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Roadmap

I Discrete vs continuous random variables

I Probability mass function vs Probability density function
I Properties of the pdf

I Cumulative distribution function
I Properties of the cdf
I Relating the cdf to the pdf
I Examples.

I Expectation, variance and properties
I Example with uniform.

I Continuous random variables
I The uniform distribution
I The exponential distribution
I The normal distribution
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Mean of a uniform random variable

Let X be a uniform random variable over [a, b]. What is its expected
value?

I E [X ] =

∫ ∞
−∞

xfX (x)dx

I fX (x) =


0 x < a

1

b − a
a ≤ x ≤ b

0 x > b

I So, E [X ] =

∫ a

−∞
x × 0dx +

∫ b

a

x

b − a
dx +

∫ ∞
b

x × 0dx

=

∫ b

a

x

b − a
dx

=

[
x2

2(b − a)

]b
a

=
1

2(b − a)
(b2 − a2) =

(a + b)(b − a)

2(b − a)
=

a + b

2
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Variance of a continuous random variable

I We can use the first and second moment to calculate the variance of
X ,

var[X ] = E [X2]− E [X ]2 =

∫ ∞
−∞

x2fX (x)dx − E [X ]2

I We can also use our results for expectations and variances of linear
functions:

var(aX + b) = a2var(X )
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Variance of a uniform random variable

To calculate the variance, we need to calculate the second moment:

E [X2] =

∫ ∞
−∞

x2fX (x)dx

=

∫ b

a

x2

b − a
dx

=

[
x3

3(b − a)

]b
a

=
b3 − a3

3(b − a)
=

a2 + ab + b2

3

So, the variance is

var(X ) = E [X2]− E [X ]2 =
a2 + ab + b2

3
− (a + b)2

4
=

(b − a)2
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The uniform distribution

I fX (x) =


1

b − a
x ∈ [a, b]

0 otherwise
FX (x) =


0 x < a
x − a

b − a
x ∈ [a, b]

1 otherwise

I E [X ] =
a + b

2

I var(X ) =
(b − a)2

12
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The exponential distribution

I How to model the amount of time until something happens, such as
I the next email arrives
I an accident happens
I a light bulb burns out
I Notation: X ∼ Exp(λ)
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The exponential distribution

I An exponential r.v. has pdf and cdf:

fX (x) =

{
λe−λx x ≥ 0

0 otherwise

FX (x) =

∫ x

0
λe−λydy

=

∫ λx

0
e−vdv = 1− e−λx

I

E [X ] =

∫ ∞
0

xλe−λxdx =
1

λ

∫ ∞
0

(λx)e−λxd(λx)

=
1

λ

∫ ∞
0

ue−udu =
1

λ

I var(X ) = E [X2]− E [X ]2 =

∫ ∞
0

x2λe−λxdx − 1

λ2
=

1

λ2

∫ ∞
0

u2e−udu − 1

λ2
=

1

λ2
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The exponential distribution

I Integration by parts anyone?∫
f (x)g ′(x)dx = f (x)g(x)−

∫
f ′(x)g(x)dx∫

xe−xdx = x(−e−x ) +

∫
e−xdx = −xe−x − e−x∫ ∞

0
xe−xdx = −xe−x

∣∣∣∞
0
− e−x

∣∣∣∞
0

= 1∫
x2e−xdx = x2(−e−x ) + 2

∫
xe−xdx∫ ∞

0
x2e−xdx = −x2e−x

∣∣∣∞
0

+ 2

∫ ∞
0

xe−xdx = 2
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The normal distribution

I A normal, or Gaussian, random variable is a continuous random
variable with PDF

fX (x) =
1√
2πσ

e−(x−µ)
2/2σ2

where µ and σ are scalars, and σ > 0.

I We write X ∼ N(µ, σ2).

I The mean of X is µ, and the variance is σ2 (how could we show
this?)

10



The normal distribution

I The normal distribution is the classic “bell-shaped curve”.

I It is a good approximation for a wide range of real-life phenomena.
I Stock returns.
I Molecular velocities.
I Locations of projectiles aimed at a target.

