SDS 321: Introduction to Probability and Statistics
 Lecture 15: Continuous random variables

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
www.cs.cmu.edu/~psarkar/teaching

Roadmap

- Discrete vs continuous random variables
- Probability mass function vs Probability density function
- Properties of the pdf
- Cumulative distribution function
- Properties of the cdf
- Relating the cdf to the pdf
- Examples.
- Expectation, variance and properties
- Example with uniform.
- Continuous random variables
- The uniform distribution
- The exponential distribution
- The normal distribution

Mean of a uniform random variable

Let X be a uniform random variable over $[a, b]$. What is its expected value?

- $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$

Mean of a uniform random variable

Let X be a uniform random variable over $[a, b]$. What is its expected value?

- $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$
- $f_{X}(x)= \begin{cases}0 & x<a \\ \frac{1}{b-a} & a \leq x \leq b \\ 0 & x>b\end{cases}$

Mean of a uniform random variable

Let X be a uniform random variable over $[a, b]$. What is its expected value?

- $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$
- $f_{X}(x)= \begin{cases}0 & x<a \\ \frac{1}{b-a} & a \leq x \leq b \\ 0 & x>b\end{cases}$
- So, $E[X]=\int_{-\infty}^{a} x \times 0 d x+\int_{a}^{b} \frac{x}{b-a} d x+\int_{b}^{\infty} x \times 0 d x$

Mean of a uniform random variable

Let X be a uniform random variable over $[a, b]$. What is its expected value?

- $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$
- $f_{X}(x)= \begin{cases}0 & x<a \\ \frac{1}{b-a} & a \leq x \leq b \\ 0 & x>b\end{cases}$
- So, $E[X]=\int_{-\infty}^{a} x \times 0 d x+\int_{a}^{b} \frac{x}{b-a} d x+\int_{b}^{\infty} x \times 0 d x$

$$
=\int_{a}^{b} \frac{x}{b-a} d x
$$

Mean of a uniform random variable

Let X be a uniform random variable over $[a, b]$. What is its expected value?

- $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$
- $f_{X}(x)= \begin{cases}0 & x<a \\ \frac{1}{b-a} & a \leq x \leq b \\ 0 & x>b\end{cases}$
- So, $E[X]=\int_{-\infty}^{a} x \times 0 d x+\int_{a}^{b} \frac{x}{b-a} d x+\int_{b}^{\infty} x \times 0 d x$

$$
\begin{aligned}
& =\int_{a}^{b} \frac{x}{b-a} d x \\
& =\left[\frac{x^{2}}{2(b-a)}\right]_{a}^{b}
\end{aligned}
$$

Mean of a uniform random variable

Let X be a uniform random variable over $[a, b]$. What is its expected value?

- $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$
- $f_{X}(x)= \begin{cases}0 & x<a \\ \frac{1}{b-a} & a \leq x \leq b \\ 0 & x>b\end{cases}$
- So, $E[X]=\int_{-\infty}^{a} x \times 0 d x+\int_{a}^{b} \frac{x}{b-a} d x+\int_{b}^{\infty} x \times 0 d x$

$$
\begin{aligned}
& =\int_{a}^{b} \frac{x}{b-a} d x \\
& =\left[\frac{x^{2}}{2(b-a)}\right]_{a}^{b} \\
& =\frac{1}{2(b-a)}\left(b^{2}-a^{2}\right)=\frac{(a+b)(b-a)}{2(b-a)}=\frac{a+b}{2}
\end{aligned}
$$

Variance of a continuous random variable

- We can use the first and second moment to calculate the variance of X,

$$
\operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x-E[X]^{2}
$$

Variance of a continuous random variable

- We can use the first and second moment to calculate the variance of X,

$$
\operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x-E[X]^{2}
$$

- We can also use our results for expectations and variances of linear functions:

$$
\operatorname{var}(a X+b)=a^{2} \operatorname{var}(X)
$$

Variance of a uniform random variable

To calculate the variance, we need to calculate the second moment:

$$
E\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x
$$

Variance of a uniform random variable

To calculate the variance, we need to calculate the second moment:

$$
\begin{aligned}
E\left[X^{2}\right] & =\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x \\
& =\int_{a}^{b} \frac{x^{2}}{b-a} d x
\end{aligned}
$$

