18-452/18-750
Wireless Networks and Applications
Lecture 20: PAN

Peter Steenkiste
CS and ECE, Carnegie Mellon University

Fall Semester 2018
http://www.cs.cmu.edu/~prs/wirelessF18/

Outline

• 802.15 protocol overview
• Bluetooth
• Personal Area Networks – 802.15
 » Applications and positioning
 » Bluetooth
 » High speed WPAN
 » Zigbee
 » Other
• UWB

IEEE 802.15: Personal Area Networks

• Target deployment environment: communication of personal devices working together
 » Short-range
 » Low Power
 » Low Cost
 » Small numbers of devices
• Four groups of standards:
 » IEEE 802.15.1 – “Bluetooth”
 » IEEE 802.15.2 – Interoperability (e.g. Wifi)
 » IEEE 802.15.3 – High data rate WPAN (WiMedia)
 » IEEE 802.15.4 – Low data rate WPAN (ZigBee)

Some Common Themes

• Master/slave notion
 » Or simple node versus coordinator
• Use of “piconets”
 » Small groups of devices managed by a master or coordinator
 » Scalability is not a concern
• Support for QoS
 » Want to support voice and other media
• But many variants in how this functionality is supported
Bluetooth

- Think USB, not Ethernet
 - Cable replacement technology
- Originally defined as IEEE 802.15.1, but standard is now maintained by the Bluetooth Special Interest Group
 - Created by Ericsson
- Some features:
 - Up to 1 Mbps connections (original version)
 - 1600 hops per second FHSS
 - Includes synchronous, asynchronous, voice connections
 - Piconet routing
- Small, low-power, short-range, cheap, versatile radios
- Used as Internet connection, phone, or headset
- Master/slave configuration and scheduling

IEEE 802.15.1

- Adopted the Bluetooth MAC and PHY specifications
- IEEE 802.15.1 and Bluetooth are almost identical regarding physical layer, baseband, link manager, logical link control and adaptation protocol, and host control interface
- Range of up to 30 feet, uses FHSS
- Data transfer rates of up to 1 Mbps
 - Up to 3 Mbps for version 2
- Not designed to carry heavy traffic loads

Bluetooth Standards

- Core specifications: defines the layers of the Bluetooth protocol architecture
 - Radio - air interface, txpower, modulation, FH
 - Baseband - power control, addressing, timing, connections...
 - Link manager protocol (LMP) - link setup & mgmt, incl. authentication, encryption, ...
 - Logical link control and adaptation protocol (L2CAP) - adapts upper layer to baseband
 - Service discovery protocol (SDP) – device info, services and characteristics.

Bluetooth “Profiles”

- Profile specifications describe the use of BT in support of various applications
 - Includes which parts of the core specification are mandatory, optional or not applicable
- Data and voice access points
 - Real-time voice and data transmissions
- Cable replacement
 - Eliminates need for numerous cable attachments for connection
Some Example Profiles

- Audio/video profile
- Fax profile
- Basic printing profile
- Serial port profile
- PAN profile
- Phone book access profile
- Headset profile
- LAN access profile
- Service discovery profile
- Cordless phone profile

Frequency Hopping in Bluetooth

- Provides resistance to interference and multipath effects
- Provides a form of multiple access among co-located devices in different piconets
- Total bandwidth divided into 79 1MHz physical channels
- FH occurs by jumping from one channel to another in pseudorandom sequence
- Hopping sequence shared with all devices on piconet
 » Remember that all communication is with the master, i.e., only one transmitter at any time

Sharing the Channel

- Bluetooth devices use time division duplex (TDD)
- Access technique is TDMA
- FH-TDD-TDMA

Piconets are Basis for Topology

- Master with up to 7 active slaves
 » Slaves only communicate with master
 » Slaves must wait for permission from master
- Master picks radio parameters
 » Channel, hopping sequence, timing, ...
- Scatternets can be used to build larger networks
 » A slave in one piconet can also be part of another piconet
 » Either as a master or as a slave
 » If master, it can link the piconets
Wireless Network Configurations

- Cellular system (requires representative stationary base stations)
- Conventional ad-hoc systems

Bluetooth Piconet

- A collection of devices connected via Bluetooth technology in a master-slave network
 - Master functions as the piconet coordination (PNC)
- The piconet starts with two connected devices, and may grow to eight connected devices
 - Devices are added by the master
- All Bluetooth devices are peer units and have identical implementations, but they play a master or slave role when connecting
 - Roles can be reversed
 - Example: headsets connects as master to phone but then becomes slave

Forming a piconet

- Needs two parameters:
 - Hopping pattern of the radio it wishes to connect.
 - Phase within the pattern i.e. the clock offset of the hops.
 - Effectively defines a channel that must be unique to the piconet – master must scan for other piconets first
- The global ID defines the hopping pattern.
- The master shares its global ID and its clock offset with the other radios which become slaves.
- The global ID and the clock parameters are exchanged using a FHS (Frequency Hoping Synchronization) packet.

