18-452 / 18-750 Wireless Networks and Applications

Spring 2021


This course introduces fundamental concepts of wireless networks. The design of wireless networks is influenced heavily by how signals travel through space, so the course starts with an introduction to the wireless physical layer, presented in a way that is accessible to a broad range of students. The focus of the course is wireless MAC concepts including CSMA, TDMA/FDMA, and CDMA. It also covers a broad range of wireless networking standards, and reviews important wireless network application areas (e.g., sensor networks, vehicular) and other applications of wireless technologies (e.g., GPS, RFID, sensing, etc.). Finally, we will touch on public policy issues, e.g., as related to spectrum use.

This course is has both a graduate and undergraduate section. The course is offered on the Pittsburgh campus and is also available on the Silicon Valley campus via video conferencing.

The course will specifically cover:

All information regarding this course will be posted on this web page so please check the page regularly. We use Canvas for announcements and recordings of the lectures and recitations are also available and Canvas. We use Gradescope for homeworks and Project 1. Both the midterm and final will be online.

Prerequisites: 18-213, 15-213, or 15-513 or evidence that you have the equivalent background. C and/or Java programming skills may be needed for the project.

News

Useful Links

Instructor

Prof. Peter Steenkiste
E-mail: prs AT cs.cmu.edu
Office: virtual - zoom link on Canvas home page
Office Hours: Tuesday 2-3pm and Thursday 3-4pm (eastern)

Teaching Assistant

Jingxian Wang
E-mail: jingxian at cmu.edu
Office: virtual - zoom link on the Canvas home page
Office Hours: Monday 1:30-2:30pm and Wednesday 1:30-2:30pm

Course Assistants

ECE course management assistant:

Michele Passerrello
E-mail: mpasserr AT andrew.cmu.edu
Office: HH 1112

Course assistant (for appointments)

Trace Farbacher
E-mail: tracyf AT cs.cmu.edu
Office: virtual

Textbook

The textbook for the course is "Wireless Communication Networks and Systems", Cory Beard and William Stallings, Pearson, first edition, 2015. It does not cover all the course material, but it is the "best fit".

Course schedule

Lectures will be offered via Zoom on Monday and Wednesday, 3:20-5:10pm EDT. Recitations are via Zoom on Friday, 9:20-10:40am EDT. Not all recitation slots are used so please check the schedule below.

The schedule below is a tentative schedule for Spring 2021. The slides are those used in Spring 2020 and will be updated as the semester progresses. The course content will be roughly the same, except for updates on newer technologies and standards.

To access some of the papers of the surveys, you may need a CMU IP address, i.e., you need to be on campus or use a VPN.

br>.
Week of Monday Wednesday Friday
Feb 1 1. Course overview and wireless introduction 2. Wireless challenges and signals 3. Physical layer
Feb 8 4. Physical layer 5. Physical layer Recitation: Project 1, Project 2, Survey overview
Feb 15 6. Physical layer 7. Wireless MAC 8. WiFi basics
Feb 22 9. WiFi 10. WiFi Versions 11. Today's Wifi - paper
Optional: FAQ 802.11 futures
Mar 1 12. Ad Hoc Networks 13. Wireless and the Internet 14. Cellular 1
Mar 8 15. Slack + Review midterm 16. Midterm (lectures 1-12) No class - prep for midterms!
Mar 15 17. Cellular 2 18. Cellular 3 No class: Nid-Semester Break
Mar 22 19. Cellular 4 No class No class
Mar 29 20. Cellular 5G 21. PAN 22. Sensor networking
Apr 5 No class: Break Day 23. RFID 24. Localization
Apr 12 25. Lecture DSA No class No class: Carnival.
Apr 19 No class No class No class
Apr 26 26. Student survey presentations:
Localization (Grimsley, Duvall);
VLC (Zhao, Zhu);
User experience mobile devices (Hua, Dong);
Vehicular Offloading (Savkur,Prabhala);
Sensing with WiFi (Kuczynsky, Le Hoang).
27. Student survey presentations:
5G mmWave (Korivi, Pan, Diakhate-Palmer);
Newer WiFi versions (Zhang, Xu);
Backscatter/ambient (Prabhakara, Pesner);
LTE (Zhang, Botello);
Internet in the sky (Ding, Wavai)
No class
May 3 Recitation: Project presentations No class Recitation: Course Review

Assignments

Four homeworks will be assigned throughout the course. Homeworks will be posted and submitted using Canvas or Gradescope. The project also includes two projects and a survey, each involving a number of deadlines as described below.

The course has a midterm and a final. The midterm will be in the week before spring break during class time. It is closed book and will cover the material in lectures 1-14. The final will be during finals week, on a date and time posted by the registrar.

Project

The educational objectives of the course project include the ability to apply knowledge of mathematics, science, and engineering; to design and conduct experiments, as well as to analyze and interpret data; to design a system, component, or process to meet desired needs within real-world constraints; the ability to function on multi-disciplinary teams; and to identify, formulate, and solve engineering problems.

This will be achieved using two hands-on projects that are executed by teams of 2 (sometimes 3) students. The first project will be a small measurement project to gain a better understanding of the properties of wireless channels. The second project involves the design, implementation, and evaluation of a wireless system. Details on the projects will be discussed in class.

Survey presentations

Two-three lectures in the course will be dedicated to more advanced topics. Teams of two students will prepare and present one survey. More details on the survey assignment, including list of topics, can be found in the Survey Handout. That page also includes a list of papers for each topic.

The survey lectures are part of the course, and the material presented in the presentations will be covered in the homeworks and final. Specifically, the slides used in the survey presentation and one of the papers on the reading list, should be studied to prepare for the final. Both the slides and the selected paper can be found in the table with the course schedule.

The education goals for the survey presentations include a recognition of the need for, and an ability to engage in life-long learning; and an ability to communicate effectively.

Regrading

If you think we made a mistake in grading, please return the assignment with a note explaining your concern to the course secretary no later than two weeks after the day the assignment was returned. We will have the question re-graded by the person responsible for grading that question.

Late Policy

Assignments that are handed in late will be assessed a 15% penalty per day. No assignment will be accepted more than two days late.

If you have a documented medical problem that prevents you from handing an assignment in on time, we will work with you to find a suitable replacement turn-in time. "Documented" means that you have a medical note, e.g., from a doctor or the health center. Similar arrangements can be made for other emergencies if they are documented (e.g., an e-mail from your advisor). Scheduled absences, e.g., interviews or vacations, are not an acceptable justification for extentions.

Academic Integrity

Students at Carnegie Mellon are engaged in preparation for professional activity of the highest standards. Each profession constrains its members with both ethical responsibilities and disciplinary limits. To assure the validity of the learning experience a university establishes clear standards for student work, as described in the document on Academic Integrity. These rules will be strictly enforced in this course.

If you drop the course it is your responsibility to notify the instructor and your team member(s) in your project and survey team as soon as possible. Losing a team member is very disruptive to the rest of the team, so it is important that we can adjust the team as quickly as possible.

Grading

Grades will be determined based on homeworks (10%), projects (5% and 25%), survey talk (10%), and 2 exams (20% midterm and 30% final).