Low Power Wireless System

18-452/750 Wireless Networks and Applications
Survey presentation
Jorge Huete Solis & Jun Taguchi
Outline

• Background
 ✓ Importance, challenges, LPP and LCP

• B-MAC

• Koala

• A-MAC

• Opinion on these papers
Background (recap from lectures)

• Low power wireless communication draws attention in IoT era
 -> Trend: more general purpose, large scale
 ✓ A lot of wireless sensors -> ex) environment monitoring
 ✓ Reliable communication while low energy
 ✓ Easy to deploy and maintain

• Challenges / Design Issue
 ✓ Low cost – Hardware, Unlicensed Spectrum
 ✓ Power Management – Energy Efficiency, Routing Protocol
 ✓ MAC Protocol
 ✓ Data collection – Aggregate packets, Delay Tolerant
 ✓ Reliability
 ✓ Scalability

Picture from: https://ja.wikipedia.org/wiki/%E3%82%BB%E3%83%B3%E3%82%B5%E3%83%8D%E3%83%AF%E3%83%BC%E3%82%AF#/media/%E3%83%95%E3%82%A4%E3%83%AB:WSN.svg
Quick Overview of Protocols

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Priority</th>
<th>MAC Type</th>
<th>Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSMAC (2004)</td>
<td>Latency</td>
<td>CSMA</td>
<td>------</td>
</tr>
<tr>
<td>TRAMA (2003)</td>
<td>Energy</td>
<td>TDMA</td>
<td>------</td>
</tr>
<tr>
<td>TRACE (2003)</td>
<td>Energy</td>
<td>TDMA</td>
<td>------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TDMA</th>
<th>CSMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strict Sync</td>
<td>Flexible Sync</td>
</tr>
<tr>
<td>Controlled Access</td>
<td>Random Access</td>
</tr>
<tr>
<td>High Channel Utilization under high contentions</td>
<td>High Channel Utilization under low contentions</td>
</tr>
<tr>
<td>Need Central Control</td>
<td>Decentralized</td>
</tr>
</tbody>
</table>

- Priority: Generally Energy
- More CSMA
- Receiver initiative protocol draws attention these days because it treats hidden terminal problem well

B-MAC

• Big issue for low power: idle listening
• Listening without data is the same as receiving data

• Solution? Turn the node on and off
B-MAC

- On/Off cycle with Low Power Listening
 - If a signal comes in during the awake cycle, keep being awake
 - Preamble must be longer than sleep cycle duration
 - No RTS/CTS
 - Single application on a node
 - Apply noise floor estimation

(Same picture from the lecture)
B-MAC

• Lifetime depends on Neighborhood size, Check interval, Traffic
 ✓ Calculated Lifetime is as follows:

Contour of node lifetime based on LPL check time and network density

Lifetime of each node based on sample period and check time
B-MAC

• Microbenchmark analysis
 ✓ How correct is the previous life expectancy?
 ✓ Experiment: average neighbors=5
 ✓ Depends on configuration, but generally between 0.7 ~1.5 years

• Comments on B-MAC
 ✓ For small network, B-MAC works very well both in throughput and energy consumption
 ✓ However, for larger network, the advantage disappears
 ✓ Overall, MAC protocol is crucial factor for low energy network
Koala

- System designed for Long Term Environmental Monitoring
 - Primary requirement: energy efficiency, large scale

- Flexible Control Protocol (FCP)
 - Protocol to install routing paths
 - Assume multi-hop transmission
 - Calculate path at Gateway, and give paths to each node
Koala

- Low Power Probing (LPP)

Node goes back to sleep

Node joins the active chain
Koala

• Low Power Probing (LPP)
 ✓ Design choice between LPP and Low Power Listening (LPL, B-MAC)
 — LPL is designed for waking up individual node
 — Large Scale Network requires the whole system to wake
 ✓ Protocol
 — Transmitter starts listening to the channel
 — Receiver sends Probing signal, and Transmitter detects
 — Transmit ACK and then send data
Koala

• Evaluation
 ✓ LPP analysis
 — Energy Consumption: 32% more expensive than LPT
 ✓ Wake up performance
Koala

• Channel Switching
 • When large data transfer are taking place, active routes keep neighbors awake.
 • The easiest solution is changing channels
A-MAC – Protocol Design

- Receiver-initiated link layer for low-power WSN
 - Further Effort to reduce energy consumption
- It uses 802.15.4 standard’s auto-ack in LPP
 - Sleep when probing results in no answer, Otherwise awake
 - Asynchronous wakeup (next slide)
 - Backcast synchronization

![Diagram showing the protocol design](image)

- Transmitter A
 - 192us
 - ~4.256ms
- Receiver
 - 352us
- Transmitter B
 - Collision case
A-MAC – Wakeup

- Asynchronous network wakeup
 - Node1 initiates waking up, and other nodes follow
 - Link Quality to stable as concurrent acks increase
 - Each node decodes ACK even though large number of collisions occur
 - This attributes to the timing in the protocol, which minimizes ISI
 - Wakeup is 38% faster than typical LPL (Low Power Listening)
 - Back cast allows a node to know all neighboring nodes
A-MAC - Immunity

- Interference problem with WSN
 - Basically, LPL is vulnerable to interference since other signals can prevent nodes from sleeping
 - A-MAC protocol is less vulnerable to external signal thanks to explicit probe, backcast
 - Throughout the day, average external environmental interference is smaller than other protocols

<table>
<thead>
<tr>
<th>Primitive Operation</th>
<th>w/o 802.11 interference</th>
<th>w/ 802.11 interference</th>
<th>Increase in Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>TinyOS LPL</td>
<td>175 µA</td>
<td>3,030 µA</td>
<td>17.3×</td>
</tr>
<tr>
<td>RI-MAC LPP</td>
<td>383 µA</td>
<td>12,576 µA</td>
<td>54.7×</td>
</tr>
<tr>
<td>A-MAC LPP</td>
<td>206 µA</td>
<td>230 µA</td>
<td>1.12×</td>
</tr>
<tr>
<td>Hui LPL</td>
<td>36 µA†</td>
<td>72 µA‡</td>
<td>2.0×‡</td>
</tr>
</tbody>
</table>

Interference Effect (Ch.18)
Interference Effect (Ch.26)
A-MAC - Density

• Problem with Density in the cell
 ✓ Probe period is crucial
 ✓ Experiment: 100 packets, 500 ms interval
 ✓ We need to probe less frequently as nodes increase to achieve high delivery rate

• Packet Delivery Rate
 ✓ Better than RI-MAC (LPL)
 ✓ Again, density is the problem

• Comments on A-MAC
 ✓ Probing is fundamentally expensive, but somewhat mitigated
 ✓ It is not suitable for the network with high density
 ✓ Propagation delay can be critical: problem in
 ✓ Fast wake up is good
 ✓ Immune to external interference, which is good
Opinion / Conclusion

• Best protocol depends on the situation
 ✓ Scale? Real time data? Favorable duty cycle?
 ✓ Similar to HW1: Aloha or CSMA

• B-MAC
 ✓ Pros: Simple, flexible
 ✓ Cons: Scalability

• Koala
 ✓ Pros: Simple, flexible
 ✓ Cons: Higher energy consumption than LPL, Multiple channels

• A-MAC
 ✓ Pros: Immune to external 802.11 network
 ✓ Cons: Probing is fundamentally expensive, Density problem

• Future work needed