18-452/18-750 Wireless Networks and Applications
Lecture 5: Physical Layer Modulation and Diversity

Peter Steenkiste
Carnegie Mellon University

Spring Semester 2020
http://www.cs.cmu.edu/~prs/wireless20/

Announcement

• Please form P1 teams on campus
 » 2 students per team

Outline

• RF introduction
• Modulation and multiplexing
• Channel capacity
• Antennas and signal propagation
• Modulation
• Coding and diversity
• OFDM

(Limited) Goals

• Non-goal: turn you into electrical engineers
• Basic understanding of how modulation can be done
• Understand the tradeoffs involved in speeding up the bit rate
From Signals to Packets

Packet Transmission

Sender → Receiver

Packet

000101110001

Header/Body

Bit Stream

0 0 1 0 1 1 1 0 0 0 1

“Digital” Signal

Analog Signal

Basic Modulation Techniques

• Encode digital data in an analog signal
 • Amplitude-shift keying (ASK)
 » Amplitude difference of carrier frequency
 • Frequency-shift keying (FSK)
 » Frequency difference near carrier frequency
 • Phase-shift keying (PSK)
 » Phase of carrier signal shifted

Amplitude-Shift Keying

• One binary digit represented by presence of carrier, at constant amplitude
• Other binary digit represented by absence of carrier

\[s(t) = \begin{cases} \frac{A \cos(2\pi f_c t)}{t} & \text{binary 1} \\ 0 & \text{binary 0} \end{cases} \]

– where the carrier signal is \(A \cos(2\pi f_c t) \)

• Inefficient because of sudden gain changes
 » Only used when bandwidth is not a concern, e.g. on voice lines (< 1200 bps) or on digital fiber
• A can be a multi-bit symbol

How Can We Go Faster?

• Increase the rate at which we modulate the signal, or …
 » I.e., a higher frequency base signal
 » Signal time becomes short
• Modulate the signal with “symbols” that send multiple bits
 » I.e., each symbol represents more information
 » Longer signal time but more sensitive to distortion
• Which solution is the best depends on the many factors
 » We will not worry about that in this course
Binary Frequency-Shift Keying (BFSK)

- Two binary digits represented by two different frequencies near the carrier frequency
 \[s(t) = \begin{cases}
 A \cos(2\pi f_1 t) & \text{binary 1} \\
 A \cos(2\pi f_2 t) & \text{binary 0}
 \end{cases} \]
 - where \(f_1 \) and \(f_2 \) are offset from carrier frequency \(f_c \) by equal but opposite amounts
- Less susceptible to error than ASK
- Sometimes used for radio or on coax
- Demodulator looks for power around \(f_1 \) and \(f_2 \)

Multiple Frequency-Shift Keying (MFSK)

- More than two frequencies are used
- Each symbol represents \(L \) bits
 \[s_i(t) = A \cos 2\pi f_i t \quad 1 \leq i \leq M \]
 - \(f_i = f_c + (2i - 1 - M)f_d \)
 - \(L \) = number of bits per signal element
 - \(M \) = number of different signal elements = \(2^L \)
 - \(f_c \) = the carrier frequency
 - \(f_d \) = the difference frequency
- More bandwidth efficient but more susceptible to error
 » Symbol length is \(T_s = LT \) seconds, where \(T \) is bit period

Phase-Shift Keying (PSK)

- Two-level PSK (BPSK)
 » Uses two phases to represent binary digits
 \[s(t) = \begin{cases}
 A \cos(2\pi f_c t) & \text{binary 1} \\
 A \cos(2\pi f_c t + \pi) & \text{binary 0}
 \end{cases} \]
 - \(f_c = f_c + (2i - 1 - M)f_d \)
- Differential PSK (DPSK)
 » Phase shift with reference to previous bit
 - Binary 0 – signal of same phase as previous signal burst
 - Binary 1 – signal of opposite phase to previous signal burst
Phase-Shift Keying
Four Level PSK

- Each element represents 2 (or more) bits

\[s(t) = \begin{cases}
A \cos \left(2\pi f_c t + \frac{\pi}{4} \right) & 11 \\
A \cos \left(2\pi f_c t + \frac{3\pi}{4} \right) & 01 \\
A \cos \left(2\pi f_c t - \frac{3\pi}{4} \right) & 00 \\
A \cos \left(2\pi f_c t - \frac{\pi}{4} \right) & 10
\end{cases} \]

Time and Point View of Signal

- Remember: communication is based on the transmission of a modulated carrier signal
 » Focus on amplitude-phase modulation – very common!

