0 & \text { Otherwise }\end{cases}
$$

- What is c ?
- Are X, Y independent?
- $c \int_{x=0}^{1} \int_{y=0}^{1} x y d y d x=c / 4=1$. So $c=4$.
- $f_{X}(x)= \begin{cases}\int_{0}^{1} 4 x y d y=2 x & x \in[0,1] \\ 0 & \text { Otherwise }\end{cases}$
- $f_{Y}(y)= \begin{cases}2 y & y \in[0,1] \\ 0 & \text { Otherwise }\end{cases}$
- $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ for all $x, y \in[0,1]$.

