Homework Assignment 2
 Due by 5pm via Canvas, Thursday Feb 2nd

SDS 321 Intro to Probability and Statistics

1. A total of 50 percent of the voters in a certain city classify themselves as Independents, whereas 30 percent classify themselves as Liberals and 20 percent say that they are Conservatives. In a recent local election, 35 percent of the Independents, 60 percent of the Liberals, and 50 percent of the Conservatives voted. A voter is chosen at random. Given that this person voted in the local election, what is the probability that he or she is:
(a) (2 pts) What fraction of voters participated in the local election? $L:=\{$ Voter is liberal $\}$. $C:=\{$ Voter is conservative $\}$ and $I:=\{$ Voter is independent $\} . V=\{$ Voted $\}$. $P(V)=P(V \mid C) P(C)+P(V \mid L) P(L)+P(V \mid I) P(I)=.5 \times .2+.6 \times .3+.35 \times .5=$ $.1+.18+.175=.455$.
(b) $(1 \mathrm{pts})$ an Independent? $P(I \mid V)=\frac{P(V \mid I) P(I)}{P(V)}=\frac{.175}{.455}=.384$.
(c) (1 pts) a Liberal? $P(L \mid V)=\frac{P(V \mid L) P(L)}{P(V)}=\frac{.18}{.455}=.396$.
(d) (1 pts) a Conservative? $P(C \mid V)=\frac{P(V \mid C) P(C)}{P(V)}=\frac{1}{.455}=.22$.
2. Alice is taking a pregnancy test. On an average, about 60% of women taking a pregnancy test are actually pregnant. The false positive rate is 1.5 percent and the false negative rate is 1 percent. $T=\{$ Test is + ve $\}, \operatorname{Pr}=\{$ Alice is pregnant $\} . P(P r)=.6$ and $P\left(T \mid P r^{c}\right)=$ false positive $=.015$ and $P\left(T^{c} \mid P r\right)=.01$.
(a) (2 pts) Alice takes the test and it comes out positive. Given this, whats the probability that Alice is pregnant?

$$
\begin{aligned}
P(P r \mid T) & =\frac{P(T \mid P r) P(P r)}{P(T \mid P r) P(P r)+P\left(T \mid P r^{c}\right) P\left(P r^{c}\right)} \\
& =\frac{\left(1-P\left(T^{c} \mid P r\right)\right) P(P r)}{\left(1-P\left(T^{c} \mid P r\right)\right) P(P r)+P\left(T \mid P r^{c}\right) P\left(P r^{c}\right)} \\
& =\frac{.99 \times .6}{.99 \times .6+.015 \times .4}=.99
\end{aligned}
$$

(b) (4 pts) Alice takes the test again, and it comes out positive again. Given the results of the two tests what is the probability that she is pregnant? Use condi-
tional independence.

$$
\begin{aligned}
P(P r \mid T, T) & =\frac{P(T, T \mid P r) P(P r)}{P\left(T, T \mid P r^{c}\right) P\left(P r^{c}\right)+P(T, T \mid P r) P(P r)} \\
& =\frac{P(T \mid P r)^{2} P(P r)}{P(T \mid P r)^{2} P(P r)+P\left(T \mid P r^{c}\right)^{2} P\left(P r^{c}\right)} \\
& =\frac{.99^{2} \times .6}{.99^{2} \times .6+.015^{2} \times .4}=.9998
\end{aligned}
$$

(c) (4 pts) In the last question if Alice's second test comes out to be negative, then given results of the two tests (positive, negative) what is the probability that she is pregnant?

$$
\begin{aligned}
P\left(P r \mid T, T^{c}\right) & =\frac{P\left(T, T^{c} \mid P r\right) P(P r)}{P\left(T, T^{c} \mid P r^{c}\right) P\left(P r^{c}\right)+P\left(T, T^{c} \mid P r\right) P(P r)} \\
& =\frac{P(T \mid P r) P\left(T^{c} \mid P r\right) P(P r)}{P(T \mid P r) P\left(T^{c} \mid P r\right) P(P r)+P\left(T \mid P r^{c}\right) P\left(T^{c} \mid P r^{c}\right) P\left(P r^{c}\right)} \\
& =\frac{.99(1-.99) \times .6}{.99(1-.99) \times .6+.015(1-.015) \times .4}=.5
\end{aligned}
$$

3. Independent flips of a coin that lands on heads with probability $1 / 2$ are made. What is the probability that the first four outcomes are
(a) (1 pt) H, H, H, H ? Using independence $1 / 16$
(b) (1 pt) T, H, H, H ? Using independence $1 / 16$
(c) (3 pts) What is the probability that the pattern T, H, H, H occurs before the pattern H, H, H, H ?

Hint for part (c): How can the pattern H, H, H, H occur first? The key is to understand that if HHHH did not occur on the first 4 tosses, then for the first occurrence of HHHH down the sequence you must have had a T before the HHHH. Which means the only way HHHH can occur before THHH only such that HHHH occurs in the first 4 places. This is $1 / 16$ and you are interested in $1-1 / 16=15 / 16$.