I Further, it has a number of nice properties that make it easy to work
with. Like symmetry. In the above picture, P(X ≥ 2) = P(X ≤ −2).
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Linear transformations of normal distributions

I Let X ∼ N(µ, σ2)

I Let Y = aX + b

I What are the mean and variance of Y ?

I E [Y ] = aµ+ b

I var[Y ] = a2σ2.

I In fact, if Y = aX + b, then Y is also a normal random variable, with
mean aµ+ b and variance a2σ2:

Y ∼ N(aµ+ b, a2σ2)
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The normal distribution
I Example: Below are the pdfs of X1 ∼ N(0, 1), X2 ∼ N(3, 1), and

X3 ∼ N(0, 16).
I Which pdf goes with which X?

−8 −6 −4 −2 0 2 4 6 8
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The standard normal

I It is often helpful to map our normal distribution with mean µ and
variance σ2 onto a normal distribution with mean 0 and variance 1.

I This is known as the standard normal

I If we know probabilities associated with the standard normal, we can
use these to calculate probabilities associated with normal random
variables with arbitary mean and variance.

I If X ∼ N(µ, σ2), then Z =
x − µ
σ
∼ N(0, 1).

I (Note, we often use the letter Z for standard normal random
variables)

14



The standard normal

I I tell you that, if X ∼ N(0, 1), then P(X < −1) = 0.159.

I If Y ∼ N(1, 1), what is P(Y < 0)?

I Well we need to use the table of the Standard Normal.

I How do I transform Y such that it has the standard normal
distribution?

I We know that a linear function of a normal random variable is also
normally distributed!

I Well Z = Y − 1 has mean zero and variance 1.

I So P(Y < 0) = P(Z < −1) = 0.159.
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The standard normal

I If Y ∼ N(0, 4), what value of y satisfies P(Y < y) = 0.159?

I The variance of Y is 4 times that of a standard normal random
variable.

I Transform into a N(0, 1) random variable!

I Use Z = Y /2...Now Z ∼ N(0, 1).

I So, if P(Y < y) = P(2Z < y) = P(Z < y/2).

I We want y such that P(Z < y/2) = 0.159. But we know that
P(Z < −1) = 0.159, so?

I So y/2 = −1 and as a result y = −2...!
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The standard normal

I The CDF of the standard normal is denoted Φ:

Φ(z) = P(Z ≤ z) = P(Z < z) =
1√
(2π)

∫ z

−∞
e−t

2/2dt

I We cannot calculate this analytically.

I The standard normal table lets us look up values of Φ(y) for y ≥ 0

.00 .01 .02 0.03 0.04 · · ·
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 · · ·
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 · · ·
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 · · ·
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 · · ·

...
...

...
...

...
...

P(Z < 0.21) = 0.5832
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CDF of a normal random variable

If X ∼ N(3, 4), what is P(X < 0)?

I First we need to standardize:

Z =
X − µ
σ

=
X − 3

2

I So, a value of x = 0 corresponds to a value of z = −1.5

I Now, we can translate our question into the standard normal:

P(X < 0) = P(Z < −1.5) = P(Z ≤ −1.5)

I Problem... our table only gives Φ(z) = P(Z ≤ z) for z ≥ 0.

I But, P(Z ≤ −1.5) = P(Z ≥ 1.5), due to symmetry.

I Our table only gives us “less than” values.

I But, P(Z ≥ 1.5) = 1− P(Z < 1.5) = 1− P(Z ≤ 1.5) = 1− Φ(1.5).

I And we’re done!
P(X < 0) = 1− Φ(1.5) = (look at the table...)1− 0.9332 = 0.0668
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Recap

I With continuous random variables, any specific value of X = x has
zero probability.

I So, writing a function for P(X = x) – like we did with discrete
random variables – is pretty pointless.

I Instead, we work with PDFs fX (x) – functions that we can integrate
over to get the probabilities we need.

P(X ∈ B) =

∫
B
fX (x)dx

I We can think of the PDF fX (x) as the “probability mass per unit
area” near x.

I We are often interested in the probability of X ≤ x for some x – we
call this the cumulative distribution function FX (x) = P(X ≤ x).

