Outline

- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
 » How do antennas work
 » Propagation properties of RF signals
 » Modeling the channel
- Modulation
- Diversity and coding
- OFDM

Propagation Degrades RF Signals

- Attenuation in free space: signal gets weaker as it travels over longer distances
 » Radio signal spreads out – free space loss
 » Refraction and absorption in the atmosphere
- Obstacles can weaken signal through absorption or reflection.
 » Reflection redirects part of the signal
- Multi-path effects: multiple copies of the signal interfere with each other at the receiver
 » Similar to an unplanned directional antenna
- Mobility: moving the radios or other objects changes how signal copies add up
 » Node moves ½ wavelength -> big change in signal strength

Free Space Loss

\[
\text{Loss} = \frac{P_t}{P_r} = \frac{(4\pi d)^2}{(G_t G_r \lambda^2)} = \frac{(4\pi f d)^2}{(G_t G_r c^2)}
\]

- Loss increases quickly with distance \((d^2)\).
- Need to consider the gain of the antennas at transmitter and receiver.
- Loss depends on frequency: higher loss with higher frequency.
 » Can cause distortion of signal for wide-band signals
 » Impacts transmission range in different spectrum bands
Log Distance Path Loss Model

- Log-distance path loss model captures free space attenuation plus additional absorption by of energy by obstacles:
 \[\text{Loss}_{db} = L_0 + 10 \, n \, \log_{10}(d/d_0) \]
- Where \(L_0 \) is the loss at distance \(d_0 \) and \(n \) is the path loss distance component
- Value of \(n \) depends on the environment:
 - 2 is free space model
 - 2.2 office with soft partitions
 - 3 office with hard partitions
 - Higher if more and thicker obstacles

Obstacles and Atmosphere

- Objects absorb energy as the signal passes through them
 - Degree of absorption depends strongly the material
 - Paper versus brick versus metal
- Absorption of energy in the atmosphere.
 - Very serious at specific frequencies, e.g. water vapor (22 GHz) and oxygen (60 GHz)
- Refraction in the atmosphere.
 - Pockets of air can have different properties, e.g., humidity, temperature, ...
 - Redirects the signal in unpredictable ways
 - Can reduce energy and increase path length

Multipath Effect

- Receiver receives multiple copies of the signal, each following a different path
- Copies can either strengthen or weaken each other
 - Depends on whether they are in our out of phase
- Changes of half a wavelength affect the outcome
 - Short wavelengths, e.g. 2.4 GHz -> 12 cm, 900 MHz -> ~1 ft
- Small adjustments in location or orientation of the wireless devices can result in big changes in signal strength

Example: 900 MHz

Data courtesy Rob Poor, Ember Corp.
Channel Sounding

• Measures response of channel to an impulse
 » Signals from multiple paths arrive spread out in time
• Typically interested in response across frequency range
 » Delay spread, delay spread and impact on phase

Fading in the Mobile Environment

• Fading: time variation of the received signal strength caused by changes in the transmission medium or paths.
 » Rain, moving obstacles, moving sender/receiver, ...
• Slow: changes in the paths traversed by the received signal – results in a change in the average power levels around which the fast fading takes place
 » Mobility affects path length and the nature of obstacles
• Fast: changes in distance of about half a wavelength (of the carrier!) – results in big fluctuations in the instantaneous power

Fading - Example

• Frequency of 910 MHz or wavelength of about 33 cm

Frequency Selective versus Non-selective Fading

• Non-selective (flat) fading: fading affects all frequency components in the signal equally
 » There is only a single path, or a strongly dominating path, e.g., LOS
• Selective fading: frequency components experience different degrees of fading
 » Multiple paths with path lengths that change independently
 » Region of interest is the spectrum used by the channel
Some Intuition for Selective Fading

- Assume three paths between a transmitter and receiver
 » Will have a difference in path length (e.g., 12.3 cm)
- The outcome is determined by in path length differences in terms of wavelengths → outcome depends on frequency
- As transmitter, receivers or obstacles move, the path length differences change, i.e., there is fading
 » In versus out of phase depends on wavelength/frequency
 » Significant concern for wide-band channels

Example Fading Channel Models

- Ricean distribution: LOS path plus indirect paths
 » Open space or small cells
 » $K =$ power in dominant path/power in scattered paths
 » Speed of movement and min-speed
- Raleigh distribution: multiple indirect paths but no dominating or direct LOS path
 » Lots of scattering, e.g. urban environment, in buildings
 » Sum of uncorrelated Gaussian variables
 » $K = 0$ is Raleigh fading
- Nakagami can be viewed as generalization: sum of independent Raleigh paths
 » Clusters or reflectors result in paths with Raleigh fading, but with different path lengths
- Many others!

