Outline

- Data link fundamentals
 - And what changes in wireless
- Aloha
- Ethernet
- Wireless-specific challenges
- 802.11 and 802.15 wireless standards

"Regular" Ethernet
CSMA/CD

- Multiple Access: multiple hosts are competing for access to the channel
- Carrier-Sense: make sure the channel is idle before sending – "listen before you send"
- Collision Detection: collisions are detected by listening on the medium and comparing the received and transmitted signals
- Collisions result in 1) aborting the colliding transmissions and 2) retransmission of the packets
- Exponential backoff is used to reduce the chance of repeat collisions
 - Also effectively reduces congestion

Carrier Sense Multiple Access/Collision Detection (CSMA/CD)

Packet?

Sense Carrier

Send

Detect Collision

No

Yes

Discard Packet

Jam channel

b=CalcBackoff()

; wait(b); attempts++;

attempts < 16

attempts == 16
Ethernet Backoff Calculation

- **Challenge:** how do we avoid that two nodes retransmit at the same time collision?
- **Exponentially increasing random delay:**
 - Infer “number” senders from # of collisions
 - More senders \(\rightarrow\) increase wait time
- **First collision:** choose K from \(\{0,1\}\); delay is K x 512 bit transmission times
- **After second collision:** choose K from \(\{0,1,2,3\}\)
- **After ten or more collisions,** choose K from \(\{0,1,2,3,4,\ldots,1023\}\)

p-persistent scheme:
- Transmit with probability p once the channel goes idle
 - Delay the transmission by \(t_{\text{prop}}\) with the probability (1-p)

1-persistent scheme: \(p = 1\)
- E.g. Ethernet

nonpersistent scheme:
- Reschedule transmission for a later time based on a retransmission delay distribution (e.g. exp backoff)
 - Senses the channel at that time
 - Repeat the process
- **When is each solution most appropriate?**

How to Handle Transmission When Line is Sensed Busy

- **Collisions**
 - Collisions will happen: nodes can start to transmit “simultaneously”
 - Vulnerability window depends on length of wire
 - Recovery requires that both transmitters can detect the collision reliably
 - Clearly a problem as shown on previous slide
 - **How can we guarantee detection?**
 - Packets must be “long enough” and,
 - Wires must be short enough
 - This guarantees that ALL nodes will see both packets simultaneously, i.e., see the collision
 - Not really relevant to wireless

Dealing with Collisions

- When is each solution most appropriate?
So What about Wireless?

- Depends on many factors, but high level:
 - Random access solutions are a good fit for data in the unlicensed spectrum
 » Lower control complexity, especially for contention-based protocols (e.g., Ethernet)
 » There may not always be a centralized controller
 » May need to support multi-hop
 » Also used in many unlicensed bands
- Cellular uses scheduled access
 » Need to be able to guarantee performance
 » Have control over spectrum – simplifies scheduled access
 » More on this later in the course

Summary

- Wireless uses the same types of protocols as wired networks
 » But it is inherently a multiple access technology
- Some fundamental differences between wired and wireless may result in different design choices
 » Higher error rates
 » Must support variable bit rate communication
 » Signal propagation and radios are different

Outline

- Data link fundamentals
 » And what changes in wireless
- Aloha
- Ethernet
- Wireless-specific challenges
- 802.11 and 802.15 wireless standards

Wireless Ethernet is a Good Idea, but ...

- Attenuation varies with media
 » Also depends strongly on distance, frequency
- Wired media have exponential dependence
 » Received power at d meters proportional to 10^{-kd}
 » Attenuation in dB = $k \cdot d$, where k is dB/meter
- Wireless media has logarithmic dependence
 » Received power at d meters proportional to d^{-n}
 » Attenuation in dB = $n \cdot \log d$, where n is path loss exponent; $n=2$ in free space
 » Signal level maintained for much longer distances?
- But we are ignoring the constants!
 » Wireless attenuation at 2.4 GHz: 60-100 dB
 » In practice numbers can be much lower for wired
Implications for Wireless Ethernet

- Collision detection is not practical
 - Ratio of transmitted signal power to received power is too high at the transmitter
 - Transmitter cannot detect competing transmitters (is deaf while transmitting)
 - So how do you detect collisions?
- Not all nodes can hear each other
 - Ethernet nodes can hear each other by design
 - “Listen before you talk” often fails
- Made worse by fading
 - Changes over time!