I Once we know fX (x), we can calculate expectations and variances of
X .
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Multiple continuous random variables

I Let X and Y be two continuous random variables.

I Each one takes on values on the real line, i.e. X ∈ R and Y ∈ R.

I Together, each possible pair of values describe a point in the real
plane, i.e. (X ,Y ) ∈ R2.

I We say X and Y are jointly continous if the probability of them
jointly taking on values in some subset B of the plane can be
described as

P((X ,Y ) ∈ B) =

∫∫
(x ,y)∈B

fX ,Y (x , y)dx dy

using some continuous function fX ,Y , for all B ∈ R2 – i.e. all subsets
of the 2-D plane.

I Notation means “integrate over all values of x and y s.t. (x , y) ∈ B

20



Joint PDF

I We call fX ,Y the joint pdf of X and Y .

I It allows us to calculate the probability of any set of combinations of
X and Y

I e.g. the probability that a person weighs over 200lb and is under 6’
I e.g. the probability that a person’s height in inches is more than

twice their weight in pounds.

I So, this could describe the first scenario above,
P(200 ≤ X ≤ ∞,−∞ ≤ Y ≤ 6)

I In this case B is a rectangle

I What is
∫ ∞
x=−∞

∫ ∞
y=−∞

fX ,Y (x , y)dx dy?

1
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Joint PDF: Intuition

I Remember we could think of fX (x) as the “probability mass per unit
length” near to x?

I Because fX (x) =
P(x ≤ X ≤ x + δ)

δ

22



Joint PDF: Intuition

y
y + δ

x

x x
+
δ

I We can think of the joint PDF fX ,Y (x , y) as the “probability mass
per unit area” for a small area near X .

I Again, remember, fX ,Y (x , y) is not a probability!
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Multiple random variables to a single random variable

I We can get from the joint PMF of X and Y to the marginal PMF
of X by summing over (marginalizing over) Y :

pX (x) =
∑
y

pX ,Y (x , y)

I We can get from the joint PDF of X and Y to the marginal PDF
of X by integrating over (marginalizing over) Y :

fX (x) =

∫ ∞
−∞

fX ,Y (x , y)dy
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Example: Bivariate uniform random variable

I Anita (X ) and Benjamin (Y ) both pick a number between 0 and 10,
according to a continuous uniform distribution. What is fX ,Y (x , y)?

I Let’s see... we know all pairs (x , y) are equally likely, so we know

fX ,Y = c. It must satisfy
∫ 10

x=0

∫ 10

y=0
fX ,Y (x , y)dx dy = 1.

I So, c
∫ 10

x=0

∫ 10

y=0
dx dy︸ ︷︷ ︸

100

= 1...

I So c = fX ,Y (x , y) = 0.01 for all 0 ≤ x , y ≤ 10.
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Example: marginal probability

I fX ,Y (x , y) =

{
0.01 If x , y ∈ [0, 10]

0 otherwise

I What is fX (x)?

I fX (x) =


∫ 10

y=0
0.01dy = 0.1 If x ∈ [0, 10]

0 otherwise

I Not surprisingly X ∼ Uniform([0, 10]) and Y ∼ Uniform([0, 10]).

I In general, we will have fX (x) =

∫ ∞
−∞

fX ,Y (x , y)dy

I We have marginalized out one of our random variables... just like
we did when looking at PMFs.

I We call fX (x) the marginal PDF of X
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Example: marginalization

I What is the probability that Anita picks a number greater than 7?

Anita

B
en

ja
m

in

0
0

10

10

7

I That’s going to correspond to the shaded region...
P(X > 7) = 0.01(3× 10) = 0.3.

I Or, using calculus:
∫ 10

x=7

∫ 10

y=0
fX ,Y (x , y)dx dy
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Marginalization

X

B

0
0

10

10

7

I P(X > 7) =

∫ 10

x=7

∫ 10

y=0
fX ,Y (x , y)dx dy

I But, this doesn’t depend on Benjamin at all! It is the same as

P(X > 7) =

∫
x>7

fX (x)dx.
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Example: Uniform random variable

I What is the probability that they both pick numbers less than 4?