Inter-Symbol Interference

- Larger difference in path length can cause inter-symbol interference (ISI)
 » This is for the bit stream (not the carrier wavelength!)
- Delays on the order of a symbol time result in overlap of the symbols
 » Makes it very hard for the receiver to decode
 » Corruption issue – not signal strength
 » Significant concern for high bit rates (short symbol times)

How Bad is the Problem?

- ISI depends on the symbol time
 » Time to send a single or multi-bit symbol
 » i.e., property of the baseband signal
- Fast fading depends on wavelength of carrier wave
 » Distances are much shorter!

<table>
<thead>
<tr>
<th>Rate (MHz)</th>
<th>Time (microsec)</th>
<th>Distance (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>300</td>
</tr>
<tr>
<td>5</td>
<td>0.2</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
<td>30</td>
</tr>
<tr>
<td>50</td>
<td>0.02</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rate (GHz)</th>
<th>Wavelength (nanometer)</th>
<th>Length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>1.11</td>
<td>33.3</td>
</tr>
<tr>
<td>2.4</td>
<td>0.417</td>
<td>12.5</td>
</tr>
<tr>
<td>5</td>
<td>0.2</td>
<td>6</td>
</tr>
<tr>
<td>60</td>
<td>0.0167</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Doppler Effect

- Movement by the transmitter, receiver, or objects in the environment can also create a doppler shift:
 \[f_m = \left(\frac{v}{c} \right) \times f \]
- Results in distortion of signal
 » Shift may be larger on some paths than on others
 » Shift is also frequency dependent (minor)
- Effect only an issue at higher speeds:
 » Speed of light: \(3 \times 10^8\) m/s
 » Speed of car: \(10^3\) m/h = 27.8 m/s
 » Shift at 2.4 GHz is 222 Hz – increases with frequency
 » Impact is that signal "spreads" in frequency domain

Noise Sources

- Thermal noise: caused by agitation of the electrons
 » Function of temperature
 » Affects electronic devices and transmission media
- Intermodulation noise: result of mixing signals
 » Appears at \(f_1 + f_2\) and \(f_1 - f_2\) (when is this useful?)
- Cross talk: picking up other signals
 » E.g. from other source-destination pairs
- Impulse noise: irregular pulses of high amplitude and short duration
 » Harder to deal with
 » Interference from various RF transmitters
 » Should be dealt with at protocol level

Outline

- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
 » How do antennas work
 » Propagation properties of RF signals
 » Modeling the channel
- Modulation
- Diversity and coding
- OFDM

Power Budget

- Receiver needs a certain SINR to be able to decode the signal
 » Required SINR depends on coding and modulation schemes, i.e. the transmit rate
- Factors reducing power budget:
 » Noise, attenuation (multiple sources), fading, ..
- Factors improving power budget:
 » Antenna gains, transmit power
Channel Reciprocity Theorem

- If the role of the transmitter and the receiver are interchanged, the instantaneous signal transfer function between the two remains unchanged.
- Informally, the properties of the channel between two antennas is the same in both directions, i.e. the channel is symmetric.
- Channel in this case includes all the signal propagation effects and the antennas.

Reciprocity Does not Apply to Wireless “Links”

- “Link” corresponds to the packet level connection between the devices.
 - In other words, the throughput you get in the two directions can be different.
- The reason is that many factors that affect throughput may be different on the two devices:
 - Transmit power and receiver threshold
 - Quality of the transmitter and receiver (radio)
 - Observed noise
 - Interference
 - Different antennas may be used (spatial diversity - see later)

Summary

- The wireless signal can be several degraded as it travels to the receiver:
- Attenuation increases with the distance to the receiver and as a result of obstacles
- Reflections create multi-path effects that cause distortion and inter-symbol interference
- Mobility causes slow and fast fading
 - Fast fading is often frequency selective
- For higher speeds the Doppler effect can be a concern