18-759: Wireless Networks
Lecture 1: Organization, History and Applications

Peter Steenkiste
Departments of Computer Science and Electrical and Computer Engineering
Spring Semester 2016
http://www.cs.cmu.edu/~prs/wirelessS16/

Schedule for Today

- Goals and structure of the course
- Administrative stuff
- Wireless technologies
- History
- Exciting Applications

Goals of the Course

- Learn about the unique challenges in wireless networking
 » Starting point is “regular” wired networks
- Gain an understanding of wireless technologies at the physical, MAC, and higher layers
 » Focus is on the wireless protocol layer
- Get experience in working with wireless networks
 » Implementing protocols, algorithms
 » Measurements of wireless networks
- Get a broad view of the ongoing research in the wireless domain
 » Focus on the protocol level

Course Contents

- Lectures: unique features of wireless
 » About 20 lectures on diverse topics
- Surveys of advanced research topics
 » Critical thinking on exciting current research
 » Comparison of proposed solutions
 » Applicability and limitations
 » Second half of the semester
- Project: team-based, hands-on
 » More in-depth study of a particular topic
 » Topic is flexible
 » Organized as multiple phases
Lectures

- History and applications (today)
 » Why are wireless networks so interesting?
- Challenges of wireless networks (Friday)
- Physical layer concepts (4-5)
 » Focus on understanding the impact on higher layers
 » Not an in-depth course on the communications field!
- Cellular networks and WiMax (3-4)
- WLAN (4)
- PAN, sensor networks, etc. (4-5)
- Will have some makeup lectures on Friday

Surveys

- Last part of the course will deal with advanced topics, that are the focus of current research in the wireless networking.
- Small teams will prepare a survey on a topic based on a small set of papers.
 » Summarize the state of the art
 » Apply critical thinking on the applicability and effectiveness of current proposals
 » Compare different solutions
 » Identify interesting future work
- Surveys will be presented in class
 » Are part of syllabus

Projects

- In-depth study of a particular topic.
 » Performance evaluation studies, protocol modifications, applications, measurements, ...
 » Must be wireless, but otherwise flexible
 » List of sample topics will be provided
- Strongly prefer hands on projects
 » Real world is quite different from simulation and analysis
- Must carefully consider platform options:
 » Real-world experiments
 » Simulator based
 » Emulator
 » Or could compare results in different environments

Prerequisites

- Prerequisites in basic probability, networking, and basic signals, programming
 » Or: 18-345 and 15-213 (or 15-441 as a substitute); 18-396; and 36-217 (36-225 or 36-325 as substitutes)
 » C/C++ and/or Java programming for the project
- Mostly taken by students who want to extend their networking background to wireless
 » Need to make sure you know some signals as the basis for the PHY material
- But, also accessible to students with more of an EE background
 » But need to read up on networking - see reading list
 » Need to consider programming experience as well
- Please fill out information form!
Administrative Stuff

 » Will not cover all the material in the book
 » Not all material is in the book - slides are fairly detailed
 » Some slides taken from various sources
- Web page is primary source for information
 » This course does not use Blackboard
- Course secretary: Angela Malloy, Gates 9114, amalloy@cs.cmu.edu
- Teaching assistant: Hsu-Chieh Hu

Grading

Grade distribution:
- Homework: 10%
- Project: 30%
- Survey: 10%
- Exams: 50%

Collaboration

- Traditional rules of collaboration apply
 » http://www.cmu.edu/policies/documents/Cheating.html
 » Cases of cheating will be handled according to CMU policy
- You must complete individual assignments and tests by yourself
- You must collaborate with your partner in the team-based project and survey assignment
 » If you drop the course, let us know as soon as possible
 » Need to minimize disruption for your partner(s)
- It is acceptable and encouraged to help fellow student with generic problems
 » E.g. where to find documentation, use of tools, ..
- Provide proper credit when reusing material

Course Material

- Most slides were prepared by the course instructor
- Some slides contain material from other sources
 » Previous co-instructors have contributed slides
 » Some figures are taken from the textbook
 » Some lectures contain material from research presentations prepared by the authors
Schedule for Today

- Goals and structure of the course
- Administrative stuff
- Wireless technologies
- History
- Exciting Applications

Wireless Technologies

Why so many?

- Diverse application requirements
 - Energy consumption
 - Range
 - Bandwidth
 - Mobility
 - Cost

- Diverse deployments
 - Licensed versus unlicensed
 - Provisioned or not

Technologies have different

- Signal penetration
- Frequency use
- Cost
- Market size
- Age, integration

Some History...

- Wireless telegraph invented by Guglielmo Marconi in 1896
- Tesla credited with first radio communication in 1893
- First telegraphic signal traveled across the Atlantic ocean in 1901
- Used analog signals to transmit alphanumeric characters
Satellites

- Launched in 1960
- First satellites could carry 240 voice circuits
- In 1998 satellites carried:
 - 1/3 of all voice traffic
 - All television signals between countries!
- Modern satellites induce 250 ms propagation delay
- New ones in lower orbits can allow for data services such as Internet access

Mobile phones

- 2-way 2-party communication using digital transmission technology
- In 2002 the number of mobile phones exceeded that of land lines
- More than 1 billion mobile phones!
- The only telecommunications solution in developing regions
- How did it all start?

