

SDS 321: Introduction to Probability and Statistics Lecture 15: Continuous random variables

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

www.cs.cmu.edu/~psarkar/teaching

Roadmap

- Discrete vs continuous random variables
- Probability mass function vs Probability density function
 - Properties of the pdf
- Cumulative distribution function
 - Properties of the cdf
 - Relating the cdf to the pdf
 - Examples.
- Expectation, variance and properties
 - Example with uniform.
- Continuous random variables
 - The uniform distribution
 - The exponential distribution
 - The normal distribution

•
$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

•
$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

• $f_X(x) = \begin{cases} 0 & x < a \\ \frac{1}{b-a} & a \le x \le b \\ 0 & x > b \end{cases}$

•
$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

• $f_X(x) = \begin{cases} 0 & x < a \\ \frac{1}{b-a} & a \le x \le b \\ 0 & x > b \end{cases}$
• So, $E[X] = \int_{-\infty}^{a} x \times 0 dx + \int_{a}^{b} \frac{x}{b-a} dx + \int_{b}^{\infty} x \times 0 dx$

•
$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

• $f_X(x) = \begin{cases} 0 & x < a \\ \frac{1}{b-a} & a \le x \le b \\ 0 & x > b \end{cases}$
• So, $E[X] = \int_{-\infty}^{a} x \times 0 dx + \int_{a}^{b} \frac{x}{b-a} dx + \int_{b}^{\infty} x \times 0 dx = \int_{a}^{b} \frac{x}{b-a} dx$

•
$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

• $f_X(x) = \begin{cases} 0 & x < a \\ \frac{1}{b-a} & a \le x \le b \\ 0 & x > b \end{cases}$
• So, $E[X] = \int_{-\infty}^{a} x \times 0 dx + \int_{a}^{b} \frac{x}{b-a} dx + \int_{b}^{\infty} x \times 0 dx = \int_{a}^{b} \frac{x}{b-a} dx = \left[\frac{x^2}{2(b-a)}\right]_{a}^{b}$

•
$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

• $f_X(x) = \begin{cases} 0 & x < a \\ \frac{1}{b-a} & a \le x \le b \\ 0 & x > b \end{cases}$
• So, $E[X] = \int_{-\infty}^{a} x \times 0 dx + \int_{a}^{b} \frac{x}{b-a} dx + \int_{b}^{\infty} x \times 0 dx$
 $= \int_{a}^{b} \frac{x}{b-a} dx$
 $= \left[\frac{x^2}{2(b-a)}\right]_{a}^{b}$
 $= \frac{1}{2(b-a)} (b^2 - a^2) = \frac{(a+b)(b-a)}{2(b-a)} = \frac{a+b}{2}$

Variance of a continuous random variable

• We can use the first and second moment to calculate the variance of X, $var[X] = E[X^{2}] - E[X]^{2} = \int_{-\infty}^{\infty} x^{2} f_{X}(x) dx - E[X]^{2}$

Variance of a continuous random variable

We can use the first and second moment to calculate the variance of X,

$$var[X] = E[X^{2}] - E[X]^{2} = \int_{-\infty}^{\infty} x^{2} f_{X}(x) dx - E[X]^{2}$$

We can also use our results for expectations and variances of linear functions:

$$\operatorname{var}(aX+b)=a^2\operatorname{var}(X)$$

$$E[X^2] = \int_{-\infty}^{\infty} x^2 f_X(x) dx$$

$$E[X^{2}] = \int_{-\infty}^{\infty} x^{2} f_{X}(x) dx$$
$$= \int_{a}^{b} \frac{x^{2}}{b-a} dx$$

$$E[X^{2}] = \int_{-\infty}^{\infty} x^{2} f_{X}(x) dx$$
$$= \int_{a}^{b} \frac{x^{2}}{b-a} dx$$
$$= \left[\frac{x^{3}}{3(b-a)}\right]_{a}^{b}$$

$$E[X^{2}] = \int_{-\infty}^{\infty} x^{2} f_{X}(x) dx$$
$$= \int_{a}^{b} \frac{x^{2}}{b-a} dx$$
$$= \left[\frac{x^{3}}{3(b-a)}\right]_{a}^{b}$$
$$= \frac{b^{3}-a^{3}}{3(b-a)} = \frac{a^{2}+ab+b^{2}}{3}$$

