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» The uniform distribution
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Mean of a uniform random variable

Let X be a uniform random variable over [a, b]. What is its expected
value?

> E[X] :/f:oxfx(x)dx
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Mean of a uniform random variable

Let X be a uniform random variable over [a, b]. What is its expected
value?
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Variance of a continuous random variable

» We can use the first and second moment to calculate the variance of
X,
2 2 [ 2 2
var[X] = E[X?] - E[X]* = x“fy (x)dx — E[X]
o0



Variance of a continuous random variable

» We can use the first and second moment to calculate the variance of
XY [e.e]
var[X] = E[X?] - E[X]? = / x? e (x)dx — E[X]?
—0o0
» We can also use our results for expectations and variances of linear
functions:

2

var(aX + b) = a“var(X)
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Variance of a uniform random variable

To calculate the variance, we need to calculate the second moment:

E[X?] :/_o:o x? e (x)dx

So, the variance is

var(X) = E[X?] — E[X]? = a2 +a3b—|— b (aJ;b)2 _ (b I23)2




The uniform distribution

1 b 0 x<a
—— X € |3, —
> f={5-a <0 Fxt) = {322 xea
0 otherwise 1 therwi
otherwise
> E[X] = aJ2r b

> var(X) = (b 123)2




The exponential distribution

» How to model the amount of time until something happens, such as
the next email arrives

an accident happens

a light bulb burns out

Notation: X ~ Exp(A)

vy vy VvVYyYy



The exponential distribution

» An exponential r.v. has pdf and cdf:

X
Fx(x) :/O )\e_)‘ydy

)\e_/\x x>0
fx (x) = .
0 otherwise Ax
:/ e_vdv:l—e_AX
0
o0 o
E[X] :/ xhe Mdx = l/ ()\x)e_AXd()\x)
0 AJo
= % 0 ve Ydu = %
> var(X) = E[X’] - E[X]? = | x*xe ™d % -
1 [ 5 _, 11
u e dU — p = )\7

22 Jo



The exponential distribution

> Integration by parts anyone?

[ 1008 () = F(xg) = [ (a0

/xe_de =x(—e )+ / e Ydx=—xe X —e ¥

oo 00 00
/ xe Xdx = —xefX’ — efx‘ =1
0 0 0

/x2e_de = x2(—e_X) + 2/xe_xdx



The normal distribution

» A normal, or Gaussian, random variable is a continuous random
variable with PDF

() = e /20
2o
where 1 and o are scalars, and o > 0.
> We write X ~ N(y, 02).

» The mean of X is u, and the variance is a2 (how could we show
this?)

02 03

f(x)

o1

10



The normal distribution
» The normal distribution is the classic “bell-shaped curve”.

> |t is a good approximation for a wide range of real-life phenomena.
» Stock returns.
> Molecular velocities.
> Locations of projectiles aimed at a target.

1®

P(X< 2) P(X> 2)

» Further, it has a number of nice properties that make it easy to work
with. Like symmetry. In the above picture, P(X > 2) = P(X < -2).
11



Linear transformations of normal distributions

> Let X ~ N(u,02)
> Llet Y=aX+0b
» What are the mean and variance of Y?

12



Linear transformations of normal distributions

Let X ~ N(u,0?)

Let Y =aX + b

What are the mean and variance of Y?
E[Y]=au+b

var[Y] = a%a2.

vV v.v v .Yy
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Linear transformations of normal distributions

Let X ~ N(u,0?)

Let Y =aX + b

What are the mean and variance of Y?
E[Y]=au+b

var[Y] = a%a2.

vV v.v v .Yy

» In fact, if Y = aX + b, then Y is also a normal random variable, with
mean ay + b and variance prpes

Y ~ N(ap + b, 3202)

12



The normal distribution
» Example: Below are the pdfs of X; ~ N(0,1), X5 ~ N(3,1), and
X3 ~ N(0,16).
» Which pdf goes with which X7

13



The standard normal

> |t is often helpful to map our normal distribution with mean x and
variance o2 onto a normal distribution with mean 0 and variance 1.

» This is known as the standard normal

» If we know probabilities associated with the standard normal, we can
use these to calculate probabilities associated with normal random
variables with arbitary mean and variance.

