Overview

- Cellular principles – “classic” view
 » A bit of history
 » Cellular design
 » How does a mobile phone call take place?
 » Handoff
 » Frequency Allocation, Traffic Engineering
- Early cellular generations: 1G, 2G, 3G
- Today’s cellular: 4G – LTE
- Emerging: 5G widely advertised

Some slides based on material from
“Wireless Communication Networks and Systems”

Cellular versus WiFi

<table>
<thead>
<tr>
<th></th>
<th>Cellular</th>
<th>WiFi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAC services</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Implications for Service Level Agreements (SLAs), cost, nature of protocols, …

The Advent of Cellular Networks

- “Mobile radio telephone system” was a predecessor of today’s cellular systems
 » High power transmitter/receivers
 » Could support about 25 channels
 » in a radius of 80 Km
- Over time, to increase network capacity:
 » Multiple lower power transmitters (100W or less)
 » Smaller transmission radius -> area split in cells
 » Each cell with its own frequencies and base station
 » Adjacent cells use different frequencies
 » The same frequency can be reused at sufficient distance
- These trends are continuing …
The Cellular Idea

- In December 1947 Donald H. Ring outlined the idea in a Bell labs memo
- Split an area into cells, each with their own low power towers
- Each cell would use its own frequency
- Did not take off due to “extreme-at-the-time” processing needs
 - Handoff for thousands of users
 - Rapid switching infeasible – maintain call while changing frequency
 - Technology not ready

The MTS network

The Early Mobile Phones

- First mobile phones bulky, expensive and hardly portable, let alone mobile
 - Phones weighed ~40 Kg
 - Some early prototypes were much bulkier than shown in the pictures (think: large backpack)
- Operator assisted with maximum 250 users

... the Remaining Components

- In December 1947 the transistor was invented by William Shockley, John Bardeen, and Walter Brattain
- Why no portable phones at that time?
- A mobile phone needs to send a signal – not just receive and amplify
- The energy required for a mobile phone transmission still too high for the high power/high tower approach – could only be done with a car battery
... and the Regulatory Bodies

The FCC commissioner Robert E. Lee said that mobile phones were a status symbol and worried that every family might someday believe that its car had to have one. Lee called this a case of people “frivolously using spectrum” simply because they could afford to.

From The Cell-Phone Revolution, AmericanHeritage.com

DynaTAC8000X: the First Cell Phone

- The “brick”:
 » Weighed 2 pounds
 » Offered 30 mins of talk time
 » Sold for $3,995!
- It took 10 years to develop (1973-1983) at a cost of $100 million!
 » Size determined by size of batteries, antennas, keypad, etc.
 » Today size determined by the UI!
- First commercial service in early 80s
 » FCC allocated spectrum in 70s

Dr. Martin Cooper of Motorola, made the first US analogue mobile phone call on a larger prototype model in 1973

Cellular Generations

- Roughly one generation every 10 years
- Spectrum allocation for mobile broadband has increased significantly
 » Shift to higher frequencies

Technologies Used

- We have already seen many of these technologies!
- Terminology for 5G is a bit different – How?
Standardization Process

- Standardization takes as much as 10 years
 - Setting goals, identifying technologies
 - Standardization: many releases
 - Product development and trials

Overview

- Cellular principles – “classic” view
 - A bit of history
 - Cellular design
 - How does a mobile phone call take place?
 - Handoff
 - Frequency Allocation, Traffic Engineering
- Early cellular generations: 1G, 2G, 3G
- Today’s cellular: 4G – LTE
- Emerging: 5G widely advertised

How To Design a Cellular Network?

- Need to get good coverage everywhere
- Must be able to plan network based on demand

Cellular Network Design Options

- Simplest layout
 - Does not match any propagation model
 - Adjacent antennas not equidistant – how do you handle users at the edge of the cell?
- “Ideal” layout
 - Based on a naïve propagation model – bad approximation but better than squares
 - Does not cover entire area!

