18-452/18-750
Wireless Networks and Applications
Lecture 1: Course Organization and Overview
Peter Steenkiste
Carnegie Mellon University
Spring Semester 2017
http://www.cs.cmu.edu/~prs/wirelessS17/

Outline
- Goals and structure of the course
- Administrative stuff
- A bit of history
- Wireless technologies
- Building a network
- Please ask questions!

Goals of the Course
- Learn about the unique challenges in wireless networking
 - Starting point is “regular” wired networks
- Gain an understanding of wireless technologies at the physical, MAC, and higher layers
 - Physical layer essentials for computer systems types
 - Focus is on the wireless protocol layer
 - Implications for the higher layers of the protocol stack
- Get experience in working with wireless networks and devices
 - Measurements of a wireless network
 - Implementing wireless protocols, algorithms

Lectures
- Introduction
 - Why are wireless networks so interesting?
 - A very quick overview of networking
- Physical layer concepts (~5)
 - Focus on understanding the impact on higher layers
 - Not an in-depth course on the communications field!
- LANs and WiFi (~6)
- Cellular networks (~3)
- Other technologies; PAN, RFID, NFC, …. (~5)
- GPS, localization, sensing (~3)
- Deployments: sensor networks, ad hoc, …
Projects

- Projects are hands-on, team-based
- Measurement project to improve your understanding of wireless link properties
 - Measure signal strength and other signal properties
 - How do they relate to the physical context?
- Design, implement and evaluate some wireless protocol, algorithm or system
 - Needs to deal with the unpredictable nature of wireless links and with mobility
 - Multi-phase projects: start small and work your way up to larger networks
 - Define your own project or set project

Survey Presentations

- Present a survey of a particular wireless topic to the class
- Done in small teams
- Survey is based on research papers
 - Pick from a list of topics or define your own topic
 - Initial set of papers provided for the list
- Goals are:
 - Learn about a specific topic in depth
 - Develop critical thinking skills
 - Improve your presentation skills

Graduate versus Undergraduate Course Numbers

- The course content is the same, but ..
- They are treated as separate courses:
- Different questions on the tests
 - Some questions will be shared
- Different levels of expectation for projects and surveys
 - E.g., original versus set project
- Final grades are assigned as separate pools
- The expectation is that students sign up for the course number that matches their status
 - Talk to the instructor if you want to sign up for the “wrong” course number, e.g., IMB students

Prerequisites

- This course assumes you have taken an “Introduction to Computer Systems” course
 - For example based on the O’Hallaron and Bryant book
- We will also build on basic networking and signals but the course includes introductory material on these topics
- Programming experience
 - C/C++ programming for the project
- Course should be accessible to students with a broad range of backgrounds, but …
- I don’t know you, so please ask questions when something is not clear!
Grading

Grade distribution:
- Homeworks: 12%
- Project 1: 8%
- Project 2: 25%
- Survey: 10%
- Midterm: 15%
- Final: 30%

Administrative Stuff

 - Best fit for the course
- The course is not based on the book
 - The book should be used to read about the topics covered in class, e.g., to clarify points or get more depth
 - Book does not cover all the material in the book, but slides are detailed
- Web page is primary source for information
 - Lecture material
 - Office hours, contact information, ...
 - Dates for quizzes, exams and project deadlines

More Administrative Stuff

- Lectures are Mo/We 2:30-4:30
 - But lectures will typically be 80 minutes
 - May go longer, e.g., to make up time for travel
- Recitations are Fr 10:30-noon
 - There will relatively few recitations, mostly to talk about the projects
 - May use recitation slot for make up lectures
- This course does not use blackboard
- Course admin is Ms. Malloy – Gates 9006
 - Pick up or drop off assignments
- Teaching assistants: TBD

Collaboration

- Traditional rules of collaboration apply
- You must complete individual assignments and tests by yourself
- You must collaborate with your partner in the team-based projects
- It is acceptable and encouraged to help fellow students with generic problems
 - E.g. where to find documentation, use of tools, ...
- Provide proper credit when reusing material
 - But check with instructor or TAs first
Course Material

- Most slides were prepared by the course instructor
- Some slides contain material from other sources
 - Previous co-instructors have contributed slides
 - Some figures are taken from the textbook
 - Some lectures contain material from other sources

Outline

- Goals and structure of the course
- Administrative stuff
- A bit of history
- Wireless technologies
- Building a network

Some History...

- Tesla credited with first radio communication in 1893
- Wireless telegraph invented by Guglielmo Marconi in 1896
- First telegraphic signal traveled across the Atlantic ocean in 1901
- First “cell phone” concept developed in 1946
 - Data communication introduced in ???
- GPS project started in 1973, complete in 1995
- WiFi technology developed in the mid-1990s

Scope of Wireless Covered in the Course

- Wireless in unlicensed band
 - WiFi, Bluetooth, ...
- Cellular technologies in licensed spectrum
 - Cover all generations with a focus on LTE
- Other wireless communication technologies
 - RFID/NFC, low-power wireless, satellite, UWB, visible light communication, ...
- Localization and sensing
 - GPS, Wifi for localization and sensing, ...
- Wireless deployments
 - Infrastructure WiFi, ad hoc, sensor networks, vehicular, DTN, ...