To calculate the variance, we need to calculate the second moment:

$$E[X^{2}] = \int_{-\infty}^{\infty} x^{2} f_{X}(x) dx$$
$$= \int_{a}^{b} \frac{x^{2}}{b-a} dx$$
$$= \left[\frac{x^{3}}{3(b-a)}\right]_{a}^{b}$$
$$= \frac{b^{3}-a^{3}}{3(b-a)} = \frac{a^{2}+ab+b^{2}}{3}$$

So, the variance is

$$\operatorname{var}(X) = E[X^2] - E[X]^2 = \frac{a^2 + ab + b^2}{3} - \frac{(a+b)^2}{4} = \frac{(b-a)^2}{12}$$

The uniform distribution

$$\bullet f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a, b] \\ 0 & otherwise \end{cases}$$

$$F_X(x) = egin{cases} 0 & x < a \ rac{x-a}{b-a} & x \in [a,b] \ 1 & otherwise \end{cases}$$

•
$$E[X] = \frac{a+b}{2}$$

• $\operatorname{var}(X) = \frac{(b-a)^2}{12}$

The exponential distribution

- How to model the amount of time until something happens, such as
 - the next email arrives
 - an accident happens
 - a light bulb burns out
 - Notation: $X \sim Exp(\lambda)$

The exponential distribution

An exponential r.v. has pdf and cdf:

$$f_{X}(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & otherwise \end{cases} \qquad F_{X}(x) = \int_{0}^{x} \lambda e^{-\lambda y} dy \\ = \int_{0}^{\lambda x} e^{-\nu} d\nu = 1 - e^{-\lambda x} \end{cases}$$

$$E[X] = \int_0^\infty x\lambda e^{-\lambda x} dx = \frac{1}{\lambda} \int_0^\infty (\lambda x) e^{-\lambda x} d(\lambda x)$$
$$= \frac{1}{\lambda} \int_0^\infty u e^{-u} du = \frac{1}{\lambda}$$

►
$$\operatorname{var}(X) = E[X^2] - E[X]^2 = \int_0^\infty x^2 \lambda e^{-\lambda x} dx - \frac{1}{\lambda^2} = \frac{1}{\lambda^2} \int_0^\infty u^2 e^{-u} du - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$$

The exponential distribution

Integration by parts anyone?

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

$$\int xe^{-x}dx = x(-e^{-x}) + \int e^{-x}dx = -xe^{-x} - e^{-x}$$

$$\int_0^\infty xe^{-x}dx = -xe^{-x}\Big|_0^\infty - e^{-x}\Big|_0^\infty = 1$$

$$\int x^2e^{-x}dx = x^2(-e^{-x}) + 2\int xe^{-x}dx$$

$$\int_0^\infty x^2e^{-x}dx = -x^2e^{-x}\Big|_0^\infty + 2\int_0^\infty xe^{-x}dx = 2$$

The normal distribution

 A normal, or Gaussian, random variable is a continuous random variable with PDF

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}$$

where μ and σ are scalars, and $\sigma > 0$.

- We write $X \sim N(\mu, \sigma^2)$.
- The mean of X is μ , and the variance is σ^2 (how could we show this?)

The normal distribution

- ► The normal distribution is the classic "bell-shaped curve".
- ▶ It is a good approximation for a wide range of real-life phenomena.
 - Stock returns.
 - Molecular velocities.
 - Locations of projectiles aimed at a target.

Further, it has a number of nice properties that make it easy to work with. Like symmetry. In the above picture, $P(X \ge 2) = P(X \le -2)$.

Linear transformations of normal distributions

- Let $X \sim N(\mu, \sigma^2)$
- Let Y = aX + b
- ▶ What are the mean and variance of Y?