> If X ~ N(u,02), then Z = Z—H _ n(0,1).
g

> (Note, we often use the letter Z for standard normal random
variables)

14



The standard normal

> | tell you that, if X ~ N(0,1), then P(X < —1) = 0.159.
> If Y ~ N(1,1), what is P(Y < 0)7

» Well we need to use the table of the Standard Normal.
>

How do | transform Y such that it has the standard normal
distribution?

» We know that a linear function of a normal random variable is also
normally distributed!

15
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The standard normal

> | tell you that, if X ~ N(0,1), then P(X < —1) = 0.159.
> If Y ~ N(1,1), what is P(Y < 0)7

» Well we need to use the table of the Standard Normal.
>

How do | transform Y such that it has the standard normal
distribution?

» We know that a linear function of a normal random variable is also
normally distributed!

» Well Z =Y — 1 has mean zero and variance 1.
> So P(Y <0)=P(Z < —1) = 0.159.

15



The standard normal

> If Y ~ N(0,4), what value of y satisfies P(Y < y) = 0.1597

» The variance of Y is 4 times that of a standard normal random
variable.

» Transform into a N(0,1) random variable!

16



The standard normal

v

If Y ~ N(0,4), what value of y satisfies P(Y < y) = 0.1597

» The variance of Y is 4 times that of a standard normal random
variable.

v

Transform into a N(0,1) random variable!

v

Use Z=Y/2..Now Z ~ N(0O,1).
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The standard normal

> If Y ~ N(0,4), what value of y satisfies P(Y < y) = 0.1597

» The variance of Y is 4 times that of a standard normal random
variable.

» Transform into a N(0,1) random variable!
» Use Z=Y/2..Now Z ~ N(0,1).
> So, if P(Y <y)=PZ<y)=P(Z<y/2).

» We want y such that P(Z < y/2) = 0.159. But we know that
P(Z < —1) =0.159, so?
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The standard normal

> If Y ~ N(0,4), what value of y satisfies P(Y < y) = 0.1597

» The variance of Y is 4 times that of a standard normal random
variable.

» Transform into a N(0,1) random variable!
» Use Z=Y/2..Now Z ~ N(0,1).
> So, if P(Y <y)=PZ<y)=P(Z<y/2).

» We want y such that P(Z < y/2) = 0.159. But we know that
P(Z < —1) =0.159, so?

» Soy/2=-1and as aresult y = —2...!

16



The standard normal

» The CDF of the standard normal is denoted ¢:

®(z)=P(Z<z)=P(Z<2z)= L /z e_t2/2dt

V(@)

» We cannot calculate this analytically.

» The standard normal table lets us look up values of ®(y) for y >0

[ o0 [ o1 [ .02 003 004

0.0 [[ 0.5000 | 0.5040 | 0.5080 0.5120 0.5160
0.1 || 0.5398 | 0.5438 | 0.5478 0.5517 0.5557
0.2 || 0.5793 | 0.5832 | 0.5871 0.5910 0.5948
0.3 || 0.6179 | 0.6217 | 0.6255 0.6293 0.6331

P(Z < 0.21) = 0.5832

17



CDF of a normal random variable

If X ~ N(3,4), what is P(X < 0)7?

» First we need to standardize:

» So, a value of x = 0 corresponds to a value of z=—-1.5

» Now, we can translate our question into the standard normal:

P(X <0)=P(Z < —15) = P(Z < —1.5)

> Problem... our table only gives ®(z) = P(Z < z) for z > 0.

18



CDF of a normal random variable

If X ~ N(3,4), what is P(X < 0)7?

» First we need to standardize:

So, a value of x = 0 corresponds to a value of z= 15

v

v

P(X <0)=P(Z < —15)=P(Z < —15)

Problem... our table only gives ®(z) = P(Z < z) for z > 0.
But, P(Z < —1.5) = P(Z > 1.5), due to symmetry.

v

v

Now, we can translate our question into the standard normal:

18



CDF of a normal random variable

If X ~ N(3,4), what is P(X < 0)7?

