Management and Control Services

- Association management
- Handoff
- Security: authentication and privacy
- Power management
- QoS

802.11: Infrastructure Reminder

- Station (STA)
 - terminal with access mechanisms to the wireless medium and radio contact to the access point
- Access Point
 - station integrated into the wireless LAN and the distribution system
- Basic Service Set (BSS)
 - group of stations using the same AP
- Portal
 - bridge to other (wired) networks
- Distribution System
 - interconnection network to form one logical network (ESS: Extended Service Set) based on several BSS
Service Set Identifier - SSID

- Mechanism used to segment wireless networks
 - Multiple independent wireless networks can coexist in the same location
 - Effectively the name of the wireless network
- Each AP is programmed with a SSID that corresponds to its network
- Client computer presents correct SSID to access AP
- Security Compromises
 - AP can be configured to “broadcast” its SSID
 - Broadcasting can be disabled to improve security
 - SSID may be shared among users of the wireless segment

Association Management

- Stations must associate with an AP before they can use the wireless network
 - AP must know about them so it can forward packets
 - Often also must authenticate
- Association is initiated by the wireless host – involves multiple steps:
 1. Scanning: finding out what access points are available
 2. Selection: deciding what AP (or ESS) to use
 3. Association: protocol to “sign up” with AP – involves exchange of parameters
 4. Authentication: needed to gain access to secure APs – many options possible
- Disassociation: station or AP can terminate association

Association Management: Scanning

- Stations can detect AP based by scanning
- Passive Scanning: station simply listens for Beacon and gets info of the BSS
 - Beacons are sent roughly 10 times per second
 - Power is saved
- Active Scanning: station transmits Probe Request; elicits Probe Response from AP
 - Saves time – is more thorough
 - Wait for 10-20 msec for response
- Scanning all available channels can become very time consuming!
 - Especially with passive scanning
 - Cannot transmit and receive frames during most of that time – not a big problem during initial association

Association Management: Selecting an AP and Joining

- Selecting a BSS or ESS typically must involve the user
 - What networks do you trust? Are you willing to pay?
 - Can be done automatically based on stated user preferences (e.g. the “automatic” list in Windows)
- The wireless host selects the AP it will use in an ESS based on vendor-specific algorithm
 - Uses the information from the scan
 - Typically simply joins the AP with the strongest signal
- Associating with an AP
 - Synchronization in Timestamp Field and frequency
 - Adopt PHY parameters
 - Other parameters: BSSID, WEP, Beacon Period, etc.
Association Management: Roaming

- Reassociation: association is transferred from active AP to a new target AP
 - Supports mobility in the same ESS – layer 2 roaming
- Reassociation is initiated by wireless host based on vendor specific algorithms
 - Implemented using an Association Request Frame that is sent to the new AP
 - New AP accepts or rejects the request using an Association Response Frame
- Coordination between APs is defined in 802.11f
 - Allows forwarding of frames in multi-vendor networks
 - Inter-AP authentication and discovery typically coordinated using a RADIUS server
 - “Fast roaming” support (802.11r) also streamlines authentication and QoS, e.g. for VoIP

Association Management: Reassociation Algorithms

- Failure driven: only try to reassociate after connection to current AP is lost
 - Typically efficient for stationary clients since it not common that the best AP changes during a session
 - Mostly useful for nomadic clients
 - Can be very disruptive for mobile devices
- Proactive reassociation: periodically try to find an AP with a stronger signal
 - Tricky part: cannot communicate while scanning other channels
 - Trick: user power save mode to “hold” messages
 - Throughput during scanning is still affected though
 - Mostly affects latency sensitive applications

Outline

- Brief history
- 802 protocol overview
- Wireless LANs – 802.11 – overview
- 802.11 MAC, frame format, operations
- 802.11 management
- 802.11 security
- 802.11 power control
- 802.11* QoS
WLAN Security Requirements

- Authentication: only allow authorized stations to associate with and use the AP
- Confidentiality: hide the contents of traffic from unauthorized parties
- Integrity: make sure traffic contents is not modified while in transit

Security in 802.11b

- WEP: Wired Equivalent Privacy
 - Achieve privacy similar to that on LAN through encryption
 - Intended to provide both privacy and integrity
 - RC4 and CRC32
 - Has known vulnerabilities
- WPA: Wi-Fi Protected Access
 - Larger, dynamically changed keys
- 802.1x: port-based authentication for LANs
 - Port-based authentication for LANs
- 802.11i (WPA2)
 - Builds on WPA
 - Uses AES for encryption

WLAN Security Exploits

- Insertion attacks
 - Unauthorized Clients or AP
- Client-to-Client Attacks
 - DOS - duplicate MAC or IP addresses
 - Can also be used to get free service on “secured” APs
- Interception and unauthorized monitoring
 - Packet Analysis by “sniffing” – listening to all traffic
- Jamming – denial of service
 - Cordless phones, baby monitors, leaky microwave oven, etc.

