The Frequency Domain

- A (periodic) signal can be viewed as a sum of sine waves of different strengths.
 - Corresponds to energy at a certain frequency
- Every signal has an equivalent representation in the frequency domain.
 - What frequencies are present and what is their strength (energy)
- We can translate between the two formats using a fourier transform

Relationship between Data Rate and Bandwidth

- The greater the (spectral) bandwidth, the higher the information-carrying capacity of the signal
- Intuition: if a signal can change faster, it can be modulated in a more detailed way and can carry more data
 - E.g. more bits or higher fidelity music
- Extreme example: a signal that only changes once a second will not be able to carry a lot of bits or convey a very interesting TV channel
- Can we make this more precise?
Adding Detail to the Signal

- Smooth time domain signal has narrow frequency range
 » Sine wave → pulse at exactly one frequency
- Adding detail widens frequency range
 » Need to add additional frequencies to represent details
 » Very sharp edges are especially bad (many frequencies)
- The opposite is also true
 » Pulse in time domain has very wide spectrum
 » Same is true for random noise (“noise floor”)
- Implication: modulation has a bid impact on how much (scarce) spectrum is used

Some Intuition

Increasing the Bit Rate

- Increases the rate at which the signal changes.
 » Proportionally increases all signals present, and thus the spectral bandwidth
- Increase the number of bits per change in the signal
 » Adds detail to the signal, which also increases the spectral BW

So Why Don’t we Always Send a Very High Bandwidth Signal?

- Channels have a limit on the type of signals they can carry effectively
- Wires only transmit signals in certain frequency ranges
 » Stronger attenuation and distortion outside of range
- Wireless radios are only allowed to use certain parts of the spectrum
 » The radios are optimized for that frequency band
- Distortion makes it hard for receiver to extract the information
 » A major challenge in wireless
Propagation Degrades RF Signals

- Attenuation in free space: signal gets weaker as it travels over longer distances
 - Radio signal spreads out – free space loss
 - Refraction and absorption in the atmosphere
- Obstacles can weaken signal through absorption or reflection.
 - Reflection redirects part of the signal
- Multi-path effects: multiple copies of the signal interfere with each other at the receiver
 - Similar to an unplanned directional antenna
- Mobility: moving the radios or other objects changes how signal copies add up
 - Node moves \(\frac{1}{2} \) wavelength -> big change in signal strength

Transmission Channel Considerations

- Example: grey frequencies get attenuated significantly
- For wired networks, channel limits are an inherent property of the wires
 - Different types of fiber and copper have different properties
 - Capacity also depends on the radio and modulation used
 - Improves over time, even for same wire
- For wireless networks, limits are often imposed by policy
 - Can only use certain part of the spectrum
 - Radio uses filters to comply

Outline

- RF introduction
- Modulation and multiplexing - review
 - Analog versus digital signals
 - Forms of modulation
 - Baseband versus carrier modulation
 - Multiplexing
- Channel capacity
- Antennas and signal propagation
- Modulation
- Diversity and coding
- OFDM

Channel Capacity

- Data rate - rate at which data can be communicated (bps)
 - Channel Capacity – the maximum rate at which data can be transmitted over a given channel, under given conditions
- Bandwidth - the bandwidth of the transmitted signal as constrained by the transmitter and the nature of the transmission medium (Hertz)
- Noise - average level of noise over the communications path
- Error rate - rate at which errors occur
 - Error = transmit 1 and receive 0; transmit 0 and receive 1
The Nyquist Limit

- A noiseless channel of bandwidth B can at most transmit a binary signal at a capacity $2B$
 - E.g. a 3000 Hz channel can transmit data at a rate of at most 6000 bits/second
 - Assumes binary amplitude encoding
- For M levels: $C = 2B \log_2 M$
 - M discrete signal levels
- More aggressive encoding can increase the actual channel bandwidth
 - Example: modems
- Factors such as noise can reduce the capacity