Variance of a uniform random variable

To calculate the variance, we need to calculate the second moment:

$$
\begin{aligned}
E\left[X^{2}\right] & =\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x \\
& =\int_{a}^{b} \frac{x^{2}}{b-a} d x \\
& =\left[\frac{x^{3}}{3(b-a)}\right]_{a}^{b}
\end{aligned}
$$

Variance of a uniform random variable

To calculate the variance, we need to calculate the second moment:

$$
\begin{aligned}
E\left[X^{2}\right] & =\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x \\
& =\int_{a}^{b} \frac{x^{2}}{b-a} d x \\
& =\left[\frac{x^{3}}{3(b-a)}\right]_{a}^{b} \\
& =\frac{b^{3}-a^{3}}{3(b-a)}=\frac{a^{2}+a b+b^{2}}{3}
\end{aligned}
$$

Variance of a uniform random variable

To calculate the variance, we need to calculate the second moment:

$$
\begin{aligned}
E\left[X^{2}\right] & =\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x \\
& =\int_{a}^{b} \frac{x^{2}}{b-a} d x \\
& =\left[\frac{x^{3}}{3(b-a)}\right]_{a}^{b} \\
& =\frac{b^{3}-a^{3}}{3(b-a)}=\frac{a^{2}+a b+b^{2}}{3}
\end{aligned}
$$

So, the variance is

$$
\operatorname{var}(X)=E\left[X^{2}\right]-E[X]^{2}=\frac{a^{2}+a b+b^{2}}{3}-\frac{(a+b)^{2}}{4}=\frac{(b-a)^{2}}{12}
$$

The uniform distribution

$f_{X}(x)= \begin{cases}\frac{1}{b-a} & x \in[a, b] \\ 0 & \text { otherwise }\end{cases}$
$F_{X}(x)= \begin{cases}0 & x<a \\ \frac{x-a}{b-a} & x \in[a, b] \\ 1 & \text { otherwise }\end{cases}$

- $E[X]=\frac{a+b}{2}$
- $\operatorname{var}(X)=\frac{(b-a)^{2}}{12}$

The exponential distribution

- How to model the amount of time until something happens, such as
- the next email arrives
- an accident happens
- a light bulb burns out
- Notation: $X \sim \operatorname{Exp}(\lambda)$

The exponential distribution

- An exponential r.v. has pdf and cdf:

$$
\begin{aligned}
& f_{X}(x)=\left\{\begin{array}{ll}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & \text { otherwise }
\end{array} \quad F_{X}(x)=\int_{0}^{x} \lambda e^{-\lambda y} d y\right. \\
& =\int_{0}^{\lambda x} e^{-v} d v=1-e^{-\lambda x} \\
& E[X]
\end{aligned}=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=\frac{1}{\lambda} \int_{0}^{\infty}(\lambda x) e^{-\lambda x} d(\lambda x) .
$$

The exponential distribution

- Integration by parts anyone?

$$
\begin{aligned}
\int f(x) g^{\prime}(x) d x & =f(x) g(x)-\int f^{\prime}(x) g(x) d x \\
\int x e^{-x} d x & =x\left(-e^{-x}\right)+\int e^{-x} d x=-x e^{-x}-e^{-x} \\
\int_{0}^{\infty} x e^{-x} d x & =-\left.x e^{-x}\right|_{0} ^{\infty}-\left.e^{-x}\right|_{0} ^{\infty}=1 \\
\int x^{2} e^{-x} d x & =x^{2}\left(-e^{-x}\right)+2 \int x e^{-x} d x \\
\int_{0}^{\infty} x^{2} e^{-x} d x & =-\left.x^{2} e^{-x}\right|_{0} ^{\infty}+2 \int_{0}^{\infty} x e^{-x} d x=2
\end{aligned}
$$

The normal distribution

- A normal, or Gaussian, random variable is a continuous random variable with PDF

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

where μ and σ are scalars, and $\sigma>0$.

- We write $X \sim N\left(\mu, \sigma^{2}\right)$.
- The mean of X is μ, and the variance is σ^{2} (how could we show this?)

The normal distribution

- The normal distribution is the classic "bell-shaped curve".
- It is a good approximation for a wide range of real-life phenomena.
- Stock returns.
- Molecular velocities.
- Locations of projectiles aimed at a target.

- Further, it has a number of nice properties that make it easy to work with. Like symmetry. In the above picture, $P(X \geq 2)=P(X \leq-2)$.

Linear transformations of normal distributions

- Let $X \sim N\left(\mu, \sigma^{2}\right)$
- Let $Y=a X+b$
- What are the mean and variance of Y ?

