18-452/18-750
Wireless Networks and Applications
Lecture 20: Localization

Peter Steenkiste
Carnegie Mellon University
Spring Semester 2020
http://www.cs.cmu.edu/~prs/wirelessS20/

Outline

• Properties of localization procedures
• Approaches
 » Proximity
 » Trilateration and triangulation (GPS)
 » Finger printing (RADAR)
 » Hybrid systems

Properties of localization procedures

• Physical position vs data types
• Reference systems
• Processing: localized vs centralized
• Data quality
 » Accuracy and precision
 » Scale
• Deployment aspects
 » Limitations
 » Cost
 ➔ Very diverse systems – lots of research

Data types

• Point locations in terms of coordinates:
 » physical or geometric locations
 » GPS: latitude and longitude, height
 » Cartesian coordinate system based on three orthogonal planes
• Extended region locations given by names:
 » symbolic locations
 » CMU, Wean Hall, room 8202
Location-awareness

- Location model: data structure that organizes locations
- Location-based routing
 - symbolic location model
 - geometric location model
 - hybrid location model

Examples
- symbolic location model: address hierarchy
 - DH.Floor2.2105
- geometric location model: GPS coordinate
 - (12.3456°N, 123.456°E)
- hybrid location model: combination of address and coordinate
 - DH.Floor2.2105.Seat(0,4)

Quality of Position Information

Positioning accuracy: largest distance between an estimated position and the true position

Precision: the ratio with which a given accuracy is reached, averaged over many repeated attempts

Example: average error of less than 20cm in 95% of cases

Precision vs. Accuracy

<table>
<thead>
<tr>
<th>Accurate</th>
<th>Inaccurate (systematic error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precise</td>
<td></td>
</tr>
<tr>
<td>Imprecise (reproducibility error)</td>
<td></td>
</tr>
</tbody>
</table>

Approaches

- Proximity: estimate distance between two nodes
- Trilateration and triangulation
 - using elementary trigonometric properties: a triangle is completely determined,
 - if two angles and a side length are known
 - if the lengths of all three sides are known
 - infer a 3d position from information about two triangles
- Fingerprinting (scene analysis)
 - using radio characteristics as fingerprint to identify it
- Hybrid methods: multiple sources of information
Proximity and Distance

• Binary nearness: using finite range of wireless communication and/or threshold
 » within range of a beacon signal from a source with known position
 » yields region locations, e.g.: cell in cellular network

• Distance measurement (ranging)
 » Received signal strength
 » Time of flight (time of arrival)
 » Time difference of arrival

Measuring Location: Trigonometry Basics

• Triangles in a plane
 » Lateration: distance measurement to known reference points
 – a triangle is fully determined by the length of its sides
 – Time of Flight (e.g. GPS, Active Bat)
 – Attenuation (e.g. RSSI)
 » Angulation: measuring the angle with respect to two known reference points and a reference direction or a third point
 – a triangle is fully determined by two angles and one side as shown
 – Phased antenna arrays
 – aircraft navigation (VOR)

Trilateration

Mathematical Background

• Computing positions between three known positions \((x_i, y_i)\) and an unknown position \((x_u, y_u)\) given distances \(r_i\) btw \((x_i, y_i)\) and \((x_u, y_u)\)

 Yields three equations \((x_i - x_u)^2 + (y_i - y_u)^2 = r_i^2\)

 Linear equations by subtracting 3rd from 1st and 2nd: quadratic terms \(x_u^2\) and \(y_u^2\) disappear
 » \(2(x_2 - x_1)x_u + 2(y_2 - y_1)y_u = (r_1^2 - r_2^2) - (x_1^2 - x_2^2) - (y_1^2 - y_2^2)\)
 » \(2(x_3 - x_1)x_u + 2(y_3 - y_1)y_u = (r_1^2 - r_3^2) - (x_1^2 - x_3^2) - (y_1^2 - y_3^2)\)

 In 3D: yields two points

 Positioning with imprecise information:
 » Add redundancy: over determined solution
 » Least squares estimates
GPS