- What about a mathematical representation of the received signal?
 » We can then reason about the impact of channel impairments on the signal and error rates

Channel State

- The channel state \(c \) is a complex number that captures attenuation, fading, ... effects
 » Represents instantaneous phase and amplitude

- \(c \) changes over time, e.g., fading
 » Change is continuous, but represented as a sequence of values \(c_i \)
 » The sampling rate depends on how fast \(c \) changes – must sample twice the frequency (Nyquist rate)

- \(c \) typically depends on carrier frequency: \(c(f) \)
 » Frequency selective fading or attenuation, e.g., \(f \) impacts loss and phase caused by multi-path and obstacles
 » The dependency on \(f \) is much more of a concern for wideband signals

Channel Model

1. Transmits signal \(x \): modulated carrier at frequency \(f \)
2. Signal is attenuated
3. Multi-path + mobility cause fading
4. Noise is added
5. Doppler effects distorts signal
6. Receives distorted Signal \(y \)

\[x \times c + n = y \]
Tradeoff: Bit Rate versus Error Rate - Informal

- Amplitude and phase modulation places transmitted symbols into 2D space
 » Represented by a complex number
- Channel distortion “moves” the symbol
 » Large shift can map it onto another symbol
- Large symbols means denser packing of symbols in the plane
 » Results in high bit rate but distortions are more likely to result in errors
- Smaller symbols are more conservative
 » Lower bit rate but more resistant to errors

Good channels

Bad channels

How Does Distortion Impact a Constellation Diagram?

- Changes in amplitude, phase or frequency move the points in the diagram
- Large shifts can create uncertainty on what symbol was transmitted
- Larger symbols are more susceptible
- Can Adapt symbol size to channel conditions to optimize throughput

Signal Constellations

- Each pair \((A_k, B_k)\) defines a point in the plane
- Signal constellation set of signaling points

\[
\begin{align*}
(A, B) & \quad & (A, -B) \\
(-A, B) & \quad & (-A, -B)
\end{align*}
\]

Good channels

Bad channels

Adapting to Channel Conditions

- Channel conditions can be very diverse
 » Affected by the physical environment of the channel
 » Changes over time as a result of slow and fast fading
- Fixed coding/modulation scheme will often be inefficient
 » Too conservative for good channels, i.e. lost opportunity
 » Too aggressive for bad channels, i.e. lots of packet loss
- Adjust coding/modulation based on channel conditions – “rate” adaptation
 » Controlled by the MAC protocol
 » E.g. 802.11a: BPSK – QPSK – 16-QAM – 64 QAM

Bad

Good Channel
Summary

- Key properties for channels are:
 - Channel state that concisely captures many of the factors degrading the channel
 - The power budget expresses the power at the receiver
 - Channel reciprocity
- Modulation changes the signal based on the data to be transmitted
 - Can change amplitude, phase or frequency
 - The transmission rate can be increased by using symbols that represent multiple bits
 - Can use hybrid modulation, e.g., phase and amplitude
 - The symbol size can be adapted based on the channel conditions – results in a variable bit rate transmission
 - Details do not matter!

Outline

- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
- Modulation
- Diversity and coding
 - Space, time and frequency diversity
- OFDM

Diversity Techniques

- The quality of the channel depends on time, space, and frequency
- Space diversity: use multiple nearby antennas and combine signals
 - Both at the sender and the receiver
- Time diversity: spread data out over time
 - Useful for burst errors, i.e., errors are clustered in time
- Frequency diversity: spread signal over multiple frequencies
 - For example, spread spectrum
- Distribute data over multiple “channels”
 - “Channels” experience different frequency selective fading, so only part of the data is affected

Space Diversity

- Use multiple antennas that pick up/transmit the signal in slightly different locations
- If antennas are sufficiently separated, instantaneous channel conditions are independent
 - Antennas should be separated by ¼ wavelength or more
- If one antenna experiences deep fading, the other antenna has a strong signal
- Represents a wide class of techniques
 - Use on transmit and receive side - channels are symmetric
 - Level of sophistication of the algorithms used
 - Can use more than two antennas!
Selection Diversity