Linear transformations of normal distributions

- Let $X \sim N\left(\mu, \sigma^{2}\right)$
- Let $Y=a X+b$
- What are the mean and variance of Y ?
- $E[Y]=a \mu+b$
- $\operatorname{var}[Y]=a^{2} \sigma^{2}$.

Linear transformations of normal distributions

- Let $X \sim N\left(\mu, \sigma^{2}\right)$
- Let $Y=a X+b$
- What are the mean and variance of Y ?
- $E[Y]=a \mu+b$
$-\operatorname{var}[Y]=a^{2} \sigma^{2}$.
- In fact, if $Y=a X+b$, then Y is also a normal random variable, with mean $a \mu+b$ and variance $a^{2} \sigma^{2}$:

$$
Y \sim N\left(a \mu+b, a^{2} \sigma^{2}\right)
$$

The normal distribution

- Example: Below are the pdfs of $X_{1} \sim N(0,1), X_{2} \sim N(3,1)$, and $X_{3} \sim N(0,16)$.
- Which pdf goes with which X ?

The standard normal

- It is often helpful to map our normal distribution with mean μ and variance σ^{2} onto a normal distribution with mean 0 and variance 1 .
- This is known as the standard normal
- If we know probabilities associated with the standard normal, we can use these to calculate probabilities associated with normal random variables with arbitary mean and variance.
- If $X \sim N\left(\mu, \sigma^{2}\right)$, then $Z=\frac{x-\mu}{\sigma} \sim N(0,1)$.
- (Note, we often use the letter Z for standard normal random variables)

The standard normal

- I tell you that, if $X \sim N(0,1)$, then $P(X<-1)=0.159$.
- If $Y \sim N(1,1)$, what is $P(Y<0)$?
- Well we need to use the table of the Standard Normal.
- How do I transform Y such that it has the standard normal distribution?
- We know that a linear function of a normal random variable is also normally distributed!

The standard normal

- I tell you that, if $X \sim N(0,1)$, then $P(X<-1)=0.159$.
- If $Y \sim N(1,1)$, what is $P(Y<0)$?
- Well we need to use the table of the Standard Normal.
- How do I transform Y such that it has the standard normal distribution?
- We know that a linear function of a normal random variable is also normally distributed!
- Well $Z=Y-1$ has mean zero and variance 1 .

The standard normal

- I tell you that, if $X \sim N(0,1)$, then $P(X<-1)=0.159$.
- If $Y \sim N(1,1)$, what is $P(Y<0)$?
- Well we need to use the table of the Standard Normal.
- How do I transform Y such that it has the standard normal distribution?
- We know that a linear function of a normal random variable is also normally distributed!
- Well $Z=Y-1$ has mean zero and variance 1 .
- So $P(Y<0)=P(Z<-1)=0.159$.

The standard normal

- If $Y \sim N(0,4)$, what value of y satisfies $P(Y<y)=0.159$?
- The variance of Y is 4 times that of a standard normal random variable.
- Transform into a $N(0,1)$ random variable!

The standard normal

- If $Y \sim N(0,4)$, what value of y satisfies $P(Y<y)=0.159$?
- The variance of Y is 4 times that of a standard normal random variable.
- Transform into a $N(0,1)$ random variable!
- Use $Z=Y / 2 \ldots$..Now $Z \sim N(0,1)$.

The standard normal

- If $Y \sim N(0,4)$, what value of y satisfies $P(Y<y)=0.159$?
- The variance of Y is 4 times that of a standard normal random variable.
- Transform into a $N(0,1)$ random variable!
- Use $Z=Y / 2$...Now $Z \sim N(0,1)$.
- So, if $P(Y<y)=P(2 Z<y)=P(Z<y / 2)$.
- We want y such that $P(Z<y / 2)=0.159$. But we know that $P(Z<-1)=0.159$, so?

The standard normal

- If $Y \sim N(0,4)$, what value of y satisfies $P(Y<y)=0.159$?
- The variance of Y is 4 times that of a standard normal random variable.
- Transform into a $N(0,1)$ random variable!
- Use $Z=Y / 2$...Now $Z \sim N(0,1)$.
- So, if $P(Y<y)=P(2 Z<y)=P(Z<y / 2)$.
- We want y such that $P(Z<y / 2)=0.159$. But we know that $P(Z<-1)=0.159$, so?
- So $y / 2=-1$ and as a result $y=-2 \ldots$!