Some slides based on material from
“Wireless Communication Networks and Systems”
The Hexagonal Pattern

- A hexagon pattern can provide equidistant access to neighboring cell towers
- \(d = \sqrt{3}R \)
- In practice, variations from ideal due to topological reasons
 - Signal propagation
 - Tower placement

Frequency reuse

- Each cell features one base transceiver
- Through power control the tower covers the cell area while limiting the power leaking to other co-frequency cells
- The number of frequency bands assigned to a cell dependent on its traffic
 - 10 to 50 frequencies assigned to each cell (early systems)
- How do we determine how many cells must separate two cells using the same frequency?
 - Need to control the “power to interference” ratio

Minimum separation?

Frequency reuse characterization

- \(D = \) minimum distance between centers of co-channel cells
- \(R = \) radius of cell
- \(d = \) distance between centers of adjacent cells
- \(N = \) number of cells in a repetitious pattern, i.e. reuse factor
- Hexagonal pattern only possible for certain \(N \):
 \[N = I^2 + J^2 + (I \times J), \quad I,J = 0,1,2,3,... \]
- The following relationship hold
 \[\frac{D}{R} = \sqrt{3N} \quad \text{or} \quad \frac{D}{d} = \sqrt{N} \]
Frequency Reuse Pattern Examples

Capacity and Interference

- $S =$ Total # of duplex channels available for use
- $k =$ Total # of duplex channels per cell
- $N =$ Size of cluster, i.e., cells that collectively use the complete set of available frequencies

$$\frac{S}{k} = N \quad \Rightarrow \quad S = kN$$

If a cluster is replicated M times within the system, the total # of duplex channels C can be used as a measure of capacity

$$\Rightarrow \quad C = MkN = MS$$

Tradeoffs

- If $N \downarrow \Rightarrow k \uparrow$ since S is a constant
 \[\therefore M \uparrow\] for a fixed geographical area if the same cell radius is maintained

 $$\Rightarrow$$ Capacity increases as cluster size goes down

- Reuse distance: $\frac{D}{R} \downarrow \Rightarrow$ Co-channel interference \uparrow

- NOTE: To reduce co-channel interference

 $$\frac{D}{R} \uparrow \Leftrightarrow N \uparrow \Leftrightarrow M \downarrow \therefore \text{Capacity} \downarrow \text{since} \ kN = S = \text{fixed}$$

 There is a trade-off between capacity and interference reduction

Approaches to Cope with Increasing Capacity

- Adding new channels
- Frequency borrowing – frequencies are taken from adjacent cells by congested cells
- Cell splitting – cells in areas of high usage can be split into smaller cells
- Cell sectoring – cells are divided into wedge-shaped sectors, each with their own set of channels
- Network densification – more cells and frequency reuse

 » Microcells – antennas move to buildings, hills, and lamp posts
 » Femtocells – antennas to create small cells in buildings
Cell splitting

- Cell size ~ 6.5-13Km, Minimum ~ 1.5Km
 » Again, for early systems
- Requires careful power control and possibly more frequent handoffs for mobile stations
- A radius reduction by F reduces the coverage area and increases the number of base stations by F^2

Cell sectoring

- Cell divided into wedge shaped sectors
- 3-6 sectors per cell, each with own channel set
- Subset of cell’s channel, use of directional antennas

Overview

- Cellular principles – “classic” view
 » A bit of history
 » Cellular design
 » How does a mobile phone call take place?
 » Handoff
 » Frequency Allocation, Traffic Engineering
- Early cellular generations: 1G, 2G, 3G
- Today’s cellular: 4G – LTE
- Emerging: 5G widely advertised

Some slides based on material from
“Wireless Communication Networks and Systems”
Overview of Cellular System

Elements of a cellular system

- Base Station (BS): includes antenna, a controller, and a number of transceivers for communicating on the channels assigned to that cell
- Controller handles the call process between the mobile unit and the rest of the network
- MTSO: Mobile Telecommunications Switching Office, serving multiple BSs. Connects calls between mobiles and to the PSTN. Assigns the voice channel, performs handoffs, billing