Linear transformations of normal distributions

- Let $X \sim N(\mu, \sigma^2)$
- Let Y = aX + b
- ▶ What are the mean and variance of Y?

• var[Y] =
$$a^2 \sigma^2$$
.

Linear transformations of normal distributions

- Let $X \sim N(\mu, \sigma^2)$
- Let Y = aX + b
- What are the mean and variance of Y?

- $\operatorname{var}[Y] = a^2 \sigma^2$.
- ▶ In fact, if Y = aX + b, then Y is *also* a normal random variable, with mean $a\mu + b$ and variance $a^2 \sigma^2$:

Y
$$\sim$$
 N(a μ + b, a $^2\sigma^2$)

The normal distribution

- Example: Below are the pdfs of $X_1 \sim N(0,1)$, $X_2 \sim N(3,1)$, and $X_3 \sim N(0,16)$.
- ▶ Which pdf goes with which *X*?

- It is often helpful to map our normal distribution with mean μ and variance σ² onto a normal distribution with mean 0 and variance 1.
- This is known as the standard normal
- If we know probabilities associated with the standard normal, we can use these to calculate probabilities associated with normal random variables with arbitary mean and variance.

• If
$$X \sim N(\mu, \sigma^2)$$
, then $Z = \frac{x - \mu}{\sigma} \sim N(0, 1)$.

(Note, we often use the letter Z for standard normal random variables)

- ▶ I tell you that, if $X \sim N(0, 1)$, then P(X < -1) = 0.159.
- If $Y \sim N(1,1)$, what is P(Y < 0)?
- Well we need to use the table of the Standard Normal.
- ► How do I transform *Y* such that it has the standard normal distribution?
- We know that a linear function of a normal random variable is also normally distributed!

- ▶ I tell you that, if $X \sim N(0, 1)$, then P(X < -1) = 0.159.
- If $Y \sim N(1,1)$, what is P(Y < 0)?
- Well we need to use the table of the **Standard Normal**.
- ► How do I transform *Y* such that it has the standard normal distribution?
- We know that a linear function of a normal random variable is also normally distributed!
- Well Z = Y 1 has mean zero and variance 1.

- ▶ I tell you that, if $X \sim N(0, 1)$, then P(X < -1) = 0.159.
- If $Y \sim N(1,1)$, what is P(Y < 0)?
- Well we need to use the table of the **Standard Normal**.
- ► How do I transform *Y* such that it has the standard normal distribution?
- We know that a linear function of a normal random variable is also normally distributed!
- Well Z = Y 1 has mean zero and variance 1.
- So P(Y < 0) = P(Z < -1) = 0.159.

• If $Y \sim N(0,4)$, what value of y satisfies P(Y < y) = 0.159?

- ► The variance of *Y* is 4 times that of a standard normal random variable.
- Transform into a N(0, 1) random variable!

• If $Y \sim N(0,4)$, what value of y satisfies P(Y < y) = 0.159?

- ► The variance of *Y* is 4 times that of a standard normal random variable.
- ▶ Transform into a *N*(0, 1) random variable!
- Use Z = Y/2... Now $Z \sim N(0, 1)$.

• If $Y \sim N(0,4)$, what value of y satisfies P(Y < y) = 0.159?

► The variance of Y is 4 times that of a standard normal random variable.

• Transform into a N(0,1) random variable!

• Use
$$Z = Y/2...$$
 Now $Z \sim N(0, 1)$.

• So, if
$$P(Y < y) = P(2Z < y) = P(Z < y/2)$$
.

• We want y such that P(Z < y/2) = 0.159. But we know that P(Z < -1) = 0.159, so?

• If $Y \sim N(0,4)$, what value of y satisfies P(Y < y) = 0.159?

► The variance of Y is 4 times that of a standard normal random variable.

• Transform into a N(0,1) random variable!

• Use
$$Z = Y/2...$$
 Now $Z \sim N(0, 1)$.

• So, if
$$P(Y < y) = P(2Z < y) = P(Z < y/2)$$
.