The standard normal

- The CDF of the standard normal is denoted Φ :

$$
\Phi(z)=P(Z \leq z)=P(Z<z)=\frac{1}{\sqrt{(2 \pi)}} \int_{-\infty}^{z} e^{-t^{2} / 2} d t
$$

- We cannot calculate this analytically.
- The standard normal table lets us look up values of $\Phi(y)$ for $y \geq 0$

	.00	.01	.02	0.03	0.04	\cdots
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	\cdots
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	\cdots
0.2	0.5793	$\mathbf{0 . 5 8 3 2}$	0.5871	0.5910	0.5948	\cdots
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	

$$
P(Z<0.21)=0.5832
$$

CDF of a normal random variable

If $X \sim N(3,4)$, what is $P(X<0)$?

- First we need to standardize:

$$
Z=\frac{X-\mu}{\sigma}=\frac{X-3}{2}
$$

- So, a value of $x=0$ corresponds to a value of $z=-1.5$
- Now, we can translate our question into the standard normal:

$$
P(X<0)=P(Z<-1.5)=P(Z \leq-1.5)
$$

- Problem... our table only gives $\Phi(z)=P(Z \leq z)$ for $z \geq 0$.

CDF of a normal random variable

If $X \sim N(3,4)$, what is $P(X<0)$?

- First we need to standardize:

$$
Z=\frac{X-\mu}{\sigma}=\frac{X-3}{2}
$$

- So, a value of $x=0$ corresponds to a value of $z=-1.5$
- Now, we can translate our question into the standard normal:

$$
P(X<0)=P(Z<-1.5)=P(Z \leq-1.5)
$$

- Problem... our table only gives $\Phi(z)=P(Z \leq z)$ for $z \geq 0$.
- But, $P(Z \leq-1.5)=P(Z \geq 1.5)$, due to symmetry.

CDF of a normal random variable

If $X \sim N(3,4)$, what is $P(X<0)$?

- First we need to standardize:

$$
Z=\frac{X-\mu}{\sigma}=\frac{X-3}{2}
$$

- So, a value of $x=0$ corresponds to a value of $z=-1.5$
- Now, we can translate our question into the standard normal:

$$
P(X<0)=P(Z<-1.5)=P(Z \leq-1.5)
$$

- Problem... our table only gives $\Phi(z)=P(Z \leq z)$ for $z \geq 0$.
- But, $P(Z \leq-1.5)=P(Z \geq 1.5)$, due to symmetry.
- Our table only gives us "less than" values.

CDF of a normal random variable

If $X \sim N(3,4)$, what is $P(X<0)$?

- First we need to standardize:

$$
Z=\frac{X-\mu}{\sigma}=\frac{X-3}{2}
$$

- So, a value of $x=0$ corresponds to a value of $z=-1.5$
- Now, we can translate our question into the standard normal:

$$
P(X<0)=P(Z<-1.5)=P(Z \leq-1.5)
$$

- Problem... our table only gives $\Phi(z)=P(Z \leq z)$ for $z \geq 0$.
- But, $P(Z \leq-1.5)=P(Z \geq 1.5)$, due to symmetry.
- Our table only gives us "less than" values.
- But, $P(Z \geq 1.5)=1-P(Z<1.5)=1-P(Z \leq 1.5)=1-\Phi(1.5)$.

CDF of a normal random variable

If $X \sim N(3,4)$, what is $P(X<0)$?

- First we need to standardize:

$$
Z=\frac{X-\mu}{\sigma}=\frac{X-3}{2}
$$

- So, a value of $x=0$ corresponds to a value of $z=-1.5$
- Now, we can translate our question into the standard normal:

$$
P(X<0)=P(Z<-1.5)=P(Z \leq-1.5)
$$

- Problem... our table only gives $\Phi(z)=P(Z \leq z)$ for $z \geq 0$.
- But, $P(Z \leq-1.5)=P(Z \geq 1.5)$, due to symmetry.
- Our table only gives us "less than" values.
- But, $P(Z \geq 1.5)=1-P(Z<1.5)=1-P(Z \leq 1.5)=1-\Phi(1.5)$.
- And we're done!
$P(X<0)=1-\Phi(1.5)=($ look at the table... $) 1-0.9332=0.0668$

Recap

- With continuous random variables, any specific value of $X=x$ has zero probability.
- So, writing a function for $P(X=x)$ - like we did with discrete random variables - is pretty pointless.
- Instead, we work with PDFs $f_{X}(x)$ - functions that we can integrate over to get the probabilities we need.

$$
P(X \in B)=\int_{B} f_{X}(x) d x
$$

- We can think of the PDF $f_{X}(x)$ as the "probability mass per unit area" near x.
- We are often interested in the probability of $X \leq x$ for some x - we call this the cumulative distribution function $F_{X}(x)=P(X \leq x)$.
- Once we know $f_{X}(x)$, we can calculate expectations and variances of X.