MTSO Sets up Call between Mobile Users

- Mobile unit initialization
- Mobile-originated call
- Paging
- Call accepted
- Ongoing call
- Handoff

Paging

- Broadcast mechanism to locate a target mobile unit
- Normally, there is knowledge on a limited number of cells where the mobile may be (Location Area in GSM, Routing Area if data packet sessions)
- GSM: neighbor cells grouped in Location Area and subscriber only updates when moving across. Paging restricted to the Location Area itself.
 » How do we assign cells to LAs?
Handoff Strategies Used to Determine Instant of Handoff

- Metrics related to handoff:
 - Call blocking probability: probability of a new call being blocked
 - Call dropping probability: probability that a call is terminated due to a handoff
- Possible strategies for scheduling handoffs:
 - Relative signal strength – \(L_1 \)
 - Relative signal strength with threshold \(T_{h2} \) – \(L_2 \)
 - Relative signal strength with hysteresis \(H \) – \(L_3 \)
 - Relative signal strength with hysteresis and threshold \(T_{h1} \) or \(T_{h3} \) – \(L_4 \)
 - Prediction techniques

Example of Handoff

Mobile Radio Propagation Effects

- Signal strength
 - Must be strong enough to maintain signal quality at the receiver
 - Must not be so strong as to create too much co-channel interference with channels in another cell using the same frequency band
 - Fading may distort the signal and cause errors
- Mobile transmission power minimized to avoid co-channel interference, alleviate health concerns and save battery power
- In systems using CDMA, need to equalize power from all mobiles at the BS

Handoff implementations

- GSM/W-CDMA
 - Inter-frequency handovers will measure the target channel before moving over
 - Once the channel is confirmed OK, the network will command the mobile to move and start bi-directional communication there
- CDMA2000/W-CDMA(same)
 - Both channels are used at the same time – soft handover
- IS-95 (inter-frequency)
 - Impossible to measure channel directly while communicating. Need to use pilot beacons. Almost always a brief disruption.
Open and Closed Loop Power Control

- Open loop power control: BS sends pilot
 - Used by mobile to acquire timing and phase reference, and to assess channel attenuation
 - Mobile adjust power accordingly
 - Assume up and down channels are similar
 - Can adjust quickly but not very accurate
- Closed loop power control: power is adjust based on explicit feedback from receiver
 - Reverse signal power level, received signal-to-noise ratio, or received bit error rate
 - Mobile to BS: BS base station sends power adjustment command to mobile based on observed signal
 - BS to mobile: BS adjust power based on information provided by mobile

Fixed Channel Assignment (FCA)

- Each cell is allocated a predetermined set of voice channels.
- Any call attempt within the cell can only be served by the unused channels in that cell
- If all the channels in that cell are being used the call is blocked → user does not get service
- A variation of FCA: the cell whose channels are all being used is allowed to borrow channels from the next cell. MTSO supervises this operation.

Dynamic Channel Assignment (DCA)

- Channels are not permanently assigned to cells. Instead, for each request the BS requests a channel from the MTSO.
- MTSO allocates a channel using an algorithm that takes many factors into account
 - The likelihood of future blocking within the cell, the frequency of use of the candidate channel, the reuse distance of the channel, and other cost functions.
 - MTSO only allocates a channel if it is not being used in the restricted distance for co-channel interference
- DCA can use channels more effectively but incurs measurement, communication, and computer overhead

Traffic Engineering

- If the cell has L subscribers..
- ... and can support N simultaneous users.
- If L<=N, nonblocking system
 - If L>N, blocking system
- Questions operator cares about:
 - What is the probability of a call being blocked?
 - What N do I need to upper bound this probability?
 - If blocked calls are queued, what is the average delay?
 - What capacity is needed to achieve a certain average delay?
- Difficult problem but important