Wireless Security

Definition: Wireless Security

• “Wireless network security primarily protects a wireless network from unauthorized and malicious access attempts.
• … Typically, wireless network security is delivered through wireless devices (usually a wireless router/switch)
• … which encrypts and secures all wireless communication by default.”

Common Security Types

Wired Equivalent Privacy (WEP)

• Security algorithm for IEEE 802.11
• Part of original 802.11 ratified in 1997 to provide confidentiality, which the traditional wired network did not provide
• WEP uses 40 or 104 bit keys.
• WEP has now been replaced by Wi-Fi Protected Access (WPA)

Wi-Fi Protected Access (WPA)

• Developed because of weaknesses found in WEP
• WPA also referred to as IEEE 802.11i standard (WPA2 released in 2004)
• Instead of 40 or 104 bit keys, uses Temporal Key Integrity Protocol (TKIP)
• TKIP dynamically generates new 128-bit key for each packet

Wired Equivalent Privacy (WEP) Algorithm

• Uses RC4 stream cipher (now unsafe)
• uses 40-bit key (WEP-40) and is concatenated with a 24-bit initialization vector (IV) to form the RC4 key
• This key stream is then used to encrypt the plain text using XOR
• This produces the cipher text which is then sent.
Wi-Fi Protected Access (WPA/WPA2) Algorithm

- WPA uses Temporal Key Integrity Protocol (TKIP) uses a unique key for each packet that is dynamically generated (128 bits)
- WPA2 encrypts the network with a 256-bit key and uses the encryption method called AES (Advanced Encryption Standard)
- Includes message integrity check to prevent altering and resending of data packets.

A few Security Issues with WPA/WPA2

- Weak Password
- WPA packet decryption: injection attacks
- No forward secrecy: once an adverse person discovers the pre-shared key, they can decrypt all encrypted Wi-Fi packets transmitted in the future and even past
- Predictable Group Temporal Key (GTK): The random number generator is not entirely random

Wireless Security Publication #1: Keystroke Recognition Using Wi-Fi Signals

- Keystroke privacy is critical
- WiFi signals can be exploited to recognize keystrokes
- While typing a certain key, your hands and fingers move in a certain formation and direction, which generates a unique pattern in the time series of Channel State Information (CSI) values.
- This produces a CSI waveform
- This paper proposes a system to recognize keystrokes called WiKey.
- WiKey uses simply a router (sender) and a laptop (receiver) and achieves 97.5% detection rate for detecting keystroke, and 93.5% accuracy for continuously typed sentences.
Definition: Channel State Information (CSI)

In wireless communications, channel state information (CSI) refers to known channel properties of a communication link. This information describes how a signal propagates from the transmitter to the receiver and represents the combined effect of, for example, scattering, fading, and power decay with distance.

Typical keystroke recognition approaches

- **Acoustic emission**: different keys produce different typing sounds or sounds from keys arrive at surrounding smartphones at different times.
- **Electromagnetic emission**: electromagnetic emanations from the circuit underneath are different for each key.
- **Computer Vision**: recognize keystrokes with a camera.

WiKey System

- WiFi signals can be exploited based on how keystrokes affect how the signal propagates (affects the Channel State Information (CSI)).
- They call this the CSI-waveform.
- Because of high data rates, WiFi cards provide enough CSI values within the duration of a keystroke to construct a high resolution CSI-waveform for each keystroke.

![Figure 1: WiKey System](image)

Technical Challenges

1. Finding the beginning and the end points of individual keystrokes
2. Distinguishing features for each of the 37 keys
 - Typical features such as power, mean amplitude, rate of change and signal energy cannot be used because these are almost identical between keys.
 - Discrete Wavelet Transform (DWT) is used to reduce the number of samples but still preserve the shape. Classification is done based on shape of the wave.

![Figure 2: Original and filtered CSI time series](image)
Steps to filtering CSI-Waveform

1. **Channel State Information**: All information about the channel state
2. **Noise Removal**: Low Pass Filtering
 1. Frequencies due to hand movements are between 3Hz and 80Hz
3. **Noise Removal**: PCA Based Filtering
 1. Maximizes variance of data
 2. Minimizes mean squared distance
4. **Keystroke Extraction**
5. **Feature Extraction**

Keystroke Waveforms

(a) Keystroke waveforms for key 1 (b) Keystroke waveforms for key o

Conclusion: Keystroke Recognition Using Wi-Fi Signals

- WiKey achieves 97.5% detection rate for detecting keystroke, and 93.5% accuracy for continuously typed sentences.
- This only works in a controlled environment.
- Future testing will be conducted in harsher wireless environments.

