SDS 321: Introduction to Probability and Statistics
 Lecture 10: Expectation and Variance

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
www.cs.cmu.edu/~psarkar/teaching

The Geometric random variable

- The Bernoulli PMF describes the probability of success/failure in a single trial.
- The Binomial PMF describes the probability of k successes out of n trials.
- Sometimes we may also be interested in doing trials until we see a success.
- Alice resolves to keep buying lottery tickets until he wins a hundred million dollars. She is interested in the random variable "number of lottery tickets bought until he wins the 100M\$ lottery".
- Annie is trying to catch a taxi. How many occupied taxis will drive pass before she finds one that is taking passengers?
- The number of trials required to get a single success is a Geometric Random Variable

The geometric random variable

We repeatedly toss a biased coin $(P(\{H\})=p)$. The geometric random variable is the number X of tosses to get a head.

- X can take any integral value.
- $P(X=k)=P(\{\underbrace{T T \ldots T}_{k-1} H\})=(1-p)^{k-1} p$.
- $\sum_{k} P(X=k)=1$ (why?)

The geometric random variable

What is $P(X \geq k)$? What is $P(X>k)$?

The geometric random variable

What is $P(X \geq k)$? What is $P(X>k)$?

- $P(X \geq k)=\sum_{i=k}^{\infty} p(1-p)^{i-1}=(1-p)^{k-1}$

The geometric random variable

What is $P(X \geq k)$? What is $P(X>k)$?

- $P(X \geq k)=\sum_{i=k}^{\infty} p(1-p)^{i-1}=(1-p)^{k-1}$
- Intuitively, this is asking for the probability that the first $k-1$ tosses are tails.
- This probability is $P(X \geq k)=(1-p)^{k-1}$

The geometric random variable

What is $P(X \geq k)$? What is $P(X>k)$?

- $P(X \geq k)=\sum_{i=k}^{\infty} p(1-p)^{i-1}=(1-p)^{k-1}$
- Intuitively, this is asking for the probability that the first $k-1$ tosses are tails.
- This probability is $P(X \geq k)=(1-p)^{k-1}$
- $X>k$ is the event that $X \geq k+1$, and so $P(X>k)=(1-p)^{k}$

The memoryless property

What is $P(X=a+b \mid X>a)$?

The memoryless property

What is $P(X=a+b \mid X>a)$?

$$
\begin{aligned}
P(X=a+b \mid X>a) & =\frac{P(X=a+b)}{P(X>a)} \\
& =\frac{p(1-p)^{a+b-1}}{(1-p)^{a}} \\
& =p(1-p)^{b-1}=P(X=b)
\end{aligned}
$$

- You forgot about $X>a$ and started the clock afresh!

The memoryless property

What is $P(X>a+b \mid X>a)$?

The memoryless property

What is $P(X>a+b \mid X>a)$?

$$
\begin{aligned}
P(X>a+b \mid X>a) & =\frac{P(X>a+b)}{P(X>a)} \\
& =\frac{(1-p)^{a+b}}{(1-p)^{a}}=(1-p)^{b} \\
& =P(X>b)
\end{aligned}
$$

- You forgot about $X>a$ and started the clock afresh!

The memoryless property

What is $P(X \leq a+b \mid X>a)$?

The memoryless property

What is $P(X \leq a+b \mid X>a)$?

$$
\begin{aligned}
P(X \leq a+b \mid X>a) & =\frac{P(a<X \leq a+b)}{P(X>a)} \\
& =\frac{P(X>a)-P(X>a+b)}{(1-p)^{a}} \\
& =\frac{(1-p)^{a}-(1-p)^{a+b}}{(1-p)^{a}} \\
& =1-(1-p)^{b}=P(X \leq b)
\end{aligned}
$$

- You forgot about $X>a$ and started the clock afresh!

The Poisson random variable

I have a book with 10000 words. Probability that a word has a typo is $1 / 1000$. I am interested in how many misprints can be there on average? So a Poisson often shows up when you have a Binomial random variable with very large n and very small p but $n \times p$ is moderate. Here $n p=10$.

Our random variable might be:

- The number of car crashes in a given day.
- The number of buses arriving within a given time period.
- The number of mutations on a strand of DNA.

We can describe such situations using a Poisson random variable.

The Poisson random variable

- A Poisson random variable takes non-negative integers as values. It has a nonnegative parameter λ.
- $P(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}$, for $k=0,1,2 \ldots$
$\sum_{\substack{k=0 \\ \text { series! })}}^{\infty} P(X=k)=e^{-\lambda}\left(1+\lambda+\frac{\lambda^{2}}{2!}+\frac{\lambda^{3}}{3!}+\ldots\right)=1$. (Exponential
The PMF is monotonically
decreasing for $\lambda=0.5$

The PMF is increasing and then decreasing for $\lambda=3$

Poisson random variable

Binomial $(5,0.6)$

Binomial $(100,0.03)$

Poisson(3)

- When n is very large and p is very small, a binomial random variable can be well approximated by a Poisson with $\lambda=n p$.
- In the above figure we increased n and decreased p so that $n p=3$.
- See how close the PMF's of the Binomial $(100,0.03)$ and Poisson(3) are!
- More formally, we see that $\binom{n}{k} p^{k}(1-p)^{n-k} \approx \frac{e^{-\lambda} \lambda^{k}}{k!}$ when n is large, k is fixed, and p is small and $\lambda=n p$.

Example

Assume that on a given day 1000 cars are out in Austin. On an average three out of 1000 cars run into a traffic accident per day.

1. What is the probability that we see at least two accidents in a day?
2. If you know there is at least one accident, what is the probability that the total number of accidents is at least two?

Example

Assume that on a given day 1000 cars are out in Austin. On an average three out of 1000 cars run into a traffic accident per day.

1. What is the probability that we see at least two accidents in a day?
2. Use poisson approximation!
3. If you know there is at least one accident, what is the probability that the total number of accidents is at least two?

Example

Assume that on a given day 1000 cars are out in Austin. On an average three out of 1000 cars run into a traffic accident per day.

1. What is the probability that we see at least two accidents in a day?
2. Use poisson approximation!
3. $P(X \geq 2)=1-P(X=0)-P(X=1)=1-e^{-3}(1+3)=0.8$
4. If you know there is at least one accident, what is the probability that the total number of accidents is at least two?

Example

Assume that on a given day 1000 cars are out in Austin. On an average three out of 1000 cars run into a traffic accident per day.

1. What is the probability that we see at least two accidents in a day?
2. Use poisson approximation!
3. $P(X \geq 2)=1-P(X=0)-P(X=1)=1-e^{-3}(1+3)=0.8$
4. If you know there is at least one accident, what is the probability that the total number of accidents is at least two?
5. $P(X \geq 1)=1-P(X=0)=1-e^{-3}=0.950$.
$P(X \geq 2 \mid X \geq 1)=P(X \geq 2) / P(X \geq 1)=0.8 / 0.950=0.84$
