Evolution of Cellular Wireless Systems

Who is Who

- International Telecommunications Union (ITU) - agency of the United Nations responsible for:
 » Assisting in the development and coordination of worldwide standards
 » Coordinate shared use of the global spectrum
 » Defined the International Mobile Telecommunications 2000 (IMT-2000) project for 3G telecommunications

- Third Generation Partnership Project (3GPP)
 » A group of telecommunications associations that represent large markets world-wide
 » Defined a group of 3G standards as part of the IMT-2000 framework in 1999
 » Originally defined GSM, EDGE, and GPRS
 » Later defined follow-on releases and also LTE (4G)

UMTS and WCDMA

- Part of a group of 3G standards defined as part of the IMT-2000 framework by 3GPP
- Universal Mobile Telecommunications System (UMTS)
 » Successor of GSM
- W-CDMA is the air interface for UMTS
 » Wide-band CDMA
 » Originally 144 kbps to 2 Mbps, depending on mobility
- Basically same architecture as GSM
 » Many GSM functions were carried over WCDMA
 » But they changed all the names!
Reminder: CDMA - Direct Sequence Spread Spectrum

Later Releases Improved Performance

• High Speed Downlink Packet Access (HSDPA): 1.8 to 14.4 Mbps downlink
 » Adaptive modulation and coding, hybrid ARQ, and fast scheduling
• High Speed Uplink Packet Access (HSUPA): Uplink rates up to 5.76 Mbps
• High Speed Packet Access Plus (HSPA+): Maximum data rates increased from 21 Mbps up to 336 Mbps
 » 64 QAM, 2×2 and 4×4 MIMO, and dual or multi-carrier combinations
• Eventually led to the definition of LTE

Advantages of CDMA for Cellular systems

• Frequency diversity – frequency-dependent transmission impairments have less effect on signal
• Multipath resistance – chipping codes used for CDMA exhibit low cross correlation and low autocorrelation
• Privacy – privacy is inherent since spread spectrum is obtained by use of noise-like signals
• Graceful degradation – system only gradually degrades as more users access the system

Mobile Wireless CDMA Soft Hand-off

• Soft Handoff – mobile station temporarily connected to more than one base station simultaneously
• Requires that the mobile acquire a new cell before it relinquishes the old
• More complex than hard handoff used in FDMA and TDMA schemes
Evolution of Cellular Wireless Systems

Overview

- Motivation
- Architecture
- Resource management
- LTE protocols
- Radio access network
 - OFDM refresher
- LTE advanced

Purpose, motivation, and approach to 4G

- Defined by ITU directives for International Mobile Telecommunications Advanced (IMT-Advanced)
- All-IP packet switched network.
- Ultra-mobile broadband access
- Peak data rates
 - Up to 100 Mbps for high-mobility mobile access
 - Up to 1 Gbps for low-mobility access
- Dynamically share and use network resources
- Smooth handovers across heterogeneous networks
 - 2G and 3G networks, small cells such as picocells, femtocells, and relays, and WLANs
- High quality of service for multimedia applications
LTE Architecture

- **evolved NodeB (eNodeB)**
 - Most devices connect into the network through the eNodeB
- **Evolution of the previous 3GPP NodeB (~2G BTS)**
 - Uses OFDM instead of CDMA
- **Has its own control functionality**
 - Dropped the Radio Network Controller (RNC - ~2G BSC)
 - eNodeB supports radio resource control, admission control, and mobility management (handover)
 - Was originally the responsibility of the RNC

Evolved Packet System

- Overall architecture is called the Evolved Packet System (EPS)
- 3GPP standards divide the network into
 - Radio access network (RAN): cell towers and connectives to mobile devices
 - Core network (CN): management and connectivity to other networks
- Each can evolve independently
 - Driven by different technologies: optimizing spectrum use versus management and control or traffic

Evolved Packet System Components

- Long Term Evolution (LTE) is the RAN
 - Called Evolved UMTS Terrestrial Radio Access (E-UTRA)
 - Enhancement of 3GPP's 3G RAN
 - eNodeB is the only logical node in the E-UTRAN
 - No Radio Network Controller (RNC)
- **Evolved Packet Core (EPC)**
 - Operator or carrier core network –core of the system
 - Traditionally circuit switched but now entirely packet switched
 - Based on IP - Voice supported using voice over IP (VoIP)