Wireless Security Publication #2: Acoustic Eavesdropping through Wireless Vibrometry

Teng Wei, Shu Wang, Anfu Zhou and Xinyu Zhang

University of Wisconsin - Madison, Institute of Computing Technology, Chinese Academy of Sciences
Acoustic Eavesdropping through Wireless Vibrometry

- **Acoustic eavesdropping** is used to decode a lot of subtle acoustic sounds like keystrokes and printers, but is only useful if the microphone is in close proximity.
- Loudspeakers refer to anything from large entertainment systems to your PC or smartphone loudspeakers.
- Loudspeakers cause acoustic vibration.
- This paper is based on decoding noises emitted by loudspeakers from a distance.
- The vulnerability lies in the translation between acoustic vibration and radio signal fluctuation.
- Contaminated radio waves can be captured by a receiver and decoded to find the original sound coming from the loudspeakers.

Reflective Vibrometry

- Adversary: pair of radio transmitter and receiver.
- Transmitter continuously sends radio signals as receiver decodes the sound vibration from the signals disturbed by the loudspeaker vibration.

Emissive Vibrometry

- Adversary: radio receiver.
- Target loudspeaker is located near a WiFi radio on the same platform (smartphone).
- Loudspeaker's motion causes tiny variation in the WiFi radio’s outgoing signals, which is then heard and recovered by the receiver.

Basic Audio-radio Transformation (ART) Algorithm

- Audio vibrations modulate the radio signal magnitude/phase.
- Harnesses the received signal strength (RSS) and phase information to “demodulate” acoustic signals from the target loudspeaker.
- Isolates irrelevant radio signal components.
- Extrapolates the audio signals.
- Projects them onto the time-domain (which is audible to humans).
Demodulating Transformed Audio

- Get one audio sample from every \(m \) radio samples.
- For each radio sample, we segment it into \(S \) segments containing \(m \) samples.
- FFT - time-frequency domain translation to get this closer to human hearing.
- Bandpass filter to keep only frequencies between 20 Hz and 1500 Hz (range of human voice).

Conclusion:
Experimental Validation of Accuracy vs. Microphone

![Image](https://www.example.com/image.png)

Figure 15: ART hardware platform. Testing ART inside a conference room.

Figure 16: Testing ART performance. Loudspeaker is inside a soundproof room.

Figure 17: Through-wall recognition accuracy of ART compared with a microphone.

Wireless Security Publication #3: **SafeSlinger: Easy-to-Use and Secure Public-Key Exchange**

- Security on the internet is entirely a leap of faith for users without more advanced knowledge.
- **SafeSlinger** is a system currently on Android and iOS apps.
- It allows users to exchange public keys between each other to support secure messaging and file exchange.
- Also provides an API for importing applications’ public keys into the user’s contact information.
- **SafeSlinger** proposes “secure introductions” to help ensure that messages sent between two people with the same public key are safe from attackers.

- https://www.youtube.com/watch?v=IFXL8fUqNKY
Comparable Security Protocols

- SSL/TLS (Secure Socket Layer / Transport Layer Security)
 - Uses generated unique keys and TLS handshake protocol, and uses a message authentication code (MAC) to prevent altered data.
 - Drawbacks: Many known attacks including timing attacks on padding and RC4 (keystream) attacks.

- PGP (Pretty Good Privacy)
 - Encrypts data using random key, encrypts key using public key from receiver.
 - Receiver decrypts random key using private key and uses that to decrypt the data.
 - Drawbacks:
 - Key maintenance is difficult administratively
 - Organizations cannot secure large files this way
 - No email receipt confirmation
 - Cannot scan incoming PGP email with anti-virus

Goals of SafeSlinger

- Scalable: can be done in groups
- Easy to use: usability of interface
- Portability: support heterogeneous platforms to enable interactions among smartphones of different manufacturers and OS (operating systems)
- Authenticity: each user should be able to obtain correct contact information from other users
- Secrecy: contact information is only available to other group members after the completion of a physical exchange to authenticate

Multi-Value Commitments

- Cryptographic commitment protocol is used to lock an entity to the value V without letting them know what V is
 - Ex. $C = H(V,R)$
 - C is the commitment value, H is the cryptographic hash function that is one-way, collision free and has pseudo-random output if R is a random and unpredictable one-time use input
 - V cannot be inferred from C
 - Multi-Value: $C = H(H(V1) || H(V2))$
 - $(|| = \text{concatenated with})$

Possible Attacks on SafeSlinger

- Malicious Bystander: someone who overhears the non-digital agreement and can attack the protocol by controlling the local wireless communication performing Man-in-the-Middle attack
- Malicious Group Member: A member who impersonates someone else by injecting incorrect information for another user.
- Information Leakage after protocol abort: Adversary may be able to cause a protocol abort and trigger leakage.
Secure Information Exchange Sequence

Figure 5: Secure contact information exchange sequence.

Works Cited

