18-452/18-750
Wireless Networks and Applications
Lecture 23: RFID and NFC

Peter Steenkiste
CS and ECE, Carnegie Mellon University

Spring Semester 2017
http://www.cs.cmu.edu/~prs/wirelessS17/

Plan, outline

• RFIDs
 » Concept and applications
 » EPC and backend processing
 » PHY and MAC
 » Security
• Near Field Communication

What is RFID?

• Radio Frequency IDentification (RFID) is a method of remotely storing and retrieving data using devices called RFID tags and RFID Readers
• An enabling technology with many applications
 » Data can be stored and retrieved from the tag automatically with a Reader
 » Tags can be read in bulk
 » Tags can be read without line of sight restrictions
 » Tags can be read once read many (WORM) or rewritable
 » Tags can require Reader authentication before exchanging data
 » Other sensors can be combined with RFID
• Technology has been around for a long time
• Also has critics, e.g. privacy concerns

How Does It Work?

How does it operate?

• RFID tags are affixed to objects and stored information may be written and rewritten to an embedded chip in the tag
• Tags can be read remotely when they receive a radio frequency signal from a reader and use the energy to respond
• Can operate over a range of distances
• Readers display tag information or send it over the network to back-end systems

What is RFID?

• A means of identifying a unique object or person using a radio frequency transmission
• Tags (or transponders) store information, that can be retrieved wirelessly in an automated fashion
• Readers (or interrogators), either stationary and handheld, can read/write information from/to the tags
Applications

- **Operational Efficiencies**
 - Shipping and Receiving
 - Warehouse management
 - Distribution
 - Asset management

- **Total Supply Chain Visibility**
 - Inventory visibility in warehouses
 - In-transit visibility, asset tracking
 - Pallet, case level
 - Item, instance level

- **Shrinkage, counterfeit**
 - Reduce internal theft
 - Reduce process errors
 - Avoid defensive merchandizing
 - Product verification
 - Origin, transit verification

- **Security, Regulations**
 - Total asset tracking
 - Defense supplies
 - Container tampering
 - Animal Tracking

Automated Identification Technology Suite

<table>
<thead>
<tr>
<th>Linear Bar Code</th>
<th>CMB Contact Memory Button</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D Symbol QR Code</td>
<td>Smart Card/CAC</td>
</tr>
<tr>
<td>OMC Optical Memory Card</td>
<td>RFID - Active Radio Frequency ID</td>
</tr>
<tr>
<td>STS Satellite-Tracking System</td>
<td>RFID - Passive Radio Frequency ID</td>
</tr>
</tbody>
</table>

RF ID Types

- **Passive Tags:** rely on an external energy source to transmit
 - In the form of a reader that transmits energy
 - Relative short range
 - Very cheap

- **Active Tags:** have a battery to transmit
 - Has longer transmission range
 - Can initiate transmissions and transmit more information
 - A bit more like a sensor

- **Battery Assisted Passive tags are a hybrid**
 - Have a battery transmit
 - But need to be woken up by an external source

A Bit of History

- **Early technology was developed in the 40s**
 - Originally used as eaves dropping devices
 - Used reflected power to transmit (transponder), e.g. the membrane of a microphone

- **First RF IDs were developed in the 70s**
 - Combines transmission based on reflected energy with information in memory – can now distinguish devices

- **Dramatic growth in last decade as a result of mandates**
 - Big organizations (DOD, Walmart) requiring the use of RFIDs from their vendors for easy inventory control

- **Now used in increasingly larger set of applications**
Standards

- Passive tags operate in the LF, HF, and UHF unlicensed spectrum
 - 30-300 KHz, 3-30 MHz, 300-3000 MHz
 - Distance drop with frequency
- Transmission consists of a bit stream and CRC
- Many standards exist, mostly incompatible
 » Early standards mostly defined by the ISO
 » Widely used standard: ISO/IEC14443
- In 2003 EPCGlobal was formed to promote RFID standards
 » Defined a standard for the Electronic Product Code (EPC)
 » Also defined standards for coding and modulation

