Cellular Handsets
Performance & end-user experiences
Fatema Almeshqab

Introduction
• Smartphones **global 2016 shipments** reached a record high 1.5 billion units
• 3 percent year-over-year increase
• Need for increase of Quality of Experience (QoE)
 • The degree of delight or annoyance of the user of an application or service (web browsing, phone call, TV broadcast, call to a Call Center).

Statistics on User Experiences
• 2/3 of cellular handsets users encounter slow websites weekly\(^{(1)}\)
• 49% of these users abandon the website
• Users’ attention span range is 2-5 seconds
• 1 second delay in page load times = $2.5M loss in sales for an e-commerce website
• Cellular handset users’ behaviors differ by one or more orders of magnitude
 • E.g. amount of data received per day varies from 1 to 1000 MB\(^{(2)}\)
 • How can we satisfy everyone? Adapt to user behavior

Outline
• Current issues for cellular handsets
 I. Bandwidth
 II. Battery
 III. Load times
• Challenges
• Current solutions
 I. Integrated LTE-WiFi Networks
 II. RRC States
 III. Page Content Compressions
• Drawbacks of current implementations
• Examples of design improvements
 I. ATOM
 II. FlexiWeb
 III. RRC Dynamics Considerations

Current Issues for Cellular Handsets

1. Bandwidth-intensive mobile services.
 • Network capacity < bandwidth demand
2. Limited battery life
3. Network conditions and degradation in page load times

Current Solutions and Drawbacks

I: Integrated LTE-WiFi Networks

1. Bandwidth intensive mobile services:
 • Operators globally deploying WLANs for additional capacity.
 • Upgrading to LTE for superior rates.
 • Deploying WiFi APs in areas of high network access to relieve pressure.

2. Naive static policies(1):
 • Select WiFi as the default when available
 • Select WiFi as the default if signal strength is above some threshold

3. Drawbacks:
 • No seamless flow during switching
 • Does not account for current load on AP – suffer during congestion
 • Select at initiation -- Wireless conditions change between departure & arrival

II: RRC States

RRC: Radio Resource Control

- States that cellular networks transition between due to different traffic patterns
- Have different performance & energy consumption characteristics
- Experience good performance on resource-constrained devices
- Affect application power consumption

Drawbacks in current measurement studies:
- Non-ideal RRC State behavior
- Performance vs. power consumption
- Transition delays
- Demotion delays ignored

Drawbacks in current measurement studies:
- Non-ideal RRC State behavior
- Performance vs. power consumption
- Transition delays
- Demotion delays ignored

III: Page Content Compressions

- Proxy-based solution
 - Use of cloud-based middleboxes
 - Compression
 - Up to 32% degradation in page load times in excellent wireless conditions
 - Minify and zip text-based content
 - Fixed image format with fixed image ratio

- Client-based solution
 - Mobile-friendly websites
 - Parallelization – decomposing into mini pages

- Drawbacks
 - Negative gain in excellent conditions
 - Wasted compression on small files/images

Design Improvements
Strategies & Examples
ATOM: end-to-end system for traffic adaptive offloading

- Network centric
- Network interference assignment
- Interface Switching Service (ISS)
 - seamless
 - manages flows belonging to several LTE cells and WiFi APs.
- Computes the specific WiFi AP or LTE base station that is used by each user flow.

FlexiWeb: Network Aware Compactions

- Assessing Network Conditions
- Splitting requests
 - Predicting object sizes
- Network-Aware
 - Compressing based on network conditions
- Deliver page within user’s attention span
- QoE vs. page load latency

<table>
<thead>
<tr>
<th>Network Conditions</th>
<th>Good Conditions</th>
<th>Bad Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-9 kB</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>10-19 kB</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>20-50 kB</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>60-120 kB</td>
<td>Medium</td>
<td>High</td>
</tr>
</tbody>
</table>

FlexiWeb: Network Aware Compactions
Considerations of RRC State Dynamics

Delay causes:
- DRX in poor network conditions
- Messages to measure channel conditions
- Configuration messages
- Demotion process in 3G
- Demotions to FACH impacted by long delays

Recommendations:
- Impact is complex, unpredictable, and highly dependent on implementation details
- Longer timers to decrease demotion delays
- QxDM (debugging tool)
 - Configuration or implementation bug
- Elimination of FACH
- Global monitoring of cellular network configurations