IEEE 802.15.4 - Overview

- Low Rate WPAN (LR-WPAN)
- Simple and low cost
- Low power consumption
 - Years on lifetime using standard batteries
- Mostly in sensor networks
- Data rates: 20-250 kbps
- Operates at multiple frequencies
 - 868 Mhz, 915 Mhz, 2.4 GHz
- Blends elements from 802.15.3 and 802.11
- Many versions exist for difference application domains
802.15.4 applications

- **ZigBee Alliance**
 - 45+ companies: semiconductor mfrs, IP providers, OEMs, etc.
 - Defining upper layers of protocol stack: from network to application, including application profiles
 - First profiles published mid 2003

- **IEEE 802.15.4 Working Group**
 - Defining lower layers of protocol stack: MAC and PHY
 - PHY based on DSSS – runs at 250 Kbps in 2.4 GHz band
 - Links are encrypted

802.15.4 devices

- **Full function device (FFD)**
 - Any topology
 - Network coordinator capable
 - Talks to any other device

- **Reduced function device (RFD)**
 - Limited to star topology
 - Cannot become a network coordinator
 - Talks only to a network coordinator
 - Very simple implementation

Roles

- **Devices (RFD or FFD)**
 - must be associated to a coordinator

- **Coordinators (FFD)**
 - can operate in peer-to-peer mode
 - can form a PAN coordinated by a PAN coordinator

- **PAN Coordinator (FFD)**
 - manages a list of associate devices
 - devices need to associate and disassociate
 - allocates short addresses
 - beacon frames (in beacon mode)
 - processes requests for fixed time slots
IEEE 802.15.4 - Star

Star Topology

- PAN Coordinator
- Master/slave
- Full function device
- Reduced function device

IEEE 802.15.4 – Peer-to-Peer

Peer-Peer Topology

- Point to point
- Cluster tree
- Full function device

IEEE 802.15.4 - Combined

Combined Topology

- Clustered stars - for example, cluster nodes exist between rooms of a hotel and each room has a star network for control.
- Full function device
- Reduced function device

IEEE 802.15.4 - MAC

- One PAN coordinator & multiple RFDs/FFDs
 - Association/disassociation
- CSMA-CA channel access
 - Reliable delivery of data
- Optional superframe structure with beacons
 - GTS mechanism
- AES-128 security
- QoS – 3 traffic types
 - Periodic data: e.g. Sensor data
 - Intermittent data: generated once a while, e.g. light switch traffic
 - Repetitive low latency data: E.g. Mouse device traffic
802.15.4 superframe structure

Outline

- 802.15 protocol overview
- Bluetooth
- Personal Area Networks – 802.15
 » Applications and positioning
 » Bluetooth
 » Zigbee
 » Other
- UWB

Low Power Technologies

- Battery life times of years or even decades
 » Ubiquitous deployment of sensors
 » Internet of Things (IoT), automation, ...
 » Replacing batteries is labor intensive
- Bluetooth Low Energy
 » Not backwards compatible; deployed in some phones
 » Profiles for healthcare, proximity sensing, alerts, keyboard/mice/.., ..
 » 2.4 GHz but simpler modulation schemes

Low-Power Wide-Area Networks (LPWAN)

- Longer range to simplify deployment
 » “Metropolitan” area – cite-wide sensor network
 » Single base station covers large area and many sensors
- Many competing proprietary technologies
 » LoRa: chirp spread spectrum
- Sigfox
 » Star topology, 900 MHz, ..
- LTE-MTC
 » Machine Type Communication
 » Defined by 3GPP
https://www.link-labs.com/blog/what-is-lora
Outline

- 802.15 protocol overview
- Bluetooth
- Personal Area Networks – 802.15
 » Applications and positioning
 » Bluetooth
 » Zigbee
 » Other
- UWB

Ultra WideBand

\[C = B \log_2 (1 + SNR) \]

- Can achieve high throughputs with low SNR by using a high B
- Motivation is the 802.15.3a (high rate PAN) standards effort
 » Targets high speed, short distance communication
- But where do I find this much spectrum?
- Use a transmit power that is low enough to so it will not affect other users
 » Can be used in most licensed frequency bands (with FCC permission, of course)

FCC UWB Rules

- UWB technically defined as:
 » Width of signal > 500 MHz, or
 \[B_f = 2 \frac{f_u - f_l}{f_u + f_l} > 0.2 \]
- Approved for 3.1 GHz to 10.6 GHz
- Power limit is -41.3 dBm/MHz
 » Note that the limit is not on the total signal but across the part of the spectrum that is used
- Results in a frequency mask that must be satisfied
- Certain narrow bands must be filtered out
 » E.g. certain radio astronomy bands
 » Depends on the country

FCC Regulations
Example Technology: Basic Impulse Information Modulation

- Pulse length ~ 200ps; Energy concentrated in 2-6GHz band; Voltage swing ~100mV; Power ~ 10uW
 - Pulse Position Modulation (PPM)
 - Pulse Amplitude Modulation (PAM)
 - On-Off Keying (OOK)
 - Bi-Phase Modulation (BPSK)

Multi-band OFDM

- Divide the spectrum into bands of 528 MHz.
 - Transmitter and receiver process smaller bandwidth signals.
 - Can spread symbols across multiple bands (FH)
 - Can avoid bands based on local regulations
- Use of OFDM offer additional advantages
 - Proven technology that is known to be efficient
 - Can selectively disable subcarriers to protect narrow band signals
 - For example: 128 tones of 5.125 MHz

Discussion

- UWB was included in 802.15 standards
- 802.15.3a was going to use UWB but never materialized
 - Fight between two competing proposals
 - Example on previous slide is one of them
- Also added as 802.15.4a to the low power PAN group
 - Provides for 3 “narrower” bands
 - Not clear it is used