- Radio-based navigation system developed by DoD
 - Initial operation in 1993
 - Fully operational in 1995
- System is called NAVSTAR
 - NAVigation with Satellite Timing And Ranging
 - Referred to as GPS
 - Has been improved over time
- Series of 24 (now 32) satellites, in 6 orbital planes
- Works anywhere in the world, 24 hours a day, in all weather conditions and provides:
 - Location or positional fix
 - Velocity, direction of travel
 - Accurate time

www.fws.gov/southeast/gis/training_2k5/GPS_overview_APR_04.ppt

GPS Constellation

- 24 satellites are needed to guarantee that 4 are always visible everywhere
- Extra satellites provide redundancy
 - Deal with maintenance, replacement, …

GPS Nominal Constellation
24 Satellites in 6 Orbital Planes
4 Satellites in each Plane
20,200 km Altitudes, 55 Degree Inclination

GPS involves 5 Basic Steps

- Satellite Ranging
 - Determining distance from satellite
- Trilateration
 - Intersection of spheres
- Timing
 - Why consistent, accurate clocks are required
- Positioning
 - Knowing where satellite is in space
- Correction of errors
 - Correcting for ionospheric and tropospheric delays

How GPS works?

- Range from each satellite calculated
 \[\text{range} = \text{time delay} \times \text{speed of light} \]
- Technique called trilateration is used to determine your position or "fix"
 - Intersection of spheres as described earlier
- At least 3 satellites required for 2D fix
- However, 4 satellites are used
 - The 4th satellite used to calculate drift of clock in GPS receivers relative to that of the satellites
 - Yields much better accuracy and provides 3D fix
Satellite Positions

• Each satellite has an atomic clock that keeps time very accurately
 » Satellites synchronize their clocks
 » Also periodically synchronize with the true time maintained on earth
• Satellites also know their location very accurately

Determining Range

• Each satellite periodically generates a pseudo random code
 » Receivers also locally generate the codes in synchronized fashion
• Receivers measure Time of Arrival (TOA) of codes
• Transmission includes Time of Transmission (TOT) of code and the location of the satellite at that time
 » Allows receiver to calculate Time of Flight and distance

Three Satellite Ranges Known

20,000 Km radius
22,000 Km radius
21,000 Km radius

Located at one of these 2 points. However, one point can easily be eliminated because it is either not on earth or moving at impossible rate of speed.

Accurate Timing is the Key

• Satellites have very accurate atomic clocks
• Receivers have less accurate clocks
• Measurements made in nanoseconds
 » Speed of light (c) ~ 1 ft/nanosecond
• 1/100th of a second error could introduce error of 1,860 miles
• Discrepancy between the satellite clock and the receiver clocks must be resolved
• Fourth satellite is used to solve the 4 unknowns (X, Y, Z and receiver clock error)
Satellite Positioning

- Required in the equation to solve the 4 unknowns is the actual location of the satellite.
 - 3 coordinates for location, plus clock drift of receiver relative to the satellite clocks
- Satellites are in relatively stable orbits and constantly monitored on the ground
- Satellite’s position is broadcast in the “ephemeris” data streamed down to receiver
 » Downloading complete set of almanac data requires 12.5 minutes (transmitted at 50 bps)

Sources of Errors

- Largest source is due to the atmosphere
 » Atmospheric refraction
 - Charged particles
 - Water vapor
- Other sources:
 » Geometry of satellite positions
 » Multi-path errors
 » Satellite clock errors
 » Satellite position or “ephemeris” errors
 » Quality of GPS receiver

How about Indoors?

- We can use received WiFi signal strength (RSS) to measure distance to APs with known location!
- Does not work in practice: too many factors affects RSS: objects, people, …
 » Triangulation based on RSS tends to results tend to give large, unpredictable errors
- How about using time of arrival?
 » E.g., based on sound, radar-like techniques, …
 » Works better, but it is still hard
 » Can work well but often requires special infrastructure
 » Reflections can also create inaccuracies: longer path!