Hidden Terminal Problem

- Lack signal between S1 and S2 and cause collision at R1
- Severity of the problem depends on the sensitivity of the carrier sense mechanism
 - Clear Channel Assessment (CCA) threshold

Exposed Terminal Problem

- Carrier sense prevents two senders from sending simultaneously although they do not reach each other’s receiver
- Severity again depends on CCA threshold
 - Higher CCA reduces occurrence of exposed terminals, but can create hidden terminal scenarios

Capture Effect

- Sender S2 will almost always “win” if there is a collision at receiver R.
- Can lead to extreme unfairness and even starvation.
- Solution is power control
 - Very difficult to manage in a non-provisioned environment!
Wireless Packet Networking Problems

- Some nodes suffer from more interference than others
 - Node density
 - Traffic volume sent by neighboring nodes
- Leads to unequal throughput
- Similar to wired network: some flows traverse tight bottleneck while others do not

Summary

- Wireless signal propagation creates problems for “wireless Ethernet”
 - Collision Detection is not possible
 - Hidden and exposed terminals
 - Capture effect
- Aloha was the first wireless data communication protocol
 - Simple: send whenever you want to
 - Has low latency but low capacity

Outline

- Data link fundamentals
 - And what changes in wireless
- Ethernet
- Aloha
- Wireless-specific challenges
- 802.11 and 802.15 wireless standards
 - 802 protocol overview
 - Wireless LANs – 802.11
 - Personal Area Networks – 802.15

History

- Aloha wireless data network
- Car phones
 - Big and heavy “portable” phones
 - Limited battery life time
 - But introduced people to “mobile networking”
 - Later turned into truly portable cell phones
- Wireless LANs
 - Originally in the 900 MHz band
 - Later evolved into the 802.11 standard
 - Later joined by the 802.15 and 802.16 standards
- Cellular data networking
 - Data networking over the cell phone
 - Many standards – throughput is the challenge
Standardization of Wireless Networks

- Wireless networks are standardized by IEEE
- Under 802 LAN MAN standards committee

ISO OSI 7-layer model

<table>
<thead>
<tr>
<th>Application</th>
<th>Presentation</th>
<th>Session</th>
<th>Transport</th>
<th>Network</th>
<th>Data Link</th>
<th>Physical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Logical Link Control</td>
<td>Medium Access (MAC)</td>
</tr>
</tbody>
</table>

IEEE 802 standards

The 802 Class of Standards

- List on next slide
- Some standards apply to all 802 technologies
 - E.g. 802.2 is LLC
 - Important for interoperability
- Some standards are for technologies that are outdated
 - Not actively deployed anymore
 - E.g. 802.6

Frequency Bands

- Industrial, Scientific, and Medical (ISM) bands
- Generally called “unlicensed” bands

<table>
<thead>
<tr>
<th>Frequency Band</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>902 - 928 MHz</td>
<td>26 MHz</td>
</tr>
<tr>
<td>2.4 - 2.4835 GHz</td>
<td>83.5 MHz</td>
</tr>
<tr>
<td>5 GHz</td>
<td>IEEE 802.11a and later</td>
</tr>
</tbody>
</table>

The 802.1 Class of Standards

- Overview Document Containing the Reference Model, Tutorial, and Glossary
- 802.1 b Specification for LAN Traffic Prioritization
- 802.1 q Virtual Bridged LANs
- 802.2 Logical Link Control
- 802.3 Contention Bus Standard
 - 802.3a Contention Bus Standard 10base 2 (Thin Net)
 - 802.3b Broadband Contention Bus Standard 10broad 36
 - 802.3d Fiber-Optic InterRepeater Link (FIRL)
 - 802.3e Contention Bus Standard 1 base 5 (Starlan)
 - 802.3f Twisted-Pair Standard 10base T
 - 802.3g Contention Bus Standard for Fiber Optics 10base F
 - 802.3h 100-Mb/s Contention Bus Standard 100base T
 - 802.3i Full-Duplex Ethernet
 - 802.3j Gigabit Ethernet
 - 802.3k Gigabit Ethernet over Category 5 UTP
- 802.4 Token Bus Standard
- 802.5 Token Ring Standard
 - 802.5b Token Ring Standard 4 Mb/s over Unshielded Twisted-Pair
 - 802.5f Token Ring Standard 16 Mb/s Operation
- 802.6 Metropolitan Area Network DQDB
- 802.7 Broadband LAN Recommended Practices
- 802.8 Fiber-Optic Contention Network Practices
- 802.9a Integrated Voice and Data LAN
- 802.10 Interoperable LAN Security
- 802.11 Wireless LAN Standard
- 802.12 Contention Bus Standard 1 OOVG AnyLAN
- 802.15 Wireless Personal Area Network
- 802.16 Wireless MAN Standard
Outline

- **802 protocol overview**
- **Wireless LANs – 802.11**
 - Overview of 802.11
 - 802.11 MAC, frame format, operations
 - 802.11 management
 - 802.11*
 - Deployment example
- **Personal Area Networks – 802.15**

IEEE 802.11 Overview

- Adopted in 1997 with goal of providing
 - Access to services in wired networks
 - High throughput
 - Highly reliable data delivery
 - Continuous network connection, e.g. while mobile
- The protocol defines
 - MAC sublayer
 - MAC management protocols and services
 - Several physical (PHY) layers: IR, FHSS, DSSS, OFDM
- **Wi-Fi Alliance is industry group that certifies interoperability of 802.11 products**

Infrastructure and Ad Hoc Mode

- **Infrastructure mode:** stations communicate with one or more access points which are connected to the wired infrastructure
 - What is deployed in practice
- **Two modes of operation:**
 - Distributed Control Functions - DCF
 - Point Control Functions – PCF
 - PCF is rarely used - inefficient
- **Alternative is “ad hoc” mode:** multi-hop, assumes no infrastructure
 - Rarely used, e.g. military
 - Hot research topic!