Anita

B
en

ja
m

in

0
0

10

10

4

4

I It will be 0.01

∫ 4

0

∫ 4

0
dx dy = 0.01× 16 = 0.16

– i.e. 0.01 × the shaded area.
– Or 16/100!
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Example: Uniform random variable
I What is the probability that Benjamin picks a number at least twice that of Anita?

Anita
B

en
ja

m
in

0
0

10

10

5

I That’s going to correspond to the shaded region...
P(Y ≥ 2X ) = 0.01(0.5× 5× 10) = 0.25.

I Or, using calculus:
∫ 10

x=0

∫ 10

y=2x
fX ,Y (x , y)dx dy =

∫ 10

x=0

∫ 10

y=2x
c × 10≤x≤10,0≤y≤10dx dy

I

∫ 10

x=0

∫ 10

y=2x
c × 10≤2x≤10dx dy = c

∫ 5

0
dx = c

∫ 5

x=0
(10− 2x)dx

= c(10× 5− (52 − 0)) = 0.01× 25 = 0.25
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Conditional PDFs

I For discrete random variables, we looked at marginal PMFs pX (X ),
conditional PMFs pX |Y (x |y), and joint PMFs pX ,Y (x , y).

I These corresponded to the probability of an event, P(A), the
conditional probability of an event given some other event, P(A|B),
and probability of the intersection of two events, P(A ∩ B).

I We’ve looked at marginal PDFs, fX (x) and joint PDFs, fX ,Y (x , y).

I These don’t directly give us probabilities of events, but we can use
them to calculate such probabilities by integration.

I We can also look at conditional PDFs! These allow us to calculate
the probability of events given extra information.
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Conditional PDFs
I Recall, the PDF of a continuous random variable X is the

non-negative function fX (x) that satisfies

P(X ∈ B) =

∫
B
fX (x)dx

for any subset B of the real line.

I Let A be some event with P(A) > 0

I The conditional PDF of X , given A, is the non-negative function
fX |A that satisfies

P(X ∈ B|X ∈ A) =

∫
B
fX |A(x)dx

for any subset B of the real line.

I If B is the entire line, then we have∫ ∞
−∞

fX |A(x)dx = 1

I So, fX |A(x) is a valid PDF.
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Conditional PDFs

I The event we are conditioning on can also correspond to a range of
values of our continuous random variable.

I Definition-

fX |{X∈A}(x) =


fX (x)

P(X ∈ A)
if X ∈ A

0 otherwise.

I In this case, we can write the conditional probability as

P(X ∈ B|X ∈ A) =

∫
B
fX |A(x)dx =

∫
B

fX (x)1(x ∈ A)

P(X ∈ A)
dx

=

∫
A∩B fX (x)dx

P(X ∈ A)
=

P({X ∈ A} ∩ {X ∈ B})
P(X ∈ A)

= P(X ∈ B|X ∈ A)

I This is a valid PDF–non-negative and integrates to one. Check?
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Conditioning: memoryless property of the exponential

I X ∼ Exp(λ)

I P(X ≥ s + t|X ≥ s) =?

I Remember the exponential? FX (x) = 1− e−λx .

I

P(X > s + t|X > s) =
P(X > s + t,X > s)

P(X > s)

=
P(X > s + t)

P(X > s)
=

e−λ(s+t)

e−λs

= e−λt = P(X > t)
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Conditional PDFs: Example
I The height X of a randomly picked american woman can be

modeled by X ∼ N(63.7, 2.72)

I Whats the conditional PDF given that the randomly picked woman
is at least 63 inches tall?

I The PDF of heights (X ) is shown in red.

I The conditional PDF given X > 63, shown in blue, is the same shape
for X > 63... but scaled up to integrate to one.
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Recap

I Last time, we introduced the idea of continuous random variables
and PDFs.

I A PDF is a function we can integrate over to get

P(X ∈ B) =

∫
B
fX (x)dx.

I We extended this to look at joint PDFs and conditional PDFs.

I We can borrow results from conditional probability and probabilities
of intersections!

I But we need to be careful to remember, a PDF is not a probability...

I Next time, we will continue looking at continuous probability
distributions.
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