Multiple continuous random variables

- Let X and Y be two continuous random variables.
- Each one takes on values on the real line, i.e. $X \in \mathbb{R}$ and $Y \in \mathbb{R}$.
- Together, each possible pair of values describe a point in the real plane, i.e. $(X, Y) \in \mathbb{R}^{2}$.
- We say X and Y are jointly continous if the probability of them jointly taking on values in some subset B of the plane can be described as

$$
P((X, Y) \in B)=\iint_{(x, y) \in B} f_{X, Y}(x, y) d x d y
$$

using some continuous function $f_{X, Y}$, for all $B \in \mathbb{R}^{2}$ - i.e. all subsets of the 2-D plane.

- Notation means "integrate over all values of x and y s.t. $(x, y) \in B$

Joint PDF

- We call $f_{X, Y}$ the joint pdf of X and Y.
- It allows us to calculate the probability of any set of combinations of X and Y
- e.g. the probability that a person weighs over 200 lb and is under 6'
- e.g. the probability that a person's height in inches is more than twice their weight in pounds.
- So, this could describe the first scenario above, $P(200 \leq X \leq \infty,-\infty \leq Y \leq 6)$
- In this case B is a rectangle
- What is $\int_{x=-\infty}^{\infty} \int_{y=-\infty}^{\infty} f_{X, Y}(x, y) d x d y$?

Joint PDF

- We call $f_{X, Y}$ the joint pdf of X and Y.
- It allows us to calculate the probability of any set of combinations of X and Y
- e.g. the probability that a person weighs over 200 lb and is under 6'
- e.g. the probability that a person's height in inches is more than twice their weight in pounds.
- So, this could describe the first scenario above, $P(200 \leq X \leq \infty,-\infty \leq Y \leq 6)$
- In this case B is a rectangle
- What is $\int_{x=-\infty}^{\infty} \int_{y=-\infty}^{\infty} f_{X, Y}(x, y) d x d y$? 1

Joint PDF: Intuition

- Remember we could think of $f_{X}(x)$ as the "probability mass per unit length" near to x ?

- Because $f_{X}(x)=\frac{P(x \leq X \leq x+\delta)}{\delta}$

Joint PDF: Intuition

- We can think of the joint PDF $f_{X, Y}(x, y)$ as the "probability mass per unit area" for a small area near X.
- Again, remember, $f_{X, Y}(x, y)$ is not a probability!

Multiple random variables to a single random variable

- We can get from the joint PMF of X and Y to the marginal PMF of X by summing over (marginalizing over) Y :

$$
p_{X}(x)=\sum_{y} p_{X, Y}(x, y)
$$

- We can get from the joint PDF of X and Y to the marginal PDF of X by integrating over (marginalizing over) Y :

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y
$$

Example: Bivariate uniform random variable

- Anita (X) and Benjamin (Y) both pick a number between 0 and 10, according to a continuous uniform distribution. What is $f_{X, Y}(x, y)$?

10

Example: Bivariate uniform random variable

- Anita (X) and Benjamin (Y) both pick a number between 0 and 10, according to a continuous uniform distribution. What is $f_{X, Y}(x, y)$?

10

- Let's see... we know all pairs (x, y) are equally likely, so we know $f_{X, Y}=c$. It must satisfy $\int_{x=0}^{10} \int_{y=0}^{10} f_{X, Y}(x, y) d x d y=1$.
- So, c $\underbrace{\int_{x=0}^{10} \int_{y=0}^{10} d x d y}_{100}=1 \ldots$
- So $c=f_{X, Y}(x, y)=0.01$ for all $0 \leq x, y \leq 10$.