Design Principles of the EPS

- Packet-switched transport for traffic belonging to all QoS classes
 - Voice, streaming, real-time, non-real-time, background
- **Comprehensive radio resource management**
 - End-to-end QoS, transport for higher layers
 - Load sharing/balancing
 - Policy management across different radio access technologies
- Integration with existing 3GPP 2G and 3G networks
- Scalable bandwidth from 1.4 MHz to 20 MHz
- Carrier aggregation for overall bandwidths up to 100 MHz
Evolved Packet Core Components

- Mobility Management Entity (MME)
 - Supports user equipment context, identity, authentication, and authorization
- Serving Gateway (SGW)
 - Receives and sends packets between the eNodeB and the core network
- Packet Data Network Gateway (PGW)
 - Connects the EPC with external networks
- Home Subscriber Server (HSS)
 - Database of user-related and subscriber-related information
- Interfaces
 - S1 interface between the E-UTRAN and the EPC
 - For both control purposes and for user plane data traffic
 - X2 interface for eNodeBs to interact with each other
 - Again for both control purposes and for user plane data traffic

Overview

- Motivation
- Architecture
- Resource management
- LTE protocols
 - Radio access network
 - OFDM refresher
- LTE advanced

Some slides based on material from
“Wireless Communication Networks and Systems”

LTE Resource Management

- LTE uses bearers for quality of service (QoS) control instead of circuits
- EPS bearers
 - Between entire path between PGW and UE
 - Maps to specific QoS parameters such as data rate, delay, and packet error rate
- Service Data Flows (SDFs) differentiate traffic flowing between applications on a client and a service
 - SDFs must be mapped to EPS bearers for QoS treatment
 - SDFs allow traffic types to be given different treatment
- End-to-end service is not completely controlled by LTE

Bearer Management based on QoS Class Identifier (QCI)

<table>
<thead>
<tr>
<th>QCI</th>
<th>Resource Type</th>
<th>Priority</th>
<th>Packet Delay Budget</th>
<th>Packet Error Loss Rate</th>
<th>Example Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GBR</td>
<td>2</td>
<td>100 ms</td>
<td>10^(-3)</td>
<td>Conversational Voice</td>
</tr>
<tr>
<td>2</td>
<td>GBR</td>
<td>4</td>
<td>150 ms</td>
<td>10^(-3)</td>
<td>Conversational Video (live streaming)</td>
</tr>
<tr>
<td>3</td>
<td>GBR</td>
<td>3</td>
<td>50 ms</td>
<td>10^(-3)</td>
<td>Real-Time Gaming</td>
</tr>
<tr>
<td>4</td>
<td>Non-GBR</td>
<td>5</td>
<td>300 ms</td>
<td>10^(-3)</td>
<td>Non-Conversational Video (buffered streaming)</td>
</tr>
<tr>
<td>5</td>
<td>Non-GBR</td>
<td>1</td>
<td>100 ms</td>
<td>10^(-4)</td>
<td>IMS Signalling</td>
</tr>
<tr>
<td>6</td>
<td>Non-GBR</td>
<td>6</td>
<td>300 ms</td>
<td>10^(-4)</td>
<td>Video (buffered streaming)</td>
</tr>
<tr>
<td>7</td>
<td>Non-GBR</td>
<td>7</td>
<td>100 ms</td>
<td>10^(-3)</td>
<td>Voice, Video (live streaming)</td>
</tr>
<tr>
<td>8</td>
<td>Non-GBR</td>
<td>8</td>
<td></td>
<td></td>
<td>Video (buffered streaming)</td>
</tr>
<tr>
<td>9</td>
<td>Non-GBR</td>
<td>9</td>
<td>300 ms</td>
<td>10^(-4)</td>
<td>Video (buffered streaming)</td>
</tr>
</tbody>
</table>