Primary Application Types

Identification and Localization
- Readers monitoring entering and exiting a closed region
 » security (RFID in identification cards)
 » automatic ticketing (NFC on mobile phone)
- Readers tracking an RFID-tagged object
 » business process monitoring (RFID tags on pallets)
- Tags marking a spatial location
 » an NFC enabled mobile phone passes tags in the infrastructure whose location is known

Example: Smart Card

Public transport system in Singapore
- FeliCa Smart Card
- 2001 – 2009
- faster boarding times
- Other uses
 » small payments retail
 » identification
- Replaced by contactless card (RFID)

Plan, outline

- RFIDs
 » Concept and applications
 » EPC and backend processing
 » PHY and MAC
 » Security
- Near Field Communication
Electronic Product Code (EPC)

• "A Universal identifier for physical objects"
 » EPC is designed to be unique across all physical objects in the world, over all time, and across all categories of physical objects.
 » It is expressly intended for use by business applications that need to track all categories of physical objects, whatever they may be.
 » urn:epc:id:sgtin:0614141.012345.6285210cc Syringe #62852 (trade item)

• Combine
 » EPC data located on the RFID tag
 » Reader’s middleware
 » locate EPC Information Services (EPCIS), using Web Services like SOAP and WSDL

EPC Network Concept (2001)

What information does an RFID tag contain?

Passive RFID Tags

• Power supply
 » passive: no on-board power source, transmission power from signal of the interrogating reader
 » semi-passive: batteries power the circuitry during interrogation
 » active: batteries power transmissions (can initiate communication, ranges of 100m and more, 20$ or more)

• Frequencies
 » low frequency (LF): 124kHz – 135 kHz, read range ~50cm
 » high frequency (HF): 13.56 MHz, read range ~1m
 » ultra high-frequency (UHF): 860 MHz – 960 MHz (some also in 2.45GHz), range > 10m
Frequency Bands

Passive RFID Tags

Electromagnetic Spectrum

- **Radio Waves**
- **Infrared**
- **Visible Light**
- **Ultra-Violet**
- **X-Rays**
- **Gamma Rays**
- **Cosmic Rays**

The "RFID" Frequencies

- **VLF**: 125-134 kHz
- **LF**: 13.56 MHz
- **HF**: 860-930 MHz
- **VHF**: 2.45 and 5.8 GHz

Standards

- ISO 18000: multipart standard for protocols in LF, HF, and UHF bands
- For example, HF:
 - ISO 14443 (A and B) for "proximity" RFID
 - ISO 15693 for "vicinity" RFID (basis for ISO 18000 part 3)
- Two classes:
 - Class 0: read only
 - Class 1: read/write, can for example be used for tracking

Transmission methods

- **LF and HF**: inductive coupling
 - coil in the reader antenna and a coil in the tag antenna form an electromagnetic field
 - tag changes the electric load on the antenna.
- **UHF**: propagation coupling: backscatter
 - tag gathers energy from the reader antenna
 - microchip uses the energy to change the load on the antenna and reflect back an altered signal
 - Different modulations used by reader and tag

PHY Layer

- Depends on the frequency band used
- Different modulations used by reader and tag
 - Different constraints, e.g. power and complexity
 - E.g. cannot used amplitude modulation for HF tag (why?)
- Example of EPCGlobal symbols for UHF

From: http://www.highfrequencyelectronics.com/Archives/Aug05/HFE0805_RFIDTutorial.pdf
What does an RFID tag look like inside a card?

MAC Layer

- Typically assumed that only one reader is present, i.e. no need for MAC on the reader
- MAC for tags is a challenge: very high concentrations of tags are present in many contexts
 - And tags are dumb, i.e. cannot have sophisticated protocols
- Two types of schemes used (standard):
 - Binary tree resolution: reader explores a tree of relevant tag values
 - Aloha: tags transmit with a random backoff

General Security Concerns

- RFID tags raise a number of security concerns:
 - Privacy risks, e.g., eavesdropping
 - Cloning and forging of tags
- Specific disadvantages due to tag limitations
 - Encryption algorithms are too complex to be implemented on tags
- But also specific advantages:
 - Tags are slow to respond, maximum no. of read-out operations
 - Adversary has to be physically close
Privacy Concerns