Decibels

- Decibels: ratio between signal powers
 - decibels (db) = $10\log_{10}(P_1 / P_2)$
- Is used in many contexts:
 - The loss of a wireless channel, gain of an amplifier, ...
- Note that dB is a relative value.
- Absolute value requires a reference point.
 - Decibel-Watt – power relative to 1W
 - Decibel-milliwatt – power relative to 1 milliwatt (dbm)
- Some example values (WiFi):
 - Noise floor -90 dbm
 - Received signal strength: -70 to -65 dbm
 - Transmit power (2.4 GHz): 20 dbm

Signal-to-Noise Ratio

- Ratio of the power in a signal to the power contained in the noise that is present at a particular point in the transmission
 - Typically measured at a receiver
- Signal-to-noise ratio (SNR, or S/N)
 - $(SNR)_{db} = 10\log_{10} \left(\frac{\text{signal power}}{\text{noise power}} \right)$
 - A high SNR means a high-quality signal
 - Low SNR means that it may be hard to “extract” the signal from the noise
 - SNR sets upper bound on achievable data rate

Shannon Capacity Formula

- Equation: $C = B \log_2 (1 + SNR)$
- Represents error free capacity
 - It is possible to design a suitable signal code that will achieve error free transmission (you design the code)
- Result is based on many assumptions
 - Formula assumes white noise (thermal noise)
 - Impulse noise is not accounted for
 - Various types of distortion are also not accounted for
- We can also use Shannon's theorem to calculate the noise that can be tolerated to achieve a certain rate through a channel
Shannon Discussion

• Bandwidth B and noise N are not independent
 » N is the noise in the signal band, so it increases with the bandwidth
• Shannon does not provide the coding that will meet the limit, but the formula is still useful
• The performance gap between Shannon and a practical system can be roughly accounted for by a gap parameter
 » Still subject to same assumptions
 » Gap depends on error rate, coding, modulation, etc.

$$C = B \log_2 (1 + SNR/T)$$

Example of Nyquist and Shannon Formulations

• Spectrum of a channel between 3 MHz and 4 MHz ; $\text{SNR}_{\text{db}} = 24 \text{ dB}$
 $$B = 4 \text{ MHz} - 3 \text{ MHz} = 1 \text{ MHz}$$
 $$\text{SNR}_{\text{db}} = 24 \text{ dB} = 10 \log_{10}(\text{SNR})$$
 $$\text{SNR} = 251$$
• Using Shannon's formula
 $$C = 10^6 \times \log_2 (1 + 251) \approx 10^6 \times 8 \approx 8 \text{ Mbps}$$

Example of Nyquist and Shannon Formulations

• How many signaling levels are required using Nyquist?
 $$C = 2B \log_2 M$$
 $$8 \times 10^6 = 2 \times (10^6) \times \log_2 M$$
 $$4 = \log_2 M$$
 $$M = 16$$
• Look out for: dB versus linear values, \log_2 versus \log_{10}

Outline

• RF introduction
• Modulation and multiplexing
• Channel capacity
• Antennas and signal propagation
 » How do antennas work
 » Propagation properties of RF signals
 » Modeling the channel
• Equalization and diversity
• Modulation and coding
• Spectrum access
What is an Antenna?

- Conductor that carries an electrical signal and radiates an RF signal.
 - The RF signal “is a copy of” the electrical signal in the conductor
- Also the inverse process: RF signals are “captured” by the antenna and create an electrical signal in the conductor.
 - This signal can be interpreted (i.e. decoded)
- Efficiency of the antenna depends on its size, relative to the wavelength of the signal.
 - E.g. quarter of a wavelength

Types of Antennas

- Abstract view: antenna is a point source that radiates with the same power level in all directions – omni-directional or isotropic.
 - Not common – shape of the conductor tends to create a specific radiation pattern
 - Note that isotropic antennas are not very efficient!!
 - Unless you have a very large number of receivers
- Common shape is a straight conductor.
 - Creates a “disk” pattern, e.g. dipole
- Shaped antennas can be used to direct the energy in a certain direction.
 - Well-known case: a parabolic antenna
 - Pringles boxes are cheaper

