18-759: Wireless Networks
Lecture 21: Localization

Peter Steenkiste
Departments of Computer Science and
Electrical and Computer Engineering
Spring Semester 2016
http://www.cs.cmu.edu/~prs/wirelessS16/

Properties of localization procedures

- Physical position vs data types
- Reference systems
- Processing: localized vs centralized
- Data quality
 - Accuracy and precision
 - Scale
- Deployment aspects
 - Limitations
 - Cost

- Very diverse systems – lots of research

Outline

- Properties of localization procedures
- Approaches
 - Proximity (CAESAR)
 - Trilateration and triangulation (GPS)
 - Finger printing (RADAR)
 - Hybrid systems
- Other direct methods

Data types

- Many ways to measure location, e.g.
 - GPS location of a mobile phone
 - Area where an access point has sufficient reception
- Corresponding data types
 - point locations in terms of coordinates:
 - physical or geometric locations
 - extended region locations given by names:
 - symbolic locations
Location-awareness

- Location model: data structure that organizes locations
- Location-based routing
 - symbolic location model
 - geometric location model
 - hybrid location model

Examples
- symbolic location model: address hierarchy
 DH.Floor2.2105
- geometric location model:
 GPS coordinate
 (12.3456°N, 123.456°E)
- hybrid location model:
 combination of address and coordinate
 DH.Floor2.2105.Seat(0,4)

Quality of Position Information

Positioning accuracy:
- largest distance between an estimated position and the true position

Precision:
- the ratio with which a given accuracy is reached, averaged over many repeated attempts

Example:
- average error of less than 20cm in 95% of cases

Approaches

- Proximity
 - estimate distance between two nodes
- Trilateration and triangulation
 - using elementary trigonometric properties: a triangle is completely determined,
 - if all two angles and a side length are known
 - if the lengths of all three sides are known
 - infer a 3d position from information about two triangles
- Fingerprinting (scene analysis)
 - using radio characteristics of a location as fingerprint to identify it
- Hybrid methods: combine multiple sources of information

Proximity and Distance

- Binary nearness: using finite range of wireless communication and/or threshold
 - within range of a beacon signal from a source with known position
 - yields region locations, e.g.: cell in cellular network
- Distance measurement (ranging)
 - Received signal strength
 - Time of flight (time of arrival)
 - Time difference of arrival
CAESAR

- Carrier sense-based ranging:
- Combines time of flight and SNR measurement
- Local station determines location of (mobile) remote stations
- Design criteria
 » Exploit 802.11 protocol
 » Real time
 » Low cost (low network usage, no additional hardware, minimal calibration)

CAESAR: Key Idea

- Time of flight from ACKs
- Speed of light: \(c = \sim 300\text{m/s} \)
- WLAN clock 44MHz
 » Resolution: \(\frac{300}{2\times44} = 3.4\text{m} \)
 » Distance
 \[
 d = c\left(\frac{t_{\text{MacIdle}}-t_{\text{SIFS}}-t_{\text{FD}}}{2}\right)
 \]

CAESAR: Adjustment to Noise

- Method depends on correct estimation of response time
- Automatic gain control is used if
 » Strong signal detected (SSD): e.g. subtract 30dB from signal
 » Weak signal detected (WSD): quantization method takes longer (or signal is not detected)
- Suggested solution:
 » Detect states SSD, WSD, and preferred range
 » Use three different values for \(t_{\text{FD}} \)

Measuring Location: Trigonometry Basics

- Triangles in a plane
 » Lateration: distance measurement to known reference points
 - a triangle is fully determined by the length of its sides
 - Time of Flight (e.g. GPS, Active Bat)
 - Attenuation (e.g. RSSI)
 » Angulation: measuring the angle with respect to two known reference points and a reference direction or a third point
 - a triangle is fully determined by two angles and one side as shown
 - Phased antenna arrays
 - aircraft navigation (VOR)
Mathematical Background