- **Tracking**
 - Depends only on unique id (even if random)
 - Today:
 - automated toll-payment transponders
 - loyalty cards
 - Future: pervasive availability of readers

- **Inventorying**
 - Invisible items become visible
 - Libraries
 - Passports
 - Human implants: VeriChip
 - Medical record indexing
 - Physical access control
 - Future: pervasive availability of readers

Privacy for Business Networks

- **Major concern for industry:**
 - Supply chain visibility
 - Supply chains and business networks are business assets
 - Example provenance checking: competitors may be able to get a lot of information
 - Where an object and its parts were manufactured
 - When it was manufactured
 - By which sub-contractors
 - Who are the suppliers of a company
 - Which companies are the customers of a company

Reading Ranges

- Controlling reading range can limit privacy risk
- Nominal read range (RFID standards and product specifications):
 - 10cm for contactless smartcards (ISO 14443)
- Rogue scanning range: sensitive reader with more powerful antenna or antenna array
 - 50cm
- Tag-to-reader eavesdropping range: need to power the tag limits range for passive RFIDs
 - Eavesdropping on communication while another reader is powering the smartcard: > 50cm
- Reader-to-tag eavesdropping: readers transmit at much higher power

Use for Authentication

- **RFID tags** uniquely identify objects
- Many proposals to use tags for authentication
 - Passport or driver's licence
 - Identification of stolen goods
- Counterfeiting attack
 - Scanning and replicating tags
- Possible options
 - EPC:
 - Simple bitstring
 - No access-control
 - VeriSign:
 - Digital signing
 - Against forging but not cloning
Plan, outline

• RFIDs
 » Concept and applications
 » EPC and backend processing
 » PHY and MAC
 » Security
• Near Field Communication

Near Field Communication (NFC)

• One device combines the functionality of
 » An RFID reader device
 » An RFID transponder (tag)
 » Bit rates ranging from 106 Kbs to 424 Kbs
• Integral part of mobile devices (e.g. mobile phones)
 NFC components can be accessed by software to
• Operates at 13.56 MHz (High frequency band)
 and is compatible to international standards:
 » ISO/IEC 18092 (also referred to as NFCIP-1),
 » ISO/IEC 14443 (smart card technology, "proximity coupling devices")
 » ISO/IEC 15693 ("vicinity coupling devices").
• Use of NFC is growing fast
 » Driven by NFC Forum (founded by Nokia, Philips, and Sony in 2004)
 » http://www.nfcworld.com/nfc-phones-list/#available

NFC Devices

Modes of operation
• Smart Card emulation (ISO 14443):
 » Phone can act as a contactless credit card
 » Information can be generated rather than pre-stored
• Reader mode
 » Allows NFC devices to access data from an object with
 an embedded RFID tag
 » Enables the user to initiate data services, i.e., retrieval of
 rich content, advertisements, ...
• Peer-to-peer (ISO 18092)
 » Allows two way communication between NFC devices
 » NFC can act as smart tag, i.e., generates information

Active and Passive Communication Modes

• Passive communication: one device acts as a
 reader and the other as a tag
 » Reader generates a field while the other responds
 » The second device can be a tag or another NFC device
• Active communication: both devices
 alternatively act as readers
 » Allows fairly general two way communication
 » Both devices must have a battery
• Since NFC devices can read and write, they
 must check for collisions
 » Compare received signal with transmitted signal
Comparison: Main Applications

<table>
<thead>
<tr>
<th>RFID</th>
<th>NFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Retail</td>
<td>• Mobile payment</td>
</tr>
<tr>
<td>• Logistics</td>
<td>• Mobile ticketing</td>
</tr>
<tr>
<td>• Supply chain management</td>
<td>• Pairing of devices (esp. Bluetooth devices)</td>
</tr>
<tr>
<td>» accurate inventories</td>
<td>• Download of information from "smart posters"</td>
</tr>
<tr>
<td>» product safety and quality</td>
<td></td>
</tr>
</tbody>
</table>