» First we need to standardize:

7 = X—p = X=3
o 2

» So, a value of x = 0 corresponds to a value of z=—-1.5
» Now, we can translate our question into the standard normal:

P(X <0)=P(Z < —-15)=P(Z < -1.5)
> Problem... our table only gives ®(z) = P(Z < z) for z > 0.
» But, P(Z < —1.5) = P(Z > 1.5), due to symmetry.
» Our table only gives us “less than” values.

18



CDF of a normal random variable

If X ~ N(3,4), what is P(X < 0)7?

» First we need to standardize:

,_X—p_X-3
o 2
» So, a value of x = 0 corresponds to a value of z=—-1.5
» Now, we can translate our question into the standard normal:
P(X <0)=P(Z < —-15)=P(Z < -1.5)
> Problem... our table only gives ®(z) = P(Z < z) for z > 0.
» But, P(Z < —1.5) = P(Z > 1.5), due to symmetry.
» Our table only gives us “less than” values.
» But, P(Z>15)=1-P(Z<15)=1-P(Z<15)=1-d(L5).

18



CDF of a normal random variable

If X

>

~ N(3,4), what is P(X < 0)?
First we need to standardize:
,_X—p_X-3
o 2
So, a value of x = 0 corresponds to a value of z= 15

» Now, we can translate our question into the standard normal:

vV v.v v Yy

P(X <0)=P(Z < —15)=P(Z < —15)

Problem... our table only gives ®(z) = P(Z < z) for z > 0.

But, P(Z < —1.5) = P(Z > 1.5), due to symmetry.

Our table only gives us “less than” values.

But, P(Z>15)=1-P(Z<15)=1-P(Z<15)=1—d(L5).
And we're done!

P(X <0) =1— ®(1.5) = (look at the table...)1 — 0.9332 = 0.0668

18



Recap

With continuous random variables, any specific value of X = x has
zero probability.

So, writing a function for P(X = x) — like we did with discrete
random variables — is pretty pointless.

Instead, we work with PDFs fx(x) — functions that we can integrate
over to get the probabilities we need.

P(X € B) = /fo(x)dx

We can think of the PDF fx(x) as the “probability mass per unit
area” near x.

We are often interested in the probability of X < x for some x — we
call this the cumulative distribution function Fx(x) = P(X < x).

Once we know fx(x), we can calculate expectations and variances of
X.

19



Multiple continuous random variables

» Let X and Y be two continuous random variables.
» Each one takes on values on the real line, i.,e. X ¢ R and Y € R.

» Together, each possible pair of values describe a point in the real
plane, i.e. (X,Y) € R?.

» We say X and Y are jointly continous if the probability of them
jointly taking on values in some subset B of the plane can be
described as

PxVIeB = [[ vy

using some continuous function fx y, for all B € R? —i.e. all subsets
of the 2-D plane.

> Notation means “integrate over all values of x and y s.t. (x,y) € B

20



Joint PDF

» We call fx y the joint pdf of X and Y.

» It allows us to calculate the probability of any set of combinations of
X and Y

> e.g. the probability that a person weighs over 200lb and is under 6’
> e.g. the probability that a person’s height in inches is more than
twice their weight in pounds.

» So, this could describe the first scenario above,
P(200<X<oo —00 <Y <6)
In this case B is a rectangle

» What Is/ / fX7y(X,y)dX dy?
=—00

21



Joint PDF

» We call fx y the joint pdf of X and Y.

» It allows us to calculate the probability of any set of combinations of
X and Y

> e.g. the probability that a person weighs over 200lb and is under 6’
> e.g. the probability that a person’s height in inches is more than
twice their weight in pounds.

» So, this could describe the first scenario above,
P(200<X<oo —00 <Y <6)
In this case B is a rectangle

» What Is/ / fX7y(X,y)dxdy? 1
=—00

21



Joint PDF: Intuition

» Remember we could think of fx(x) as the “probability mass per unit
length” near to x?

0.10 0.15
I 1

0.05
I

P(x <X <x+9)

> Because fx(x) = 3

22



Joint PDF: Intuition

X X

» We can think of the joint PDF fx y(x,y) as the “probability mass
per unit area” for a small area near X.

> Again, remember, fx y(x,y) is not a probability!