802.11 Architecture
Terminology for DCF

- Stations and access points
- **BSS - Basic Service Set**
 - One access point that provides access to wired infrastructure
 - Infrastructure BSS
- **ESS - Extended Service Set**
 - A set of infrastructure BSSs that work together
 - APs are connected to the same infrastructure
 - Tracking of mobility
- **DS – Distribution System**
 - AP communicates with each other
 - Thin layer between LLC and MAC sublayers

Outline

- 802 protocol overview
- Wireless LANs – 802.11
 - Overview of 802.11
 - 802.11 MAC, frame format, operations
 - 802.11 management
 - 802.11*
 - Deployment example
- Personal Area Networks – 802.15

How Does WiFi Differ from Wired Ethernet?

- Signal strength drops off quickly with distance
 - Path loss exponent is highly dependent on context
- Should expect higher error rates
 - Solutions?
- Makes it impossible to detect collisions
 - Difference between signal strength at sender and receiver is too big
 - Solutions?
- Senders cannot reliably detect competing senders resulting in hidden terminal problems
 - Solutions?

Features of 802.11 MAC protocol

- Supports MAC functionality
 - Addressing
 - CSMA/CA
- Error detection (FCS)
- Error correction (ACK frame)
- Flow control: stop-and-wait
- Fragmentation (More Frag)
- Collision Avoidance (RTS-CTS)
Carrier Sense Multiple Access

- Before transmitting a packet, sense carrier
 - If it is idle, send
 » After waiting for one DCF inter frame spacing (DIFS)
 - If it is busy, then
 » Wait for medium to be idle for a DIFS (DCF IFS) period
 » Go through exponential backoff, then send (non-persistent solution)
 » Want to avoid that several stations waiting to transmit automatically collide
 » Cost of back off is high and expect a lot of contention
- Wait for ack
 » If there is one, you are done
 » If there isn’t one, assume there was a collision, retransmit using exponential backoff

DCF mode transmission without RTS/CTS

source

Destination

other

Data

Ack

SIFS

NAV

DIFS

CW

Must defer access

Random backoff

Exponential Backoff

- Force stations to wait for random amount of time to reduce the chance of collision
 » Backoff period increases exponential after each collision
 » Similar to Ethernet
- If the medium is sensed it is busy:
 » Wait for medium to be idle for a DIFS (DCF IFS) period
 » Pick random number in contention window (CW) = backoff counter
 » Decrement backoff timer until it reaches 0
 » But freeze counter whenever medium becomes busy
 » When counter reaches 0, transmit frame
 » If two stations have their timers reach 0; collision will occur;
- After every failed retransmission attempt:
 » increase the contention window exponentially
 » 2^{i-1} starting with CW_{min} up to CW_{max} e.g., 7, 15, 31, ...

Collision Avoidance

- Difficult to detect collisions in a radio environment
 » While transmitting, a station cannot distinguish incoming weak signals from noise – its own signal is too strong
- Why do collisions happen?
 » Near simultaneous transmissions
 » Period of vulnerability: propagation delay
 » Hidden node situation: two transmitters cannot hear each other and their transmission overlap at a receiver
Request-to-Send and Clear-to-Send

- Before sending a packet, first send a station first sends a RTS
 - Collisions can still occur but chance is relatively small since RTS packets are short
- The receiving station responds with a CTS
 - Tells the sender that it is ok to proceed
- RTS and CTS use shorter IFS to guarantee access
 - Effectively priority over data packets
- First introduced in the Multiple Access with Collision Avoidance (MACA) protocol
 - Fixed problems observed in Aloha

Virtual Carrier Sense

- RTS and CTS notify nodes within range of sender and receiver of upcoming transmission
- Stations that hear either the RTS or the CTS “remember” that the medium will be busy for the duration of the transmission
 - Based on a Duration ID in the RTS and CTS
 - Note that they may not be able to hear the data packet!
- Virtual Carrier Sensing: stations maintain Network Allocation Vector (NAV)
 - Time that must elapse before a station can sample channel for idle status
 - Consider the medium to be busy even if it cannot sense a signal

Use of RTS/CTS

- Use of RTS/CTS is controlled by an RTS threshold
 - RTS/CTS is only used for data packets longer than the RTS threshold
 - Pointless to use RTS/CTS for short data packets – high overhead!
- Number of retries is limited by a Retry Counter
 - Short retry counter: for packets shorter than RTS threshold
 - Long retry counter: for packets longer than RTS threshold
- Packets can be fragmented.
 - Each fragment is acknowledged
 - But all fragments are sent in one sequence
 - Sending shorter frames can reduce impact of bit errors
 - Lifetime timer: maximum time for all fragments of frame

Some More MAC Features
Features of 802.11 MAC protocol

- Supports MAC functionality
 - Addressing
 - CSMA/CA
- Error detection (FCS)
- Error correction (ACK frame)
- Flow control: stop-and-wait
- Fragmentation (More Frag)
- Collision Avoidance (RTS-CTS)