- Receiver diversity: receiver picks the antenna with the best SNR
 - Very easy
- Transmit diversity: sender picks the antenna that offers the best channel to the receiver
 - Transmitter can learn the channel conditions based on signals sent by the receiver
 - Leverages channel reciprocity

\[x_1 \rightarrow h_1 \rightarrow y_1 \]
\[x_2 \rightarrow h_2 \rightarrow y_2 \]

Simple Algorithm in (older) 802.11

- Combine transmit + receive selection diversity
 - Assume packets are acknowledged – why?
- How to explore all channels to find the best one ... or at least the best transmit antenna
- Receiver:
 - Uses the antenna with the strongest signal
 - Always use the same antenna to send the acknowledgement – gives feedback to the sender
- Sender:
 - Picks an antenna to transmit and learns about the channel quality based on the ACK
 - Needs to occasionally try the other antenna to explore the channel between all four channel pairs

\[\text{Transmit} \rightarrow \text{Receiver} \]

Receiver Diversity

Can we Do Better?

- But why not use both signals?
 - 2 Signals contain more information than 1
 - What can go wrong?
- Simply adding the two signals has drawbacks:
 - Signals may be out of phase, e.g. kind of like multi-path; can reduce the signal strength!
 - We want to make sure we do not amplify the noise
- Maximal ratio combining: combine signals with a weight that is based on their SNR
 - Weight will favor the strongest signal (highest SNR)
 - Also: equal gain combining as a quick and dirty alternative

\[\frac{y_1 + y_2}{h_1 + h_2} \]

Receiver Diversity Optimization

- Multiply \(\vec{y} \) with the complex conjugate \(\vec{h}^* \) of the channel vector \(\vec{h} \)
 - Aligns the phases of the two signals so they amplify each other
 - Scales the signals with their magnitude so the effect of noise is not amplified
- Can learn \(\vec{h} \) based on training data
The Details

- Complex conjugates: same real part but imaginary parts of opposite signs
 \[\hat{h}^\ast \cdot \hat{y} = \hat{h}^\ast \cdot (\hat{h}^\ast \cdot \hat{x} + \hat{n}) \]
 Where \(\hat{h}^\ast = [h_1^\ast \ h_2^\ast] = [a_1+b_1i \ a_2-b_2i] \)
- Result:
 signal \(x \) is scaled by \(a_1^2 + b_1^2 + a_2^2 + b_2^2 \)
 noise becomes: \(h_1^\ast \cdot n_1 + h_2^\ast \cdot n_2 \)

Transmit Diversity

- Same as receive diversity but the transmitter has multiple antennas
- Maximum ratio combining: sender “precodes” the signal
 » Pre-align the phases at receiver and distribute power over the transmit antennas (total power fixed)
- How does transmitter learn channel?
 » Channel reciprocity: learn from packets received \(Y \)

Adding Redundancy

- Protects digital data by introducing redundancy in the transmitted data.
 » Error detection codes: can identify certain types of errors
 » Error correction codes: can fix certain types of errors
- Block codes provide Forward Error Correction (FEC) for blocks of data.
 » (n, k) code: n bits are transmitted for k information bits
 » Simplest example: parity codes
 » Many different codes exist: Hamming, cyclic, Reed-Solomon,…
- Convolutional codes provide protection for a continuous stream of bits.
 » Coding gain is \(n/k \)
 » Turbo codes: convolutional code with channel estimation

Combine Redundancy with Time Diversity

- Fading can cause burst errors: a relatively long sequence of bits is corrupted
- Spread blocks of bytes out over time so redundancy can help recover from the burst
 » Example: only need 3 out of 4 to recover the data
Bits, Symbols, and Chips

- Redundancy and time diversity can be added easily at the application layer
- Can we do it lower in the stack?
 - Need to adapt quickly to the channel
- So far: use bits to directly modulate the signal
- Idea: add a coding layer – provides a level of indirection
- Can add redundancy and adjust level of redundancy quickly based on channel conditions

Discussion

- Error coding increases robustness at the expense of having to send more bits
 - Technically this means that you need more spectrum
- But: since you can tolerate some errors, you may be able to increase the bit rate through more aggressive modulation
- Coding and modulation combined offer a lot of flexibility to optimize transmission
- Next steps:
 - Apply a similar idea to frequency diversity
 - Combine coding with frequency and time diversity in OFDM

Summary

- Space diversity really helps in overcoming fading
 - Very widely deployed
 - Will build on this when we discuss MIMO
- Coding is also an effective way to improve throughput
 - Widely used in all modern standards
 - Coding, combined with modulation, can be adapt quickly to channel conditions