WLAN Security Exploits

- Brute Force Attacks Against AP Passwords
 - Dictionary Attacks Against SSID
- Encryption Attacks
 - Exploit known weaknesses of WEP
- Misconfigurations
 - APs ship in an unsecured configuration
 - Many people use APs with default configuration
MAC Filtering

- Each client identified by its 802.11 NIC Mac Address
- Each AP can be programmed with the set of MAC addresses it accepts
- Combine this filtering with the AP’s SSID
- Very simple solution
 » Some overhead to maintain list of MAC addresses
- But it is possible to forge MAC addresses …
 » Unauthorized client can “borrow” the MAC address of an authenticated client
 » Built in firewall will discard unexpected packets

Wired Equivalent Privacy

WEP

- Employs RC4 to Encrypt/Decrypt data
 » RC4 is a stream cypher based on a symmetric algorithm
 » 40 bit encryption key is supplied by the user
 » 24 bit initialization vector (IV) is supplied in the header
 » 64 bit string is seed for PRNG to generate a “key sequence”
 » 40 and 64 bit WEP are the same thing
- ICV (integrity check value) is computed for plaintext (CRC-32)
- ICV is appended to plaintext to create data string
- Key Sequence is XORéd to data string to create ciphertext
- Ciphertext and IV are sent to receiver
- 128-bit encryption uses a 104+24 bit key

WEP-Based Security Discussion

- WEP has known vulnerabilities
- Key can be cracked with a couple of hours of computing
 » IV transmitted in the clear
 » No protocol for encryption key distribution
 » Clever optimizations can reduce time to minutes
- All data then becomes vulnerable to interception
 » WEP typically uses a single shared key for all stations
- The CRC32 check is also vulnerable so that the data could be altered as well
 » Can makes changes without even decrypting!
- 128-bit WEP encryption is recommended

WEP Authentication

- Access request by client
- Challenge text sent to client by AP
- Challenge text encoded by client using shared secret then sent to AP
- If challenge text encoded properly, AP allows access; else access is denied
Port-based Authentication

- 802.1x is the IEEE standard for port-based authentication
- Users get a username/password to access the access point
- Was originally defined for switches but extended to APs
- Can be used to bootstrap other security mechanisms
 » Effectively creating a session

Wi-Fi Protected Access (WPA)

- Introduced by Wi-Fi Alliance as an interim solution after WEP flaws were published
 » Uses a different Message Integrity Check
 » Encryption still based on RC4, but uses 176 bit key (48bit IV) and keys are changed periodically
 » Also frame counter in MIC to prevent replay attacks.
- Can be used with 802.1x authentication (optional)
 » It generates a long WPA key that is randomly generated, uniquely assigned and frequently changed.
 » Attacks are still possible since people sometimes use short, poorly random WPA keys that can be cracked
- 802.11i is a “permanent” security fix
 » Builds on the interim WPA standard (i.e. WPA2)
 » Replaces RC4 by the more secure Advanced Encryption Standard (AES) block encryption
 » Better key management and data integrity
 » Uses 802.1x for authentication.

Wireless Security

- Security is not just about authentication and encryption
- Must also consider business and deployment issues
 » AAA: Authentication, Authorization, and Accounting
 » Supporting users at different levels

Authentication in WLAN Hotspots

- Upon association with the AP, only authentication traffic can pass through, as defined by IEEE 802.1x
- The protocol used to transport authentication traffic is the Extensible Authentication Protocol (EAP - RFC3748)
Dual SSID Approach

- VLAN1: Public
- VLAN2: Management
- VLAN3: User Traffic

- User traffic
- Authentication traffic
- Billing interface

- Access to DHCP server
- WPA/WEP encryption key

802.1x and EAP Protocol Execution

Best Practices for WiFi Security

- Use WPA2
 - Widely supported today
 - If not available, use WEP or WPA
 - Better than no security plus some possible legal benefits
- Change the default configuration of your AP:
 - Change default passwords on APs
 - Don’t name your AP by brand name
 - Don’t name your AP by model #
 - Change default SSID
- Use MAC filtering if available
- Use a VPN or application layer encryption
 - Must assume that wireless segment is untrusted
 - Provides end-to-end encryption – is what you want!

Wardriving

- The act of locating and possibly exploiting to a wireless network while driving around a city
- You need a vehicle, a laptop, a wireless PC card and some kind of antenna
- People can intercept your wireless signal when the signal exceeds your building
 - http://www.wardriving.com

- Is this legal??