23



Multiple random variables to a single random variable

» We can get from the joint PMF of X and Y to the marginal PMF
of X by summing over (marginalizing over) Y:

px(x) = px,y(xy)
y

» We can get from the joint PDF of X and Y to the marginal PDF
of X by integrating over (marginalizing over) Y:

o= [ O:o iy (x,y)dy

24



Example: Bivariate uniform random variable

» Anita (X) and Benjamin (Y) both pick a number between 0 and 10,
according to a continuous uniform distribution. What is fx y(x, y)?

25



Example: Bivariate uniform random variable

Anita (X) and Benjamin (Y) both pick a number between 0 and 10,
according to a continuous uniform distribution. What is fx y(x, y)?

Let's see... we know all pairs (x, y) are equally likely, so we know

10 10
fx y = c. It must satisfy / fx y(x,y)dxdy = 1.
’ x=0Jy=0 ""’

10 10
So, c/ / dxdy =1...
x=0Jy=0
| S —

100
So ¢ = fx y(x,y) = 0.01 for all 0 < x,y < 10.

25



Example: marginal probability

0.01 If x,y € [0,10]
0 otherwise

v

fx,y (X, ¥) {

v

What is fx(x)?

v

o0
In general, we will have fx(x) :/ fx,y (x,y)dy
o0

» We have marginalized out one of our random variables... just like
we did when looking at PMFs.

We call fx(x) the marginal PDF of X

v

26



Example: marginal probability

0.01 If x,y € [0,10]
0 otherwise

v

fx,y (X, ¥) {

v

What is fx(x)?

10
/ 0.01dy = 0.1 If x € [0, 10]
fx(x) = q Jy=0

0 otherwise

v

» Not surprisingly X ~ Uniform([0,10]) and Y ~ Uniform([0, 10]).

v

o0
In general, we will have fx(x) :/ fx,y (x,y)dy
o0

» We have marginalized out one of our random variables... just like
we did when looking at PMFs.

We call fx(x) the marginal PDF of X

v

26



Example: marginalization

» What is the probability that Anita picks a number greater than 77
10

Benjamin

Anita

27



Example: marginalization

» What is the probability that Anita picks a number greater than 77
10

Benjamin

0

7
0 Anita 10

» That's going to correspond to the shaded region...
P(X>7)—001(3><10):03

10
» Or, using calculus: / / fx,y (x,y)dx dy

27



Marginalization

10

10 10
> x> = [ [ fyixydedy
x=7 =0 ’

» But, this doesn't depend on Benjamin at all! It is the same as
P(X>T7)= / fx (x)dx.
x>7

28



Example: Uniform random variable

» What is the probability that they both pick numbers less than 47
10

Benjamin

Anita

29



Example: Uniform random variable

» What is the probability that they both pick numbers less than 47
10

Benjamin

0

4
0 Anita 10

4 4
> |t will be 0.01/ / dxdy =0.01 x 16 =0.16
0 Jo
—i.e. 0.01 x the shaded area.
— Or 16/100!

29



Example: Uniform random variable

» What is the probability that Benjamin picks a number at least twice that of Anita?
10

Benjamin

Anita

30



Example: Uniform random variable

» What is the probability that Benjamin picks a number at least twice that of Anita?
10

Benjamin

0

5
0 Anita 10

» That's going to correspond to the shaded region...
P(Y >2X) = 0.01(0.5 x 5 x 10) = 0.25.

10 10 10 10
» Or, using calculus: / / fx y(X,y)dX dy = / / c x 1lg<x<10 0<y<10dX dy
x=0Jy=2x "’ x=0 =A=TOYsS =

y=2x

30



Example: Uniform random variable

» What is the probability that Benjamin picks a number at least twice that of Anita?
10

Benjamin

0

5
0 Anita 10

» That's going to correspond to the shaded region...
P(Y >2X) = 0.01(0.5 x 5 x 10) = 0.25.
10
» Or, using calculus: / / fX y(X y)dxdy = / / cXx IOSXSIO,OSySIOdX dy

5
/ / ¢ X lg<oy<i0dx dy = c/ dx = c/ (10 — 2x)dx
X= - 0 x=0

= ¢(10 x 5 — (52 — 0)) = 0.01 x 25 = 0.25

30



Conditional PDFs

> For discrete random variables, we looked at marginal PMFs py (X)
conditional PMFs pX|y(X\y), and joint PMFs px y(x,y).