Some topics covered in surveys
The origin of mobile phone

- America’s mobile phone age started in 1946 with MTS
- First mobile phones bulky, expensive and hardly portable, let alone mobile
 - Phones weighed 40 Kg
- Operator assisted with 250 maximum users

Cell Phones Today

Some statistics for the US:
- Two hundred trillion text messages/day
 - Average US teens sends 3339 texts per month
 - 42% of teens can text while blind folded
 - No 2 use of cellphones (what is No 1?)
- People use their phones for lots of things
 - Take pictures (83%), play music (60%) and games (46%)
 - Exchange videos (32%), access the web (27%) and social networks (23%)
 - Only was of accessing the Internet for many people
- It is a big business
 - Dollars spent on mobile devices: 42.8 M$ (2010) versus 1.8 B$ (2015)

Short History of WiFi

- In 1985, the FCC opened up the 900 Mhz, 2.4 GHz and 5.8 GHz bands for unlicensed devices
- NCR and AT&T developed a WiFi predecessor called “Wavelan” starting in 1988
 - NCR wanted to connect cashier registers wirelessly
 - Originally used the 900 Mhz band and ran at 1 Mbps
- Standardization started in early 90s and led to 802.11b (1999) and 802.11a (2000)
 - Pre-standard products were available earlier
- Today –many standards!
 - Working on 802.11aq - rates up to several 100 Mps
 - Very sophisticated technology: OFDM, MIMO, multi-user MIMO,..
Early WiFi Interfaces

Wavelan at 900MHz
1 Mbps throughput

PCMCIA form factor make Wavelan more portable

Trends in Wireless

- Early days: specialized applications
 - Broadcast TV and radio, voice calls, data, ..
 - Holds for wireless and wired
- Today: flexible wireless platforms
 - Phones, tables, and laptops all run similar applications
 - Same trend as for wired networks: the internet took over
- Wireless is expanding in new domains
 - Sensor networks, body area networks, ...
 - Edge of the internet is increasingly wireless
 - Many of these applications are unique to wireless
- Future?

Wireless Technologies

Why so many?

- Diverse application requirements
 - Energy consumption
 - Range
 - Bandwidth
 - Mobility
 - Cost
- Diverse deployments
 - Licensed versus unlicensed
 - Provisioned or not
- Technologies have different
 - Signal penetration
 - Frequency use
 - Cost
 - Market size
 - Age, integration
Outline

- Goals and structure of the course
- Administrative stuff
- A bit of history
- Wireless technologies
- Building a network
 - Designing a BIG system
 - The OSI model
 - Packet-based communication
 - Challenges in Wireless Networking

The Internet is Big and Has Many, Many Pieces

How do you design something this complex?

What Do We Definitely Need?

- We must have communication hardware and applications
 - Applications make the network useful and fun
- Two “devices” must be able to send data to each other
 - When directly connected to each other
- The design must allow the network to grow very big and to always be available
 - We need to be able to expand, fix, and improve the network
 - While it is up and running: you cannot reboot the Internet

Protocol Enable Communication

- An agreement between parties on how communication should take place.
- Protocols may have to define many aspects of the communication.
- Syntax:
 - Data encoding, language, etc.
- Semantics:
 - Error handling, termination, ordering of requests, etc.
- Protocols at hardware, software, all levels!
- Example: Buying airline ticket by typing.
 - Syntax: English, ascii, lines delimited by “
”
Do We Only Need Protocols?

- No: we need to build a (very big) system
- Need to also deal with significant complexity and scalability
 - Many, many pieces of components
 - Many parties involved in building and running the network
 - Very long life time and the need to evolve
- The solution for dealing with complexity is modularity: break up the Internet “system” in a set of modules with well-defined interfaces
 - Each module performs specific functions
 - Can build a large complex system from modules implemented by many parties
- Let us start with multiple protocols …

Solution #1

Need to More Add Structure

- Adding structure implies that you prevent people from doing arbitrary (= silly) things
 - Can we organize the modules in a certain way?
- What modules do we definitely need in the Internet?
 - Hardware modules that allow us to send bits around
 - Applications that make the network useful for users
- Do we need additional modules “in between” the applications and the hardware?

Solution #2?

Does not scale!
Solution #3

- Web
- FTP
- Telnet
- Voice

Intermediate Layer

- Tw. Pair
- Coax
- Optical
- Wireless

Improves development scalability
But what about heterogeneous deployments?

Let Us Try to be More Concrete and Practical

- Two or more hosts talk over a wire
- Groups of hosts can talk at two levels
 - Hosts talk in a network is homogeneous in terms of administration and technology
 - Hosts talk across networks that have different administrators and use different technology
- We run some applications over that

Protocol and Service Levels

- Application
- Inter-network
- Core Networks
- Hardware

- Having two different types of protocols helps with scalability and network management

A Bit More Detail

- Physical layer delivers bits between the two endpoints of a “link”
 - Copper, fiber, wireless, visible light, ...
- Datalink layer delivers packets between two hosts in a local area network
 - Ethernet, WiFi, cellular, ...
 - Best effort service: should expect a modest loss rate
 - “Boxes” that connect links are called bridges or switches
- Network layer connects multiple networks
 - The Inter-net protocol (IP)
 - Also offers best effort service
 - Boxes that forward packets are called routers

Scaling up the network