• We want y such that P(Z < y/2) = 0.159. But we know that P(Z < -1) = 0.159, so?

So
$$y/2 = -1$$
 and as a result $y = -2...!$

The CDF of the standard normal is denoted Φ:

$$\Phi(z) = P(Z \le z) = P(Z < z) = \frac{1}{\sqrt{(2\pi)}} \int_{-\infty}^{z} e^{-t^2/2} dt$$

We cannot calculate this analytically.

• The standard normal table lets us look up values of $\Phi(y)$ for $y \ge 0$

	.00	.01	.02	0.03	0.04	•••
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	
÷	÷	÷	÷	÷	÷	

P(Z < 0.21) = 0.5832

If $X \sim N(3, 4)$, what is P(X < 0)?

First we need to standardize:

$$Z = \frac{X - \mu}{\sigma} = \frac{X - 3}{2}$$

• So, a value of x = 0 corresponds to a value of z = -1.5

Now, we can translate our question into the standard normal:

$$P(X < 0) = P(Z < -1.5) = P(Z \le -1.5)$$

• Problem... our table only gives $\Phi(z) = P(Z \le z)$ for $z \ge 0$.

If $X \sim N(3, 4)$, what is P(X < 0)?

$$Z = \frac{X - \mu}{\sigma} = \frac{X - 3}{2}$$

- So, a value of x = 0 corresponds to a value of z = -1.5
- Now, we can translate our question into the standard normal:

$$P(X < 0) = P(Z < -1.5) = P(Z \le -1.5)$$

- Problem... our table only gives $\Phi(z) = P(Z \le z)$ for $z \ge 0$.
- But, $P(Z \leq -1.5) = P(Z \geq 1.5)$, due to symmetry.

If $X \sim N(3, 4)$, what is P(X < 0)?

$$Z = \frac{X - \mu}{\sigma} = \frac{X - 3}{2}$$

- So, a value of x = 0 corresponds to a value of z = -1.5
- Now, we can translate our question into the standard normal:

$$P(X < 0) = P(Z < -1.5) = P(Z \le -1.5)$$

- Problem... our table only gives $\Phi(z) = P(Z \le z)$ for $z \ge 0$.
- But, $P(Z \leq -1.5) = P(Z \geq 1.5)$, due to symmetry.
- Our table only gives us "less than" values.

If $X \sim N(3, 4)$, what is P(X < 0)?

$$Z = \frac{X - \mu}{\sigma} = \frac{X - 3}{2}$$

- So, a value of x = 0 corresponds to a value of z = -1.5
- Now, we can translate our question into the standard normal:

$$P(X < 0) = P(Z < -1.5) = P(Z \le -1.5)$$

- Problem... our table only gives $\Phi(z) = P(Z \le z)$ for $z \ge 0$.
- But, $P(Z \leq -1.5) = P(Z \geq 1.5)$, due to symmetry.
- Our table only gives us "less than" values.
- But, $P(Z \ge 1.5) = 1 P(Z < 1.5) = 1 P(Z \le 1.5) = 1 \Phi(1.5)$.

If $X \sim N(3, 4)$, what is P(X < 0)?

$$Z = \frac{X - \mu}{\sigma} = \frac{X - 3}{2}$$

- So, a value of x = 0 corresponds to a value of z = -1.5
- Now, we can translate our question into the standard normal:

$$P(X < 0) = P(Z < -1.5) = P(Z \le -1.5)$$

- Problem... our table only gives $\Phi(z) = P(Z \le z)$ for $z \ge 0$.
- But, $P(Z \leq -1.5) = P(Z \geq 1.5)$, due to symmetry.
- Our table only gives us "less than" values.
- ► But, $P(Z \ge 1.5) = 1 P(Z < 1.5) = 1 P(Z \le 1.5) = 1 \Phi(1.5)$.
- And we're done! $P(X < 0) = 1 - \Phi(1.5) = (\text{look at the table...})1 - 0.9332 = 0.0668$

Recap

- ▶ With continuous random variables, any specific value of X = x has zero probability.
- ► So, writing a function for P(X = x) like we did with discrete random variables – is pretty pointless.
- ► Instead, we work with PDFs f_X(x) functions that we can integrate over to get the probabilities we need.

$$P(X \in B) = \int_B f_X(x) dx$$

- ► We can think of the PDF f_X(x) as the "probability mass per unit area" near x.
- We are often interested in the probability of X ≤ x for some x we call this the cumulative distribution function F_X(x) = P(X ≤ x).
- Once we know f_X(x), we can calculate expectations and variances of X.