Example: marginal probability

- $f_{X, Y}(x, y)= \begin{cases}0.01 & \text { If } x, y \in[0,10] \\ 0 & \text { otherwise }\end{cases}$
- What is $f_{X}(x)$?
- In general, we will have $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
- We have marginalized out one of our random variables... just like we did when looking at PMFs.
- We call $f_{X}(x)$ the marginal PDF of X

Example: marginal probability

- $f_{X, Y}(x, y)= \begin{cases}0.01 & \text { If } x, y \in[0,10] \\ 0 & \text { otherwise }\end{cases}$
- What is $f_{X}(x)$?
- $f_{X}(x)= \begin{cases}\int_{y=0}^{10} 0.01 d y=0.1 & \text { If } x \in[0,10] \\ 0 & \text { otherwise }\end{cases}$
- Not surprisingly $X \sim \operatorname{Uniform}([0,10])$ and $Y \sim \operatorname{Uniform}([0,10])$.
- In general, we will have $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
- We have marginalized out one of our random variables... just like we did when looking at PMFs.
- We call $f_{X}(x)$ the marginal PDF of X

Example: marginalization

- What is the probability that Anita picks a number greater than 7 ?

Example: marginalization

- What is the probability that Anita picks a number greater than 7 ?

- That's going to correspond to the shaded region... $P(X>7)=0.01(3 \times 10)=0.3$.
- Or, using calculus: $\int_{x=7}^{10} \int_{y=0}^{10} f_{X, Y}(x, y) d x d y$

Marginalization

- $P(X>7)=\int_{x=7}^{10} \int_{y=0}^{10} f_{X, Y}(x, y) d x d y$
- But, this doesn't depend on Benjamin at all! It is the same as $P(X>7)=\int_{x>7} f_{X}(x) d x$.

Example: Uniform random variable

- What is the probability that they both pick numbers less than 4 ?

Example: Uniform random variable

- What is the probability that they both pick numbers less than 4 ?

- It will be $0.01 \int_{0}^{4} \int_{0}^{4} d x d y=0.01 \times 16=0.16$
- i.e. $0.01 \times$ the shaded area.
- Or 16/100!

Example: Uniform random variable

- What is the probability that Benjamin picks a number at least twice that of Anita?

Example: Uniform random variable

- What is the probability that Benjamin picks a number at least twice that of Anita?

- That's going to correspond to the shaded region...
$P(Y \geq 2 X)=0.01(0.5 \times 5 \times 10)=0.25$.
- Or, using calculus: $\int_{x=0}^{10} \int_{y=2 x}^{10} f_{X, Y}(x, y) d x d y=\int_{x=0}^{10} \int_{y=2 x}^{10} c \times 1_{0 \leq x \leq 10,0 \leq y \leq 10} d x d y$

Example: Uniform random variable

- What is the probability that Benjamin picks a number at least twice that of Anita?

- That's going to correspond to the shaded region...
$P(Y \geq 2 X)=0.01(0.5 \times 5 \times 10)=0.25$.
- Or, using calculus: $\int_{x=0}^{10} \int_{y=2 x}^{10} f_{X, Y}(x, y) d x d y=\int_{x=0}^{10} \int_{y=2 x}^{10} c \times 1_{0 \leq x \leq 10,0 \leq y \leq 10} d x d y$
- $\int_{x=0}^{10} \int_{y=2 x}^{10} c \times 1_{0 \leq 2 x \leq 10} d x d y=c \int_{0}^{5} d x=c \int_{x=0}^{5}(10-2 x) d x$

$$
=c\left(10 \times 5-\left(5^{2}-0\right)\right)=0.01 \times 25=0.25
$$

Conditional PDFs

- For discrete random variables, we looked at marginal PMFs $p_{X}(X)$, conditional PMFs $p_{X \mid Y}(x \mid y)$, and joint PMFs $p_{X, Y}(x, y)$.
- These corresponded to the probability of an event, $P(A)$, the conditional probability of an event given some other event, $P(A \mid B)$, and probability of the intersection of two events, $P(A \cap B)$.
- We've looked at marginal PDFs, $f_{X}(x)$ and joint PDFs, $f_{X, Y}(x, y)$.
- These don't directly give us probabilities of events, but we can use them to calculate such probabilities by integration.
- We can also look at conditional PDFs! These allow us to calculate the probability of events given extra information.

Conditional PDFs

- Recall, the PDF of a continuous random variable X is the non-negative function $f_{X}(x)$ that satisfies

$$
P(X \in B)=\int_{B} f_{X}(x) d x
$$

for any subset B of the real line.

