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The Geometric random variable

» The Bernoulli PMF describes the probability of success/failure in a
single trial.

» The Binomial PMF describes the probability of k successes out of n
trials.

» Sometimes we may also be interested in doing trials until we see a
success.

> Alice resolves to keep buying lottery tickets until he wins a hundred
million dollars. She is interested in the random variable “number of
lottery tickets bought until he wins the 100M$ lottery".

> Annie is trying to catch a taxi. How many occupied taxis will drive
pass before she finds one that is taking passengers?

» The number of trials required to get a single success is a Geometric
Random Variable



The geometric random variable

We repeatedly toss a biased coin (P({H}) = p). The geometric random
variable is the number X of tosses to get a head.

» X can take any integral value.
k—1
> = k)= =(1—
P(X=k)=P{TT... TH})=1-p) "p.
k—1
> Z P(X = k) =1 (why?)
k

A pylk) The probability masses are
decreasing geometrically as k
tnereases!




The geometric random variable

What is P(X > k)? What is P(X > k)?



The geometric random variable

What is P(X > k)? What is P(X > k)?

> P(X > k)= i p(1—p)t=(1-p)*t
i=k



The geometric random variable

What is P(X > k)? What is P(X > k)?

o0
> P(X>K) =Y p(1—p) t=1-pF"
i=k
> Intuitively, this is asking for the probability that the first kK — 1 tosses

are tails.
» This probability is P(X > k) = (1 — p)¥~!



The geometric random variable

What is P(X > k)? What is P(X > k)?
o0
> P(X> k)= p(1-p)t=1-p~?
i=k
> Intuitively, this is asking for the probability that the first kK — 1 tosses
are tails.
» This probability is P(X > k) = (1 — p)¥~!
> X > k is the event that X > k+1, and so P(X > k) = (1 — p)¥



The memoryless property

What is P(X = a+ b|X > a)?



The memoryless property

What is P(X = a+ b|X > a)?
P(X = a+ b)
P(X > a)
> _p(1— p)a—l—b—l
(1-p)?

=p(1-p)P T =P(X=0b)
> You forgot about X > a and started the clock afresh!

P(X =a+bX>a)=



The memoryless property

What is P(X > a+ b|X > a)?



The memoryless property

What is P(X > a+ b|X > a)?
P(X > a+ b)
P(X > a)
> 1— a+b
Ul i — =(1-p)
(1-p)
= P(X > b)
» You forgot about X > a and started the clock afresh!

P(X > a+bX > a)=

b



The memoryless property

What is P(X < a+ b|X > a)?



The memoryless property

What is P(X < a+ b|X > a)?

<
P(X§a+b|X>a):M

P(X > a)
_ P(X>a)—-P(X>a+b)
> - (l_p)a
_(@-p-(@-p7tP
(1-p)2

=1-(1-pP=P(X<b)
» You forgot about X > a and started the clock afresh!



The Poisson random variable

| have a book with 10000 words. Probability that a word has a typo is
1/1000. | am interested in how many misprints can be there on average?
So a Poisson often shows up when you have a Binomial random variable
with very large n and very small p but n x p is moderate. Here np = 10.

Our random variable might be:
» The number of car crashes in a given day.
» The number of buses arriving within a given time period.

» The number of mutations on a strand of DNA.

We can describe such situations using a Poisson random variable.



The Poisson random variable

» A Poisson random variable takes non-negative integers as values. It
has a nonnegative parameter .

k
> P(X=k)=e" F,fork—012
A2 A3 _
> ZP(X:k):e (1+/\+*+§+ .) = 1. (Exponential
k=0
series!)
The PMF is mov»atowiouug
decreasing for \=0.5
2 Px(k)
Poisson A=0.5 Poisson 1 =3
e*~06
1. o008 | ‘ ‘ | .
ol 123 12 3 4 k

The PMF Ls increasing and
thew decreasing for A=3



Poisson random variable

Binomial(5,0.6) Binomial(100,0.03) Poisson(3)

» When n is very large and p is very small, a binomial random variable
can be well approximated by a Poisson with \ = np.

> In the above figure we increased n and decreased p so that np = 3.

> See how close the PMF's of the Binomial(100,0.03) and Poisson(3)
are!

f)\)\k

k!

e .
when n is

» More formally, we see that Z pk(l — p)”fk ~

large, k is fixed, and p is small and X\ = np.
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Example

Assume that on a given day 1000 cars are out in Austin. On an average
three out of 1000 cars run into a traffic accident per day.

1. What is the probability that we see at least two accidents in a day?

4. If you know there is at least one accident, what is the probability
that the total number of accidents is at least two?
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Example

Assume that on a given day 1000 cars are out in Austin. On an average
three out of 1000 cars run into a traffic accident per day.

1. What is the probability that we see at least two accidents in a day?
2. Use poisson approximation!

3. P(X>2)=1-P(X=0)—P(X=1)=1—e 3(1+3)=08

4. If you know there is at least one accident, what is the probability

that the total number of accidents is at least two?

5. P(X>1)=1-P(X=0)=1—e > =0.950.
P(X >2|X >1)= P(X >2)/P(X >1) = 0.8/0.950 = 0.84
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