The origin of mobile phone

- America’s mobile phone age started in 1946 with MTS – weighing 40 Kg!
- First mobile phones very bulky, expensive and hardly portable
- Operator assisted with 250 maximum users

The MTS network
The Cellular Idea

- In December 1947 Donald H. Ring outlined the idea in a Bell labs memo
- Split an area into cells with their own low power towers
- Each cell would use its own frequency
- Did not take off due to “extreme-at-the-time” processing needs
 » Handoff for thousands of users
 » Rapid switching infeasible – maintain call while changing frequency
 » Technology not ready

... the Remaining Components

- In December 1947 the transistor was invented by William Shockley, John Bardeen, and Walter Brattain
- Why no portable phones at that time?
 - A mobile phone needs to send a signal – not just receive and amplify
 - The energy required for a mobile phone transmission still too high for the high power/high tower approach – could only be done with a car battery

... and the Regulatory Bodies

The FCC commissioner Robert E. Lee said that mobile phones were a status symbol and worried that every family might someday believe that its car had to have one.

Lee called this a case of people “frivolously using spectrum” simply because they could afford to.

From The Cell-Phone Revolution, AmericanHeritage.com

DynaTAC8000X: the First Cell Phone

The “brick”:
- weighed 2 pounds,
- offered 30 mins of talk time for every recharging and
- sold for $3,995!

It took 10 years to develop (1973-1983) and cost $100 million! (delay due to infrastructure)

Size primarily determined by the size of batteries, antennas, keypads, etc.

Today size determined by the UI!

Dr. Martin Cooper of Motorola, made the first US analogue mobile phone call on a larger prototype model in 1973
Cellular Landscape

THEN
• First complete cellular system (not handheld) deployed in 1978 in the suburbs of Chicago.
• The system had 10 cells, each about a mile across
• With 135 custom-designed car phones.

NOW
A map of cell-phone towers in Texas as of 2005, with different colors representing different companies.

How about WiFi – a Little History

Wavelan at 900MHz
1 Mbps throughput

PCMCIA form factor make Wavelan more portable

WiFi in Laptops

- Antennas placed on the frame of the screen
- Mini-PCI format allows for full integration
- Latest radio technology may feature up to 3 antennas

Food for Thought

- How large will tomorrow’s mobile devices be?
- How many wireless interfaces will they have?
- Will they have any of the interfaces we use today?
- Lots of interesting research!
Schedule for Today

- Goals and structure of the course
- Administrative stuff
- Wireless technologies
- History
- Exciting Applications

What do we use wireless for?

- Limited set of “special” users ... everyone
 - Broadcasting, emergency services, etc.
 - 10s .. 100s of devices per person
- Device to infrastructure ... people to people ... device to device
 - Broadcasting, Internet access
 - Phone calls, social networking, ...
 - Sensor networks, health, ...
- Special-purpose applications ... wired link replacement ... wireless application market
 - Often single-use devices
 - Make application/protocol work over wireless
 - Wireless only applications for multi-purpose devices

Cellular applications

- The first killer application – SMS text messaging
 - Specific to cell phone – personal device that travels with user
- Then ring tones...
 - Phone with some intelligence
- Then replacement for landlines...
- ... and with data communication the dominant use
 - Phone calls play minor role
- Many social networking applications, e.g., find nearby X, posting pictures, ...

WiFi applications

- Wireless access to the Internet!
 - In home
 - Through hotspots
 - While on the move...
 - Offloading
- Seattle map through wigle.net
Free Internet access through mesh WiFi

WiFi in developing regions

Home Security and Energy Mgmt through WiFi (AlertMe)

Vehicle to Vehicle Communication

- The cars, motorcycles form an ad hoc WLAN
- The system continuously monitors the position, speed, distance and direction of surrounding road users, even in conditions of darkness and poor visibility.
- Data is centralized and sent to the drivers to warn them of traffic conditions ahead
- Motorcycle riders can view information on a display, and receive safety warnings through advanced interfaces such as an in-helmet audio system
Future?

- 60 GHz for in-home entertainment
- Software defined radios

From http://www.springerlink.com/content/9202x4768515y1v/fulltext.pdf

Rest of the course

- Challenges in delivering wireless networking solutions (physical layer, protocols, and supporting infrastructure)
- How things work and limitations
 - Standard protocols: WiFi, cellular, zigbee, bluetooth, ...
 - Related technologies: GPS, RFID, localization, sensing, sensor networks, 60 GHz, ...
- Current research topics that will enable more uses

References

- http://www.msnbc.msn.com/id/7432915/
- http://bloggerstop.net/2008/01/first-mobile-phone-first-fully.html
- http://cents.cs.berkeley.edu/retreats/winter_2005/CENTS-tier.ppt
- http://www.privateline.com/mt_digitalbasics/ii_wireless_history/17_the_first_american_radiotelephone_service/