CAESAR: Carrier Sense-based Ranging

- Question: can we use time of flight ranging using commodity WiFi hardware?
- Yes, but it gets a bit messy
 » Need to include SNR measurement
- Local station determines location of (mobile) remote stations
- Design criteria
 » Exploit standard 802.11 protocol implementations
 » Real time results
 » Low cost (low network usage, no additional hardware, minimal calibration)
CAESAR: Key Idea

- Time of flight from ACKs
- Speed of light: $c \approx 300\text{m/s}$
- WLAN clock 44MHz
 - Resolution: $300/(2\times44) = 3.4\text{m}$
 - Distance $d = c\times(t_{\text{MacIdle}}-t_{\text{SIFS}}-t_{\text{FD}})/2$

Distance $= \frac{1}{2}$ time from end of data to beginning of ACK

CAESAR: Adjustment to Noise

- Method depends on correct estimation of response time, which depends on the SNR
- Automatic gain control is used if
 - Preferred region (PR): no AGC
 - Strong signal detected (SSD): e.g. subtract 30dB from signal
 - Weak signal detected (WSD): may need adjust signal to bring it into PR (or signal is not detected)
- Proposed solution:
 - Detect states SSD, WSD, and preferred range
 - Use different values for Time for Frame Detection (t_{FD})

Outline

- Properties of localization procedures
- Approaches
 - Proximity
 - Trilateration and triangulation (GPS)
 - Finger printing (RADAR)
 - Hybrid systems

Angle of Arrival (AoA)

- A measures the direction of the incoming signal using a radio array.
- By using 2 anchors, A can determine its position
- Alternatively: the anchor measure the angle of A’s signal and coordinate
Angle of Arrival Techniques

- Antenna arrays are increasingly popular
- They are usually used to steer the signal, but can be used to identify the angle at which it arrives
- Difference in arrival time can be used to measure angle

Outline

- Properties of localization procedures
- Approaches
 » Proximity
 » Trilateration and triangulation (GPS)
 » Finger printing (RADAR)
 » Hybrid systems

Location Fingerprinting

- Fingerprint Methods for Recognizing Locations
 » Examples
 – Visual identification of places from photos
 – Recognition of horizon shapes
 – Measurement of signal strengths of nearby networks (e.g. RADAR)
 » Method: computing the difference between a feature set extracted measurements with a feature database
 » Advantages: passive observation only (protect privacy, prevent communication overhead)
 » Disadvantage: access to feature database needed

RADAR: Key Idea

- RSS from multiple APs tends to be unique to a location
RADAR Approach

- Scenario: floor layout with three base stations (in the hallways)
- Empirical method
 - offline phase: database is constructed
 - collect signal strength measurements from all three base stations at 70 distinct locations
 - store each of the 70 measurement triples together with the spatial location and orientation in a database
 - online phase: position can be determined
 - measure the current signal strength from all three base stations
 - find the most similar triple(s) in the database
- Resolution 2.94m (50th percentile)

Model-Based Radio Map

- Model set-up phase has high cost
- Alternative use radio propagation model and floor plan (instead of measurements)
 - Considered models
 - Rayleigh fading model: small-scale rapid amplitude fluctuation to model multi-path fading
 - Rician distribution model: like Rayleigh but with additional LoS component
 - Floor Attenuation Factor propagation model: large scale path loss with building models
 - Wall Attenuation Factor model: considers effects from walls between transmitter and receiver
 - Resolution 4.3m (50th percentile)

Effects of applying correction

signal strength as a function of distance

with correction for walls

Limits of Localization Using Signal Strength

- Measuring distance based on signal strength is an attractive idea for wireless sensor networks:
 - RSS does not require additional hardware
 - RSS declines with distance
 - Many different promising methods proposed
- Experimental study:
 - 802.11 technology with a range of methods and environments tested
 - Median localization error of 10ft and 97th percentile of 30ft
- Fundamental limitations that require
 - more complex environment models
 - additional infrastructure
Hybrid Technologies

- Cell phones: have many other sensors
 - Accelerometer, compass, ...
- Can be used to estimate the user’s walking speed, direction, ...
- This information can be combined with finger printing based techniques
- Especially useful if finger printing provides accurate location in specific points
 - When entering a store, escalator, elevators
 - Can use the other sensors starting with these well-known locations

Literature