- Computing positions between three known positions \((x_i, y_i)\) and an unknown position \((x_u, y_u)\) given distances \(r_i\) between \((x_i, y_i)\) and \((x_u, y_u)\)
- Yields three equations
 \[
 (x_i - x_u)^2 + (y_i - y_u)^2 = r_i^2
 \]
- Linear equations by subtracting 3rd from 1st and 2nd: quadratic terms \(x_u^2\) and \(y_u^2\) disappear
 \[
 2(x_3 - x_2)x_u + 2(y_3 - y_2)y_u = (r_2^2 - r_3^2) - (x_2^2 - x_3^2) - (y_2^2 - y_3^2)
 \]
 \[
 2(x_3 - x_1)x_u + 2(y_3 - y_1)y_u = (r_1^2 - r_3^2) - (x_1^2 - x_3^2) - (y_1^2 - y_3^2)
 \]
- Positions with imprecise information
 - Redundancy: overdetermined solution
 - Least squares estimates

GPS

- Radio-based navigation system developed by DoD
 - Initial operation in 1993
 - Fully operational in 1995
- System is called NAVSTAR
 - NAVigation with Satellite Timing And Ranging
 - Referred to as GPS
- Series of 24 satellites, in 6 orbital planes
- Works anywhere in the world, 24 hours a day, in all weather conditions and provides:
 - Location or positional fix
 - Velocity, direction of travel
 - Accurate time

www.fws.gov/southeast/gis/training_2k5/GPS_overview_APR_04.ppt

GPS involves 5 Basic Steps

- Trilateration
 - Intersection of spheres
- Satellite Ranging
 - Determining distance from satellite
- Timing
 - Why consistent, accurate clocks are required
- Positioning
 - Knowing where satellite is in space
- Correction of errors
 - Correcting for ionospheric and tropospheric delays

How GPS works?

- Range from each satellite calculated
 \[
 \text{range} = \text{time delay} \times \text{speed of light}
 \]
- Technique called trilateration is used to determine your position or "fix"
 - Intersection of spheres
- At least 3 satellites required for 2D fix
- However, 4 satellites should always be used
 - The 4th satellite used to compensate for inaccurate clock in GPS receivers
 - Yields much better accuracy and provides 3D fix
Determining Range

- Receiver and satellite use same code
- Synchronized code generation
- Compare incoming code with receiver generated code

Measure time difference between the same part of code

From satellite

From receiver

Signal Structure

- Each satellite transmits its own unique code
- Two frequencies used
 - L1 Carrier 1575.42 MHz
 - L2 Carrier 1227.60 MHz
- Codes
 - CA Code use L1 (civilian code)
 - P (Y) Code use L1 & L2 (military code)

Three Satellite Ranges Known

- 20,000 Km radius
- 22,000 Km radius
- 21,000 Km radius

Located at one of these 2 points. However, one point can easily be eliminated because it is either not on earth or moving at impossible rate of speed.

Accurate Timing is the Key

- Satellites have very accurate atomic clocks
- Receivers have less accurate clocks
- Measurements made using “nanoseconds”
 - 1 nanosecond = 1 billionth of a second
 - 1/100^th of a second error could introduce error of 1,860 miles
- Discrepancy between satellite and receiver clocks must be resolved
- Fourth satellite is used to solve the 4 unknowns (X, Y, Z and receiver clock error)
Satellite Positioning

- Also required in the equation to solve the 4 unknowns is the actual location of the satellite.
- Satellites are in relatively stable orbits and constantly monitored on the ground.
- Satellite’s position is broadcast in the “ephemeris” data streamed down to receiver.

Sources of Errors

- Largest source is due to the atmosphere:
 - Atmospheric refraction
 - Charged particles
 - Water vapor
- Other sources:
 - Geometry of satellite positions
 - Multi-path errors
 - Satellite clock errors
 - SV position or “ephemeris” errors
 - Quality of GPS receiver

Location Fingerprinting

- Fingerprint Methods for Recognizing Locations:
 - Examples
 - Visual identification of places from photos
 - Recognition of horizon shapes
 - Measurement of signal strengths of nearby networks (e.g. RADAR)
 - Method: computing the difference between a feature set extracted measurements with a feature database
 - Advantages: passive observation only (protect privacy, prevent communication overhead)
 - Disadvantage: access to feature database needed

Other Direct Methods

- Active Badge: infrared beacons in rooms
- Active Office: location of specific device
 - arrays of ultrasound receivers
 - central controller sending radio signal
 - time difference of arrival (95%, 8cm)
- Cricket
 - device queries anchors
 - anchors provide ultrasound and radio signal for TDoA
- Overlapping connectivity
- Approximate point in triangle
- Angle of arrival: narrow, rotating beams
Literature