» These corresponded to the probability of an event, P(A), the

1

conditional probability of an event given some other event, P(A|B),

and probability of the intersection of two events, P(AN B).
> We've looked at marginal PDFs, fx(x) and joint PDFs, fx y(x,y).

> These don't directly give us probabilities of events, but we can use
them to calculate such probabilities by integration.

» We can also look at conditional PDFs! These allow us to calculate
the probability of events given extra information.

31



Conditional PDFs

» Recall, the PDF of a continuous random variable X is the
non-negative function fy(x) that satisfies

P(X € B) = /fo(x)dx

for any subset B of the real line.
> Let A be some event with P(A) >0

» The conditional PDF of X, given A, is the non-negative function
fx|a that satisfies

P(X € BIX € A) = /B fja(x)dx

for any subset B of the real line.

» If B is the entire line, then we have

o0
—0oQ

> So, fx|a(x) is a valid PDF.

32



Conditional PDFs

» The event we are conditioning on can also correspond to a range of
values of our continuous random variable.

» Definition-
fx (x) -
27 ifXeA
fX|{XeA}(X) ={ P(XcA)
0 otherwise.
> In this case, we can write the conditional probability as
_ _ [ Xx(X)L(x € A)
P(X e BIX € A) = /BfX|A(X)dX— /B de
_ Jane fx(x)dx _ P({X € A} n{X € B})
T P(XeA) P(X € A)
= P(X € B|X € A)
» This is a valid PDF—-non-negative and integrates to one. Check?

33



Conditioning: memoryless property of the exponential

> X ~ Exp())

> P(X>s+t|X>s)=7

34



Conditioning: memoryless property of the exponential

v

X ~ Exp(\)

> P(X>s+t|X>s)=7

v

Remember the exponential? Fy(x) =1 - e M.

P(X > s+ tX >s) = P(X>s+1t,X>5s)

P(X > s)
> CP(X>stt) e At
P(X > S) o e_>\5

—e M=p(X>1)

34



Conditioning: memoryless property of the exponential

> X ~ Exp()\)
—Ax
Ae Alx—
> fX|X>s(X): m = e (x=s) If x>s
=0 Otherwise

> P(X >s+tX>s)=?

35



Conditioning: memoryless property of the exponential

> X ~ Exp()\)

» XX = prsgy =
=0 Otherwise

—Ax
Ae AerS) g >s

> P(X >s+tX>s)=?

AX

v

Remember the exponential? Fx(x)=1—e"

oo o )\
P(X>s+t]X >s)= / x> s(x)dx = )\/ e Mx=9) gy
s+t s+t

o0
= )\/ e Mdy = e M
t

35



Conditional PDFs: Example
» The height X of a randomly picked american woman can be
modeled by X ~ N(63.7,2.7°)

» Whats the conditional PDF given that the randomly picked woman
is at least 63 inches tall?

» The PDF of heights (X) is shown in red.

PDF
0.00 0.05 0.10 0.15 0.20 0.25

A
&
a
3
o |
a
o |
3
o
a
=~
3
~
a
o |
3
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Conditional PDFs: Example
» The height X of a randomly picked american woman can be
modeled by X ~ N(63.7,2.7°)
» Whats the conditional PDF given that the randomly picked woman
is at least 63 inches tall?
» The PDF of heights (X) is shown in red.

» The conditional PDF given X > 63, shown in blue, is the same shape
for X > 63... but scaled up to integrate to one.

PDF
0.00 0.05 0.10 0.15 0.20 0.25

A
&
a
3
o |
a
o |
3
o |
a
=~
3
~
a
o |
3
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Recap

Last time, we introduced the idea of continuous random variables
and PDFs.

A PDF is a function we can integrate over to get
P(X € B) :/ fx (x)dx.
B

We extended this to look at joint PDFs and conditional PDFs.

We can borrow results from conditional probability and probabilities
of intersections!

But we need to be careful to remember, a PDF is not a probability...

Next time, we will continue looking at continuous probability
distributions.
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