* QCI value typically used for the default bearer

Guaranteed (minimum) Bit Rate

No Guarantees
EPC: Mobility Management

- X2 interface used when moving within a RAN coordinated under the same Memory Management Entity (MME)
- S1 interface used to move to another MME
- Hard handovers are used: A UE is connected to only one eNodeB at a time

EPC: Inter-cell Interference Coordination (ICIC)

- Reduces interference when the same frequency is used in a neighboring cell
- Goal is universal frequency reuse
 - \(N = 1 \) in “Cellular principles” lecture
 - Must avoid interference when mobile devices are near each other at cell edges
 - Interference randomization, cancellation, coordination, and avoidance are used
- eNodeBs send indicators
 - Relative Narrowband Transmit Power, High Interference, and Overload indicators
- Later releases of LTE have improved interference control
 - “Cloud RAN”: use a cloud to manage interference, spectrum

Overview

- Motivation
- Architecture
- Resource management
- LTE protocols
- Radio access network
 - OFDM refresher
- LTE advanced

Protocol Layers End-to-End

Some slides based on material from “Wireless Communication Networks and Systems” © 2016 Pearson Higher Education, Inc.
Protocol Layers
PDCP and RLC

- **Packet Data Convergence Protocol (PDCP)**
 - Delivers packets from UE to eNodeB
 - Involves header compression, ciphering, integrity protection, in-sequence delivery, buffering and forwarding of packets during handover

- **Radio Link Control (RLC)**
 - Segments or concatenates data units
 - Performs ARQ when MAC layer H-ARQ fails
 - ARQ: Automatic Repeat Request (retransmission)
 - H-ARQ: Hybrid ARQ – combines FEC and ARQ

Protocol Layers
MAC and PHY

- **Medium Access Control (MAC)**
 - Performs H-ARQ: combines FEC and retransmission (ARQ)
 - Prioritizes and decides which UEs and radio bearers will send or receive data on which shared physical resources
 - Decides the transmission format, i.e., the modulation format, code rate, MIMO rank, and power level
 - Physical layer actually transmits the data

Overview

- **Motivation**
- **Architecture**
- **Resource management**
- **LTE protocols**
- **Radio access network**
 - OFDM refresher
- **LTE advanced**

Some slides based on material from “Wireless Communication Networks and Systems” © 2016 Pearson Higher Education, Inc.
Different Solution for Up and Downlink

- The downlink uses OFDM with Multiple Access (OFDMA)
 - Multiplexes multiple mobiles on the same subcarrier
 - Improved flexibility in bandwidth management, e.g., multiple low bandwidth users can share subcarriers
 - Enables per-user frequency hopping to mitigate effects of narrowband fading
- The uplink uses Single Carrier OFDM (SC-OFDM)
 - OFDM but using a single carrier
 - Provides better energy and cost efficiency for battery-operated mobiles
 - Large number of subcarriers leads to high peak-to-average Power ratio (PAPR), which is energy-inefficient

LTE Radio Access Network

- LTE uses both TDD and FDD
 - Both have been widely deployed
- Time Division Duplexing (TDD)
 - Uplink and downlink transmit in the same frequency band, but alternating in the time domain
- Frequency Division Duplexing (FDD)
 - Different frequency bands for uplink and downlink
- LTE uses two cyclic prefixes (CPs)
 - Extended CP is for worse environments

Spectrum Allocation for FDD and TDD

- TDD
- FDD

Resource Blocks

- A time-frequency grid is used to illustrate allocation of physical resources
- Each column is 6 or 7 OFDM symbols per slot
- Each row corresponds to a subcarrier of 15 kHz
 - Some subcarriers are used for guard bands
 - 10% of bandwidth is used for guard bands for channel bandwidths of 3 MHz and above

FDD Frame Structure

- Resource Block
 - 12 subcarriers, 6 or 7 OFDM symbols
 - Results in 72 or 84 resource elements in a resource block
- MIMO: 4×4 in LTE, 8×8 in LTE-Advanced
 - Separate resource grids per antenna port
- eNodeB assigns RBs with channel-dependent scheduling
 - Multiuser diversity can be exploited
 - To increase bandwidth usage efficiency
 - Assign resource blocks for UEs with favorable qualities on certain time slots and subcarriers
 - Can also consider fairness, QoS priorities, typical channel conditions, ..