- Let A be some event with $P(A)>0$
- The conditional PDF of X, given A, is the non-negative function $f_{X \mid A}$ that satisfies

$$
P(X \in B \mid X \in A)=\int_{B} f_{X \mid A}(x) d x
$$

for any subset B of the real line.

- If B is the entire line, then we have

$$
\int_{-\infty}^{\infty} f_{X \mid A}(x) d x=1
$$

- So, $f_{X \mid A}(x)$ is a valid PDF.

Conditional PDFs

- The event we are conditioning on can also correspond to a range of values of our continuous random variable.
- Definition-

$$
f_{X \mid\{X \in A\}}(x)= \begin{cases}\frac{f_{X}(x)}{P(X \in A)} & \text { if } X \in A \\ 0 & \text { otherwise }\end{cases}
$$

- In this case, we can write the conditional probability as

$$
\begin{aligned}
P(X \in B \mid X \in A) & =\int_{B} f_{X \mid A}(x) d x=\int_{B} \frac{f_{X}(x) 1(x \in A)}{P(X \in A)} d x \\
& =\frac{\int_{A \cap B} f_{X}(x) d x}{P(X \in A)}=\frac{P(\{X \in A\} \cap\{X \in B\})}{P(X \in A)} \\
& =P(X \in B \mid X \in A)
\end{aligned}
$$

- This is a valid PDF-non-negative and integrates to one. Check?

Conditioning: memoryless property of the exponential

- $X \sim \operatorname{Exp}(\lambda)$
- $P(X \geq s+t \mid X \geq s)=$?

Conditioning: memoryless property of the exponential

- $X \sim \operatorname{Exp}(\lambda)$
- $P(X \geq s+t \mid X \geq s)=$?
- Remember the exponential? $F_{X}(x)=1-e^{-\lambda x}$.

$$
\begin{aligned}
P(X>s+t \mid X>s) & =\frac{P(X>s+t, X>s)}{P(X>s)} \\
& =\frac{P(X>s+t)}{P(X>s)}=\frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} \\
& =e^{-\lambda t}=P(X>t)
\end{aligned}
$$

Conditioning: memoryless property of the exponential

- $X \sim \operatorname{Exp}(\lambda)$
- $\begin{cases}f_{X \mid X>s}(x)=\frac{\lambda e^{-\lambda x}}{P(X>s)}=\lambda e^{\lambda(x-s)} & \text { If } x>s \\ =0 & \text { Otherwise }\end{cases}$
- $P(X>s+t \mid X>s)=$?

Conditioning: memoryless property of the exponential

- $X \sim \operatorname{Exp}(\lambda)$
- $\begin{cases}f_{X \mid X>s}(x)=\frac{\lambda e^{-\lambda x}}{P(X>s)}=\lambda e^{\lambda(x-s)} & \text { If } x>s \\ =0 & \text { Otherwise }\end{cases}$
- $P(X>s+t \mid X>s)=$?
- Remember the exponential? $F_{X}(x)=1-e^{-\lambda x}$.

$$
\begin{aligned}
P(X>s+t \mid X>s) & =\int_{s+t}^{\infty} f_{X \mid X>s}(x) d x=\lambda \int_{s+t}^{\infty} e^{-\lambda(x-s)} d x \\
& =\lambda \int_{t}^{\infty} e^{-\lambda u} d u=e^{-\lambda t}
\end{aligned}
$$

Conditional PDFs: Example

- The height X of a randomly picked american woman can be modeled by $X \sim N\left(63.7,2.7^{2}\right)$
- Whats the conditional PDF given that the randomly picked woman is at least 63 inches tall?
- The PDF of heights (X) is shown in red.

Conditional PDFs: Example

- The height X of a randomly picked american woman can be modeled by $X \sim N\left(63.7,2.7^{2}\right)$
- Whats the conditional PDF given that the randomly picked woman is at least 63 inches tall?
- The PDF of heights (X) is shown in red.
- The conditional PDF given $X>63$, shown in blue, is the same shape for $X>63 \ldots$ but scaled up to integrate to one.

Recap

- Last time, we introduced the idea of continuous random variables and PDFs.
- A PDF is a function we can integrate over to get $P(X \in B)=\int_{B} f_{X}(x) d x$.
- We extended this to look at joint PDFs and conditional PDFs.
- We can borrow results from conditional probability and probabilities of intersections!
- But we need to be careful to remember, a PDF is not a probability...
- Next time, we will continue looking at continuous probability distributions.