Multiple continuous random variables

- Let X and Y be two continuous random variables.
- Each one takes on values on the real line, i.e. $X \in \mathbb{R}$ and $Y \in \mathbb{R}$.
- ► Together, each possible pair of values describe a point in the real plane, i.e. (X, Y) ∈ ℝ².
- We say X and Y are jointly continuous if the probability of them jointly taking on values in some subset B of the plane can be described as

$$P((X,Y)\in B)=\iint_{(x,y)\in B}f_{X,Y}(x,y)dx\,dy$$

using some continuous function $f_{X,Y}$, for all $B \in \mathbb{R}^2$ – i.e. all subsets of the 2-D plane.

▶ Notation means "integrate over all values of x and y s.t. $(x, y) \in B$

Joint PDF

- We call $f_{X,Y}$ the joint pdf of X and Y.
- It allows us to calculate the probability of any set of combinations of X and Y
 - e.g. the probability that a person weighs over 200lb and is under 6'
 - e.g. the probability that a person's height in inches is more than twice their weight in pounds.
 - So, this could describe the first scenario above, P(200 ≤ X ≤ ∞, -∞ ≤ Y ≤ 6)
 - In this case B is a rectangle

• What is
$$\int_{x=-\infty}^{\infty} \int_{y=-\infty}^{\infty} f_{X,Y}(x,y) dx dy$$
?

Joint PDF

- We call $f_{X,Y}$ the joint pdf of X and Y.
- It allows us to calculate the probability of any set of combinations of X and Y
 - e.g. the probability that a person weighs over 200lb and is under 6'
 - e.g. the probability that a person's height in inches is more than twice their weight in pounds.
 - So, this could describe the first scenario above, P(200 ≤ X ≤ ∞, -∞ ≤ Y ≤ 6)
 - In this case B is a rectangle

• What is
$$\int_{x=-\infty}^{\infty} \int_{y=-\infty}^{\infty} f_{X,Y}(x,y) dx dy$$
? 1

Joint PDF: Intuition

Remember we could think of f_X(x) as the "probability mass per unit length" near to x?

Joint PDF: Intuition

- ► We can think of the joint PDF f_{X,Y}(x, y) as the "probability mass per unit area" for a small area near X.
- Again, remember, $f_{X,Y}(x,y)$ is not a probability!

Multiple random variables to a single random variable

We can get from the joint PMF of X and Y to the marginal PMF of X by summing over (marginalizing over) Y:

$$p_X(x) = \sum_{y} p_{X,Y}(x,y)$$

We can get from the joint PDF of X and Y to the marginal PDF of X by integrating over (marginalizing over) Y:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

Example: Bivariate uniform random variable

Anita (X) and Benjamin (Y) both pick a number between 0 and 10, according to a continuous uniform distribution. What is f_{X,Y}(x, y)?

Example: Bivariate uniform random variable

Anita (X) and Benjamin (Y) both pick a number between 0 and 10, according to a continuous uniform distribution. What is f_{X,Y}(x, y)?

► Let's see... we know all pairs (x, y) are equally likely, so we know $f_{X,Y} = c$. It must satisfy $\int_{x=0}^{10} \int_{y=0}^{10} f_{X,Y}(x, y) dx dy = 1$. ► So, $c \underbrace{\int_{x=0}^{10} \int_{y=0}^{10} dx dy}_{100} = 1$... ► So $c = f_{X,Y}(x, y) = 0.01$ for all $0 \le x, y \le 10$.