Antenna Types: Dipoles

- Simplest: half-wave dipole and quarter wave vertical antennas
 - Very simple and very common
 - Elements are quarter wavelength of frequency that is transmitted most efficiently
 - Donut shape
- May other designs

Multi-element Antennas

- Multi-element antennas have multiple, independently controlled conductors.
 - Signal is the sum of the individual signals transmitted (or received) by each element
- Can electronically direct the RF signal by sending different versions of the signal to each element.
 - For example, change the phase in two-element array.
- Covers a lot of different types of antennas.
 - Number of elements, relative position of the elements, control over the signals, ...
Directional Antenna Properties

• **dBi**: antenna gain in dB relative to an isotropic antenna with the same power.
 » Example: an 8 dBi Yagi antenna has a gain of a factor of 6.3 ($8 \text{ db} = 10 \log 6.3$)

Examples 2.4 GHz

Summary

• The maximum capacity of a channel depends on the SINR
 » How close you get to this maximum depends on the sophistication of the radios
 » Distortion of the signal also plays a role – next lecture
• Antennas are responsible for transmitting and receiving the EM signals
 » The “ideal” isotropic antenna is a point source that radiates energy in a sphere
 » Practical antennas are directional in nature, as a result of the antenna shape or the use of multi-element antennas
 » The antenna gain is expressed in dBi

Outline

• RF introduction
• Modulation and multiplexing
• Channel capacity
• Antennas and signal propagation
 » How do antennas work
 » Propagation properties of RF signals
 » Modeling the channel
• Modulation
• Diversity and coding
• OFDM

Bad News

Good News

Story
Propagation Modes

- Line-of-sight (LOS) propagation.
 - Most common form of propagation
 - Happens above ~ 30 MHz
 - Subject to many forms of degradation (next set of slides)
- Obstacles can redirect the signal and create multiple copies that all reach the receiver
 - Creates multi-path effects
- Refraction changes direction of the signal due to changes in density
 - E.g., changes in air temperature, humidity, ...
 - If the change in density is gradual, the signal bends!

Impact of Obstacles

- Besides line of sight, signal can reach receiver in three “indirect” ways.
- Reflection: signal is reflected from a large object.
- Diffraction: signal is scattered by the edge of a large object – “bends”.
- Scattering: signal is scattered by an object that is small relative to the wavelength.

Refraction

- Speed of EM signals depends on the density of the material
 - Vacuum: 3×10^8 m/sec
 - Denser: slower
- Density is captured by refractive index
- Explains “bending” of signals in some environments
 - E.g. sky wave propagation: Signal “bounces” off the ionosphere back to earth – can go very long distances
 - But also local, small scale differences in the air density, temperature, etc.

Fresnel Zones

- Sequence of ellipsoids centered around the LOS path between a transmitter and receiver
- The zones identify areas in which obstacles will have different impact on the signal propagation
 - Capture the constructive and destructive interference due to multipath caused by obstacles
Fresnel Zones

- Zones create different phase differences between paths
 » First zone: 0-90
 » Second zone: 90-270
 » Third zone: 270-450
 » Etc.
- Odd zones create constructive interference, even zones destructive
- Also want clear path in most of the first Fresnel zone, e.g. 60%
- The radius F_n of the nth Fresnel zone depends on the distances d_1 and d_2 to the transmitter and receiver and the wavelength.

Sketch of Calculation: Difference in Path Length

- Difference in path length (a_1 is small)
 » $D_1 - d_1 \approx F \cdot \sin a_1$
- But for small a_1 we also have
 » $\sin a_1 = \tan a_1 = F / d_1$
- So $D_1 - d_1 = F^2 / d_1$

Sketch of Calculation: Fresnel Radios

- Given $D_1 - d_1 = F^2 / d_1$
- and $(D_1 + D_2) - (d_1 + d_2) = \lambda \cdot n$
- $(D_1 - d_1) + (D_2 - d_2) = F^2 / d_1 + F^2 / d_2$
- or

$$F_n = \sqrt{\frac{n \lambda d_1 d_2}{d_1 + d_2}}$$