Overview

- Motivation
- Architecture
- Resource management
- LTE protocols
- Radio access network
 - OFDM refresher
- LTE advanced

Some slides based on material from "Wireless Communication Networks and Systems" © 2016 Pearson Higher Education, Inc.
LTE-Advanced

- Carrier aggregation – up to 100 MHz
- MIMO enhancements to support higher dimensional MIMO – up to 8 x 8
- Relay nodes
- Heterogeneous networks involving small cells such as femtocells, picocells, and relays
- Cooperative multipoint transmission and enhanced intercell interference coordination
- Voice over LTE

Comparison LTE and LTE-Advanced

<table>
<thead>
<tr>
<th>System Performance</th>
<th>LTE</th>
<th>LTE-Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downlink</td>
<td>100 Mbps @20 MHz</td>
<td>1 Gbps @100 MHz</td>
</tr>
<tr>
<td>Uplink</td>
<td>50 Mbps @20 MHz</td>
<td>500 Mbps @100 MHz</td>
</tr>
<tr>
<td>Control plane delay</td>
<td>Idle to connected</td>
<td><100 ms</td>
</tr>
<tr>
<td></td>
<td>Dormant to active</td>
<td><50 ms</td>
</tr>
<tr>
<td>User plane delay</td>
<td>< 5ms</td>
<td>Lower than LTE</td>
</tr>
<tr>
<td>Spectral efficiency (peak)</td>
<td>Downlink</td>
<td>5 bps/Hz @2x2</td>
</tr>
<tr>
<td></td>
<td>Uplink</td>
<td>2.5 bps/Hz @1x2</td>
</tr>
<tr>
<td>Mobility</td>
<td>Up to 350 km/h</td>
<td>Up to 350—500 km/h</td>
</tr>
</tbody>
</table>

Relaying

- Relay nodes (RNs) extend the coverage area of an eNodeB
 - Receive, demodulate and decode the data from a UE
 - Apply error correction as needed
 - Transmit a new signal to the base station
- An RN functions as a new base station with smaller cell radius
- RNs can use out-of-band or inband frequencies

Heterogeneous Networks

- It is increasingly difficult to meet data transmission demands in densely populated areas
- **Small cells** provide low-powered access nodes
 - Operate in licensed or unlicensed spectrum
 - Range of 10 m to several hundred meters indoors or outdoors
 - Best for low speed or stationary users
- **Macro cells** provide typical cellular coverage
 - Range of several kilometers
 - Best for highly mobile users
Heterogeneous Network Examples

- Femtocell
 - Low-power, short-range self-contained base station
 - In residential homes, easily deployed and use the home’s broadband for backhaul
 - Also in enterprise or metropolitan locations
- Network densification is the process of using small cells
 - Issues: Handovers, frequency reuse, QoS, security
- A network of large and small cells is called a heterogeneous network (HetNet)

Trends

- Cloud RAN optimizes spectrum use
 - Goal is to reuse frequencies very aggressively
 - Leverage cloud technology to centralize the processing for many cells
- Standards are complex and rigid and need to support several generations
 - E.g., switch seamlessly from 4G to 3G
 - Still need to support 2G (legacy phones, voice)
- Scalability of infrastructure wrt signaling traffic is a growing concern
 - Hardware cannot keep up with changes in usage
- Wide-spread use of custom hardware
 - Move to commodity, programmable equipment

5G Vision

Faster 4G

Growing application domains

Performance Goals ITU

https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf
5G technology

- Goal is 10+ fold increase in bandwidth over 4G
 - Combination of more spectrum and more aggressive use of 4G technologies
- Very aggressive use of MIMO
 - Tens to hundred antennas
 - Very fine grain beamforming and MU-MIMO
- More spectrum: use of millimeter bands
 - Challenging but a lot of spectrum available
 - Bands between 26 and 60 GHz
 - Beamforming extends range
- Also new lower frequency bands
 - Low-band and mid-band 5G: 600 MHz to 6 GHz