Example: marginal probability

$$f_{X,Y}(x,y) = \begin{cases} 0.01 & \text{If } x, y \in [0,10] \\ 0 & \text{otherwise} \end{cases}$$

• What is $f_X(x)$?

▶ In general, we will have
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

- We have marginalized out one of our random variables... just like we did when looking at PMFs.
- We call $f_X(x)$ the marginal PDF of X

Example: marginal probability

$$f_{X,Y}(x,y) = \begin{cases} 0.01 & \text{If } x, y \in [0,10] \\ 0 & \text{otherwise} \end{cases}$$

• What is $f_X(x)$?

•
$$f_X(x) = \begin{cases} \int_{y=0}^{10} 0.01 dy = 0.1 & \text{If } x \in [0, 10] \\ 0 & \text{otherwise} \end{cases}$$

- Not surprisingly $X \sim Uniform([0, 10])$ and $Y \sim Uniform([0, 10])$.
- ▶ In general, we will have $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$
- We have marginalized out one of our random variables... just like we did when looking at PMFs.
- We call $f_X(x)$ the marginal PDF of X

Example: marginalization

▶ What is the probability that Anita picks a number greater than 7?

Example: marginalization

▶ What is the probability that Anita picks a number greater than 7?

► That's going to correspond to the shaded region... $P(X > 7) = 0.01(3 \times 10) = 0.3.$

• Or, using calculus:
$$\int_{x=7}^{10} \int_{y=0}^{10} f_{X,Y}(x,y) dx dy$$

Marginalization

•
$$P(X > 7) = \int_{x=7}^{10} \int_{y=0}^{10} f_{X,Y}(x,y) dx dy$$

▶ But, this doesn't depend on Benjamin at all! It is the same as $P(X > 7) = \int_{x>7} f_X(x) dx.$

What is the probability that they both pick numbers less than 4?

What is the probability that they both pick numbers less than 4?

> What is the probability that Benjamin picks a number at least twice that of Anita?

> What is the probability that Benjamin picks a number at least twice that of Anita?

- That's going to correspond to the shaded region... $P(Y \ge 2X) = 0.01(0.5 \times 5 \times 10) = 0.25.$
- Or, using calculus: $\int_{x=0}^{10} \int_{y=2x}^{10} f_{X,Y}(x,y) dx \, dy = \int_{x=0}^{10} \int_{y=2x}^{10} c \times 1_{0 \le x \le 10, 0 \le y \le 10} dx \, dy$

What is the probability that Benjamin picks a number at least twice that of Anita?

- That's going to correspond to the shaded region... $P(Y \ge 2X) = 0.01(0.5 \times 5 \times 10) = 0.25.$
- Or, using calculus: $\int_{x=0}^{10} \int_{y=2x}^{10} f_{X,Y}(x,y) dx \, dy = \int_{x=0}^{10} \int_{y=2x}^{10} c \times 1_{0 \le x \le 10, 0 \le y \le 10} dx \, dy$

$$\int_{x=0}^{10} \int_{y=2x}^{10} c \times 1_{0 \le 2x \le 10} dx \, dy = c \int_{0}^{5} dx = c \int_{x=0}^{5} (10 - 2x) dx$$
$$= c (10 \times 5 - (5^{2} - 0)) = 0.01 \times 25 = 0.25$$

Conditional PDFs

- For discrete random variables, we looked at marginal PMFs p_X(X), conditional PMFs p_{X|Y}(x|y), and joint PMFs p_{X,Y}(x,y).
- ► These corresponded to the probability of an event, P(A), the conditional probability of an event given some other event, P(A|B), and probability of the intersection of two events, P(A ∩ B).
- We've looked at marginal PDFs, $f_X(x)$ and joint PDFs, $f_{X,Y}(x,y)$.
- These don't directly give us probabilities of events, but we can use them to calculate such probabilities by integration.
- We can also look at conditional PDFs! These allow us to calculate the probability of events given extra information.

Conditional PDFs

Recall, the PDF of a continuous random variable X is the non-negative function f_X(x) that satisfies

$$P(X \in B) = \int_B f_X(x) dx$$

for any subset B of the real line.

- Let A be some event with P(A) > 0
- The **conditional PDF** of X, given A, is the non-negative function $f_{X|A}$ that satisfies

$$P(X \in B | X \in A) = \int_B f_{X|A}(x) dx$$

for any subset B of the real line.

▶ If *B* is the entire line, then we have

$$\int_{-\infty}^{\infty} f_{X|A}(x) dx = 1$$

• So, $f_{X|A}(x)$ is a valid PDF.

Conditional PDFs

- The event we are conditioning on can also correspond to a range of values of our continuous random variable.
- Definition-

$$f_{X|\{X\in A\}}(x) = egin{cases} rac{f_X(x)}{P(X\in A)} & ext{if } X\in A \ 0 & ext{otherwise.} \end{cases}$$

► In this case, we can write the conditional probability as $P(X \in B | X \in A) = \int_{B} f_{X|A}(x) dx = \int_{B} \frac{f_{X}(x)1(x \in A)}{P(X \in A)} dx$ $= \frac{\int_{A \cap B} f_{X}(x) dx}{P(X \in A)} = \frac{P(\{X \in A\} \cap \{X \in B\})}{P(X \in A)}$ $= P(X \in B | X \in A)$

This is a valid PDF-non-negative and integrates to one. Check?

• $X \sim Exp(\lambda)$

 $\blacktriangleright P(X \ge s + t | X \ge s) = ?$

• $X \sim Exp(\lambda)$

$$\blacktriangleright P(X \ge s + t | X \ge s) = ?$$

• Remember the exponential? $F_X(x) = 1 - e^{-\lambda x}$.

$$P(X > s + t | X > s) = \frac{P(X > s + t, X > s)}{P(X > s)}$$
$$= \frac{P(X > s + t)}{P(X > s)} = \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}$$
$$= e^{-\lambda t} = P(X > t)$$

$$X \sim Exp(\lambda)$$

$$\begin{cases} f_{X|X>s}(x) = \frac{\lambda e^{-\lambda x}}{P(X>s)} = \lambda e^{\lambda(x-s)} & \text{If } x > s \\ = 0 & \text{Otherwise} \end{cases}$$

•
$$P(X > s + t | X > s) =?$$

$$X \sim Exp(\lambda)$$

$$\begin{cases} f_{X|X>s}(x) = \frac{\lambda e^{-\lambda x}}{P(X>s)} = \lambda e^{\lambda(x-s)} & \text{If } x > s \\ = 0 & \text{Otherwise} \end{cases}$$

•
$$P(X > s + t | X > s) =?$$

• Remember the exponential? $F_X(x) = 1 - e^{-\lambda x}$.

$$P(X > s + t | X > s) = \int_{s+t}^{\infty} f_{X|X>s}(x) dx = \lambda \int_{s+t}^{\infty} e^{-\lambda(x-s)} dx$$
$$= \lambda \int_{t}^{\infty} e^{-\lambda u} du = e^{-\lambda t}$$

Conditional PDFs: Example

- ► The height X of a randomly picked american woman can be modeled by X ~ N(63.7, 2.7²)
- Whats the conditional PDF given that the randomly picked woman is at least 63 inches tall?
- The PDF of heights (X) is shown in red.

Conditional PDFs: Example

- ► The height X of a randomly picked american woman can be modeled by X ~ N(63.7, 2.7²)
- Whats the conditional PDF given that the randomly picked woman is at least 63 inches tall?
- ▶ The PDF of heights (*X*) is shown in red.
- The conditional PDF given X > 63, shown in blue, is the same shape for X > 63... but scaled up to integrate to one.

Recap

- Last time, we introduced the idea of continuous random variables and PDFs.
- ► A PDF is a function we can integrate over to get $P(X \in B) = \int_B f_X(x) dx.$
- We extended this to look at joint PDFs and conditional PDFs.
- We can borrow results from conditional probability and probabilities of intersections!
- But we need to be careful to remember, a PDF is **not** a probability...
- Next time, we will continue looking at continuous probability distributions.